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Lift and drag characteristics of a cascade of flat plates
in a configuration of interest for a tidal current energy
converter: Numerical simulations analysis

D. Cebri�an, J. Ortega-Casanova, and R. Fernandez-Feriaa)

E. T. S. Ingenier�ıa Industrial, Universidad de M�alaga, Dr Ortiz Ramos s/n,
29071 M�alaga, Spain

(Received 7 February 2013; accepted 10 July 2013; published online 23 July 2013)

Numerical simulations of the three-dimensional flow through a cascade of flat

plates are conducted to analyze its lift and drag characteristics in a configuration

of interest for a particular type of tidal hydrokinetic energy converter. To that

end, the turbulent model parameters in the computational fluid dynamics code are

validated against experimental data for the flow around an isolated plate at

different angles of incidence and the same Reynolds number used in the cascade.

The lift and drag coefficients of a plate in the cascade, as well as the effective

nondimensional power extracted from the tidal current, are compared to the

corresponding values for an isolated plate. These results are used as a guide for

the design of the optimum configuration of the cascade (angle of attack, blade

speed, and solidity) which extracts the maximum power from a tidal current for a

given reference value of the Reynolds number. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4816495]

I. INTRODUCTION

The conversion of the kinetic energy of tidal or river currents into electricity is currently

made by different types of turbines and non-turbine systems.1,2 Given that tidal hydrokinetic

energy has the potential to play a valuable part in a sustainable energy future,2,3 it is not sur-

prising that much research effort is undertaken in many countries to generate new and more ef-

ficient devices to extract kinetic energy from tidal currents, both by improving existing turbines

or by devising new ones. In both cases, fundamental and applied researches are needed to

improve the energy efficiency of the new devices and to reduce their environmental impact. In

this context, a Norwegian company has developed a new non-turbine device consisting of a cas-

cade of underwater sails or blades that travel carried by the tidal current in a given direction,

which in turn drive an electric generator.4 This device has the potential for a great extraction

efficiency, posing some fundamental hydrodynamic problems about the lift and drag character-

istics of a cascade of moving sails or blades in a particular configuration in relation to the tidal

or river current. This is the problem undertaken in this work. For simplicity is restricted here to

a cascade of flat plates moving perpendicularly to the tidal current, which is one of the configu-

rations of greatest interest.4 Three-dimensional numerical simulations of the flow around this

array of plates with a given aspect ratio and for a given characteristic value of the Reynolds

number are used to compute the lift and drag coefficients of the plates. The resulting power

coefficients are used to find out the optimal configuration in terms of the blades angle of attack,

speed, and separation or solidity. Although no other detailed hydrodynamic numerical study for

the optimization of the hydrokinetic energy converter considered here has been made so far,

there exists in the literature analogous investigations based on both two- and three-dimensional
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numerical simulations aimed at the optimization of the hydrodynamic performance of several

types of marine current turbines (see, e.g., Refs. 5–7).

The physical problem is formulated in Sec. II. The numerical model used in the computa-

tional fluid dynamics (CFD) simulations is discussed in Sec. III, where the turbulent parameters

in the model and the computational grid are validated against existing experimental data for a

single plate at different angles of attack. The numerical results for different configurations of

the cascade of flat plates are given in Sec. IV, including a discussion of the flow configuration

yielding optimal power efficiency. Finally, the main conclusions are drawn in Sec. V.

II. FORMULATION OF THE PROBLEM

We consider the incompressible flow of a uniform (tidal or river) current of velocity V

through a cascade of rectangular flat plates of chord length c and height b moving at a velocity

U perpendicular to the current V (see Fig. 1(a)). The separation between the parallel plates is s
and their incidence (stagger) angle c. For the numerical simulations it is convenient to use a

reference frame moving with the plates in which the x axis coincides with the direction of the

relative velocity W (Fig. 1(b)). In this reference frame, the effective angle of attack in relation

to the relative velocity is a ¼ c� h, where h is the angle between the current velocity V and

the relative velocity W.

The Reynolds number based on the current speed Vð� jVjÞ and the chord length c,

Re ¼ Vc

�
; (1)

where � is the kinematic viscosity, will be fixed in all the numerical simulations to a character-

istic value (see Sec. III). For this given Re, we shall analyze the effect that the cascade speed

U, the separation between plates s, and the stagger angle c (or angle of attack a) have on the

power extracted from the current. That is, we shall vary the non-dimensional parameters c,

n � U

V
¼ tan h ; and r � c

s
; (2)

FIG. 1. Sketch of the cascade of flat plates moving perpendicularly to the incident current V (a) and in the reference frame

where the plates are steady and the relative velocity W is in the x-direction (b).
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to find out the values of these parameters that maximize the power extracted from the current

for a given Re and for the configuration of Fig. 1(a) where the cascade moves perpendicularly

to the current.

From a numerical point of view, we shall compute the total (pressure plus viscous) force F

that the fluid exerts on a plate in the cascade when the incident flow speed is W and the angle

of attack is a; this force is decomposed in a “lift” component L and “drag” component D (see

Fig. 1(b)). The Reynolds number based on W is related to (1) by

ReW �
Wc

�
¼ Re

cos h
¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
: (3)

For given ReW, n, and solidity r, we shall compute the nondimensional lift and drag coefficients,

CL ¼
L

1

2
qW2cb

; CD ¼
D

1

2
qW2cb

; (4)

where q is the fluid density, for increasing values of a. This process will be repeated for different val-

ues of n (that also modifies ReW, see Eq. (3)) and r. At the end, we will be interested on how these

parameters affect the effective power extracted to the current, which is proportional to (see Fig. 1(b))

PU ¼ ðL cos h� D sin hÞU : (5)

We define the following power coefficient:

CP �
PU

1

2
qV3cb

¼ ðCL � nCDÞn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
; (6)

which will be optimized in relation to c, n and r for given Re and aspect ratio b/c. Note that

CL and CD will be obtained from the numerical simulations as functions of a for different val-

ues of r and n, being

c ¼ aþ h ¼ aþ arctanðnÞ : (7)

III. EQUATIONS, NUMERICAL CODE, AND ITS VALIDATION AGAINST EXPERIMENTAL

RESULTS FOR AN ISOLATED PLATE

The governing equations are the Reynolds-averaged Navier-Stokes equations for an incom-

pressible flow (constant density q), which can be written as

r � v ¼ 0; (8)

@v

@t
þr � ðvvÞ ¼ �rpþr �

h
ð� þ �tÞ

�
rvþ ðrvÞT

�i
; (9)

where v is the mean velocity field, p the mean kinematic pressure (pressure divided by q) field,

and �t is the kinematic eddy viscosity. For the numerical computations we used the open source

CFD software package OPENFOAM
VR

, produced by OpenCFD Ltd,8 with different two-equation

turbulence models to compute �t.
9,10

In particular, we used two different turbulence models: a Re-Normalisation Group (RNG)

k � � model11 and a Shear Stress Transport (SST) k � x model,12 both implemented in the

OPENFOAM toolbox. The turbulence model equations and some numerical details are summarized

in the Appendix. To select the best upstream values of the different turbulent variables for the

present problem, together with the optimum computational grid, we simulated numerically the

three-dimensional (3D) flow around a single flat plate with semispan aspect ratio (SAR) of 3,
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ReW ¼ 8� 104 and different angles of attack (see Fig. 2 for the computational domain and

mesh). The reasons for selecting this test case were that there exist accurate experimental data

for the lift and drag coefficients obtained in a water tunnel by Pelletier and Mueller,13 and that

both the aspect ratio and the Reynolds number are in the range of interest for the tidal flow around

the submerged sails in the device that motivated the present study.4 Smaller values of sAR,

between 1 and 3, would also be appropriate. Note that the plane z¼ 0 (Fig. 2) is a symmetry plane

in the computational domain, both for the single flat plate and for the cascade, thus reducing to

half the number of mesh nodes needed in the numerical computations. This configuration and the

plate geometry coincide with those considered experimentally for a single plate in Ref. 13.

The boundary conditions used in the numerical computations are the following: In the inlet

section x¼�3c (see Fig. 2) a uniform velocity in the x–direction was fixed, given by the

selected Reynolds number, together with zero normal gradient (called “slip” condition in the

OPENFOAM toolbox) for the pressure and fixed given values for the turbulent parameters. These

upstream values of the turbulent parameters were varied to best fit the numerical results (see

FIG. 2. (a) General view of the computational domain and mesh with 3,300,198 cells used in the computations for the 3D

flow around a flat plate with sAR¼ 3 and angle of incidence a ¼ 108. (b) Plan view of the mesh with a detail of the leading

edge of the plate. The dimensions of the computational domain are: �3c � x � 7c; �cð3þ sincÞ � y � 3c, and

0 � z � 4:5c.

TABLE I. Number of mesh cells and upstream values of the turbulence model parameters in each one of the 8 different

computational cases considered in Fig. 5 for the flow around a single flat plate (k in m2=s2, � in m2=s3 and x in s�1). Also

included in the last column is the computational time in hours to advance 10�1 units of non-dimensional time for a ¼ 108
(see Fig. 4(d)), using just one CPU, and the mean time step Dt (see main text).

Number of Turbulent model CPU time (h)

Case Mesh cells Parameter values Dt (s)

1 98 3941 RNG� k � � 42.6

k1 ¼ 0:0074 ; �1 ¼ 0:032 10�2

2 33 00198 RNG� k � � 206.8

k1 ¼ 0:0074 ; �1 ¼ 0:032 6� 10�3

3 33 00198 RNG� k � � 171.4

k1 ¼ 0:096 ; �1 ¼ 0:00552 7� 10�3

4 52 08203 RNG� k � � 611.6

k1 ¼ 0:0074 ; �1 ¼ 0:032 6� 10�3

5 98 3941 SST� k � x 23.0

k1 ¼ 0:0074 ;x1 ¼ 0:389 8:3� 10�3

6 33 00198 SST� k � x 265.9

k1 ¼ 0:0074 ;x1 ¼ 0:389 1:4� 10�2

7 33 00198 SST� k � x 284.5

k1 ¼ 0:0096 ;x1 ¼ 0:05175 7� 10�3

8 52 08203 SST� k � x 563.7

k1 ¼ 0:0074 ;x1 ¼ 0:389 6� 10�3
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Table I and discussion below). In the outlet section, far downstream the plate (x¼ 7c), the pres-

sure was set constant to its reference value (zero) and “inlet/outlet” conditions were used for

the velocity and turbulent parameters. On the upper (z¼ 4.5c) and lateral surfaces (see Fig. 2)

slip conditions were used for all the variables, while symmetry conditions were used on the

lower surface (z¼ 0) where the flat plate is anchored. Finally, at the solid wall surfaces of the

flat plate the velocity was set to zero, a slip condition was used for the pressure, and several

specific wall conditions, implemented in the OPENFOAM toolbox and using standard wall func-

tions, were used for k, �, and x in the different models (see the Appendix for these and other

computational details). To generate the computational mesh we used the OPENFOAM

“snappyHexMesh” program, with the imported form of the flat plate (see inset in Fig. 2(b)),

which was previously generated using MATLAB. To solve the equations, we used the “GAMG—

Generalised geometric-algebraic multi-grid” solver for the pressure, and the “smoothSolver” for

the remaining variables, both implemented in the OPENFOAM toolbox.8 They are based on itera-

tive methods for sparse linear systems.14

Most of the reported computations were made in a computer cluster with 5 nodes and up

to 22 parallel processors managed by the Linux Ubuntu server 10.04. Not all the nodes have

the same characteristics, so that there existed a great variety of computational performances

when using different combinations of the number of nodes and the number of parallel process-

ors. It suffices to say here that the computation speed for a typical case reported below was

increased almost 13 times when using all the 5 nodes with 22 parallel processors, in relation to

just one 64-bit processor Intel(R) Core(TM) 2CPU 6600 at 2.66 GHz and 2.99GB of RAM.

To check the accuracy of the numerical results against the experimental data cited above

we selected different meshes, and several upstream values of the turbulent kinetic energy (k1),

dissipation (�1), and specific dissipation rate (x1) in the two turbulence models. In particular,

for each set of upstream turbulent parameters considered (about five sets for each turbulence

model), and for several angles of attack, a grid independent study was conducted using meshes

with increasing resolution (see below). The numerical results converged appropriately in most

cases, but the agreement of these converged numerical results with the experimental ones

depended on the set of turbulent parameters used. To simplify the presentation of this compari-

son with the experimental results, we report here only 8 different cases, as summarized in

Table I: 3 different grids with increasing number of cells, combined with two different sets

of parameters for each turbulence model in the case of the “medium” mesh (that depicted in

Fig. 2), and only one of the sets of parameters for each turbulence model in the cases of

the “coarse” and the “fine” meshes (although all the other upstream turbulence model parame-

ters were also checked with these meshes). The coarse and the fine meshes had a similar distri-

bution of cells in each model but with smaller and larger number of cells, respectively

(see Table I). On the other hand, the values of the upstream turbulence model parameters for

each set given in Table I correspond to those recommended for each model in the OPENFOAM

toolbox8 for similar 3D aerodynamic flows and Reynolds numbers (cases 3 and 7), and those

computed by us using the turbulence intensity and its streamwise variation rate measured in a

wind tunnel facility in our laboratory, for the given Reynolds number (remaining cases). Many

more values of k1; �1 and x1 were tested, but we report here only a selection of them,

including the cases that best fitted the experimental data for each model. Table I contains also

information about the computational time and the time step. At each instant the time step was

adjusted to a Courant number of 0.2, and Table I shows the approximately constant values

reached after the initial transient.

Some results for a ¼ 108 are shown in Figs. 3 and 4. In particular, Fig. 3 shows the eddy

viscosity contours when computed with both turbulence models (cases 2 and 6 in Table I).

Note that their values and distributions are quite different, explaining the significant differences

in the lift and drag coefficients computed with each model observed below. Figure 4 shows

some relevant results when the parameters of case 6 are used: a detail of the final steady state

of the non-dimensional streamwise velocity and pressure fields in the vicinity of the flat plate,

the final values of the pressure and friction coefficients on the upper and lower surfaces of the

plate, and the temporal evolutions of the lift and drag coefficients. The pressure and friction
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coefficients, Cp and Cf, are both made dimensionless with 1
2
qW2, and it is observed that Cf is

much smaller than Cp. Note also in Fig. 4(d) the oscillations at the initial stages of the numeri-

cal simulations, which are due to the fact that the computations started with the flow at rest.

However, a steady state was already reached at non-dimensional time t W=c ’ 0:40 (the results

plotted in Figs. 4(a)–4(c) are for t W/c¼ 0.5).

Figure 5 contains the comparison of the experimental results of Pelletier and Mueller13 for

the lift and drag coefficients as functions of the angle of attack a with the values of CL and CD

computed numerically with each one of the 8 cases given in Table I. It is clear from this figure

that the SST� k � x model works much better for this problem than the RNG� k � � model,

especially when the second set of upstream turbulent parameters mentioned above is used. In

addition, it is observed that the results obtained with the medium mesh practically coincide with

those obtained with the fine mesh. Therefore, we selected the medium mesh, since the computa-

tional time and memory are both much smaller than for the fine mesh, together with the SST�
k � x turbulent model with k1 and x1 given by the second set of parameters. That is, we

selected the parameters of case 6 in Table I for most of the computations reported below.

FIG. 3. Contours of the computed eddy viscosity �t on a portion of the middle plane z ¼ 1:5c for the 3D flow around a flat

plate with sAR¼ 3, ReW ¼ 8� 104 and a ¼ 108 when the RNG� k � � and the SST� k � x turbulence models are used.

In particular, (a) corresponds to case 2 in Table I and (b) to case 6.

FIG. 4. Plan view of the computed non-dimensional streamwise velocity component (a) and pressure (b) contours on a por-

tion of the middle plane z¼ 1.5c for the 3D flow around a flat plate with sAR¼ 3, ReW ¼ 8� 104 and a ¼ 108 when the pa-

rameters of case 6 in Table I are used. The results are for the final steady state; the velocity is non-dimensionalized with the

incident speed W and the pressure with 1
2
qW2. (c) Distribution of the pressure and friction coefficients, Cp and Cf, on the

upper (þ) and lower (–) surfaces of the plate for the same time (s is the coordinate along the plate; note that (b) is the distri-

bution of Cp on z¼ 1.5c). (d) Computed temporal evolutions of CL and CD.
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However, for higher values of the angle of attack than those depicted in Fig. 5 (i.e., a � 20,

for which no previous experimental data exist to compare with), we used the fine mesh in the

computations (case 8 in Table I). In fact, to check the accuracy of the numerical results we also

calculated the relative errors of each mesh using Richardson extrapolation,15 in addition to the

above comparison with previous experimental results. Particularly, we computed the fourth-order

estimate of CL for each a with Richardson extrapolation using the medium and fine meshes (grid

refinement ratio r ’ 1:6; see, e.g., Roache16 for the details), and with this value estimated the rel-

ative errors in CL when computed with the medium and the fine meshes, respectively, for each a.

Table II contains the results. One can observe that for a ¼ 258 and 30� the relative errors esti-

mated for the mean final values of CL are not sufficiently small when obtained with the medium

mesh, while they remain acceptable when using the fine mesh. This is a consequence of the oscil-

latory behavior of the wake behind the flat plate, due to vortex shedding after flow separation,

when the angle of attack a � 20 (Sec. IV). Therefore, we used the fine mesh in the computations

of the flow around a single plate when a > 208, and the medium mesh for a � 208.
For a cascade of flat plates, the mesh used in the numerical computations reported below is

similar to, and has the same resolution of, the medium one depicted in Fig. 2 for a single plate,

but containing several flat plates in a computational domain such that one may set periodic

boundary conditions (see Fig. 6). In particular, all the boundary conditions are the same as

those described above for the case of a single flat plate, except for the cyclic boundary condi-

tions for all the fluid variables (including the turbulent functions k, � and x) which are set

between the “inclined” surfaces partially seen in the plan view depicted in Fig. 6. We have

selected this configuration and domain size, with at least three plates (width 3s perpendicular to

the cyclic plane, where s is the separation between plates), to simplify the numerical implemen-

tation, since it was easier to adjust the number of plates to a fixed periodic domain (sometimes

we had to add fractions of a plate) than to change the shape and the size of the computational

domain whenever the separation between plates or the angle of attack was varied.

FIG. 5. Comparison between the experimental results of Pelletier and Mueller13 for CL (a) and CD (b) vs. the angle of attack

a for a flat plate with sAR¼ 3 and ReW ¼ 8� 104 and the numerical results obtained which each one of the 8 cases given

in Table I. For reference sake, the potential 2D flow result CL ¼ 2p sin a is also included in (a).

TABLE II. Estimations of the relative errors in the final mean value of CL for a single plate computed with the medium and

fine meshes, in relation to the extrapolated Richardson estimate, for different values of a.

Error in CLð%Þ 1 plate Error in CLð%Þ 1 plate

að8Þ Medium mesh Fine mesh

5 1.45 0.36

10 1.00 0.25

15 1.94 0.48

20 4.16 1.04

25 38.81 9.70

30 37.11 9.28
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To select the appropriate mesh for each angle of attack, we also estimated the relative nu-

merical errors in CL using Richardson extrapolation with medium and fine meshes (see Table

III). Now, the computational errors with the medium mesh were acceptable (much below 10%

in most cases) even for high values of the angle of attack, as a consequence of the fact that the

flow remains attached to the plates in the cascade (see Sec. IV). Therefore, since the necessary

computational time and memory are both much larger with the fine mesh than with the medium

mesh, we used the medium one in all the computations reported below for a cascade of flat

plates.

IV. RESULTS AND DISCUSSION

We have performed a series of numerical simulations using the numerical code discussed

above with the objective of finding out the optimum configuration of the cascade of flat

plates that extracts the maximum power from a given tidal current. In particular, we fixed

Re ¼ 5:66� 104 (which corresponds to ReW ¼ 8� 104 for n ¼ 1) and sAR¼ 3, as the reference

values (like in Sec. III), and looked for the optimum value of a (or c) which yields the maxi-

mum CP when n and r are varied. These results are compared with the corresponding ones for

an isolated flat plate.

The main aerodynamic effect of a cascade in relation to a single blade is that the lift coeffi-

cient of each element in the cascade could be substantially increased in relation to the same iso-

lated element if the stagger angle and the separation between blades are conveniently selected,

as already predicted from the two-dimensional potential theory of a cascade of flat plates (see,

e.g., Weinig;17 in particular, for c! 908 and r � 1, the 2D potential lift tends to infinity).

FIG. 6. Plan view (constant z) of a detail of the (medium) computational mesh used in the numerical simulations for the

cascade of flat plates with n ¼ U=V ¼ 1 ðh ¼ 458Þ; r ¼ c=s ¼ 1 and a ¼ 108. It is similar to that depicted in Fig. 2, but

with a periodic array of three flat plates. The computational domain is (x along the cyclic plane and y perpendicular to it):

�3c � x � 3c; 0 � y � 3s; 0 � z � 4:5c. The total number of cells is 6,123,575.

TABLE III. Estimations of the relative errors in the final mean value of CL for a plate in a cascade computed with the me-

dium and fine meshes, in relation to the extrapolated Richardson estimate, for different values of a. (n ¼ 1; r ¼ 1,

sAR¼ 3, ReW ¼ 8� 104).

Error in CLð%Þ cascade Error in CLð%Þ cascade

að8Þ Medium mesh Fine mesh

5 2.19 0.55

10 0.59 0.15

15 5.85 1.46

20 0.33 0.08

25 0.27 0.07

30 2.32 0.58
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When viscous and 3D effects are taken into account, this potential increase in the lift coeffi-

cient cannot be so pronounced as predicted by the 2D potential theory, but still it may be very

significant, mainly due to the “streaming” effect of the cascade, that delays the stall as the

angle of attack is increased. Thus, higher lift coefficients can be attained for a plate in a cas-

cade than for an isolated plate when the angle of attack is sufficiently high and the lift of the

single plate has already dropped. However, as we shall see, the drag coefficient for the plate in

the cascade may be larger than for an isolated plate, and the lift coefficient may be smaller,

FIG. 8. Distribution of the pressure and friction coefficients, Cp and Cf, on the upper (þ) and lower (–) surfaces for an iso-

lated plate (a), and for a plate in the cascade (b), for the same cases of Figs. 7(c) and 7(d) computed temporal evolutions of

CL and CD for the same cases of Fig. 7.

FIG. 7. Plan view of the computed non-dimensional streamwise velocity component and pressure fields (the velocity is

scaled with W and the pressure with 1
2
qW2) on a portion of the middle plane z¼ 1.5c for the 3D flow around a single flat

plate (a) and (b), and a cascade with r ¼ 1 and n ¼ 1 (c) and (d), for a ¼ 258 (sAR¼ 3, ReW ¼ 8� 104).
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depending on the particular configuration, so that the global effect of lift and drag coefficients

on CP has to be analyzed for all the different configurations, or different values of c, n and r.

To illustrate this, Figs. 7 and 8 show a comparison between the velocity and pressure fields

around a single plate and through a cascade of flat plates with n ¼ r ¼ 1 and a ¼ 258. For this

angle of attack, the single flat plate is already stalled, and the wake behind it becomes oscilla-

tory due to the vortex shedding, as it is clear in the time evolution of CD and CL of Fig. 8(c)

(the images in Figs. 7(a) and 7(b) correspond to an instant of time after the permanent oscilla-

tory regime has been reached, and one can clearly identify two vortices in the pressure field

picture of Fig. 7(b), which are evolving in time). On the contrary, the flow in the cascade for

this high angle of attack is still attached to the plates, with just a narrow region of flow recircu-

lation on the upper surfaces of the plates close to the leading edge. This divergence between

the flow regimes in the two configurations starts at a value of a between 15� and 20�, above

which the flow over a single plate becomes separated and the mean value of CL ceases to

increase like in the case of a cascade (see Fig. 9). The oscillatory wake is clearly observed for

angles of attack a above 25�, approximately, as indicated in Fig. 9 by the error bars attached to

the mean values of CL and CD for a single plate, which measure the amplitude of the computed

oscillations around their mean values. The amplitude of the oscillations in CL and CD for an

isolated plate is even larger for a ¼ 308 than for a ¼ 258 (see Fig. 10(a)). In contrast, for the

cascade, a stationary steady state is always reached for all the values of a considered here (up

to a ¼ 308), and CL keep increasing with a (see Fig. 9(a)). As a consequence, the maximum

value of the power coefficient (6) for the cascade (which in the present configuration with

n ¼ 1 is given by CP ¼
ffiffiffi
2
p
ðCL � CDÞ) is reached at a relatively high value of a, and CP

becomes larger than for an isolated plate (see Fig. 11). It is worth commenting here that

although the maximum in the mean value of CP for an isolated plate is reached in this case for

FIG. 10. Computed temporal evolutions of CL and CD for the same cases of Fig. 7, but for a ¼ 30�.

FIG. 9. Comparison between CL (a) and CD (b) vs. a for an isolated plate and for a cascade with r ¼ 1 and n ¼ 1 (sAR¼ 3,

ReW ¼ 8� 104). The error bars indicate the amplitude of the temporal oscillations around their mean values due to the os-

cillatory wake behind an isolated flat plate. The experimental results for a single plate by Pelletier and Mueller13 are

included. Also included in (a) for reference sake is the 2D potential flow result CL ¼ 2p sin a for a single plate and the cor-

responding potential result for a cascade of flat plates.17
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an angle a in the same range than for a cascade, the large oscillations in CL and CD, due to the

oscillatory wake behind the plate for these high values of a, make useless this maximum of CP

for an isolated plate from a practical point of view. Thus, the other relative maximum of CP for

a single plate, reached for a smaller value of a (see Fig. 11), is the most interesting one from

practical point of view. In either case, this maximum of CP is, in the present configuration,

smaller than that for a plate in a cascade.

This qualitative behavior as the angle of attack is varied is not the general rule for all

the values of r and n considered in this work. For instance, for the same r ¼ 1 but for larger

n ¼ U=V (e.g., n ¼ 2:5, see Fig. 12), the maximum value of CP is higher for an isolated plate

than for a plate in the cascade, and in both cases this maximum is reached for a similar, rela-

tively low, value of the angle of attack a. This is due to the fact that the role of the drag CD in

CP becomes more important as n increases (see (6), and note also in Fig. 1 that the angle h
increases with n), so that the maximum of CP is reached in both cases at low values of a for

which CL for an isolated plate is larger, and so is CP (see Fig. 12). On the other hand, for

n ¼ 1 and r ’ 1:43 (Fig. 13), which corresponds to a smaller separation s between the plates in

FIG. 11. Comparison between CP vs. a for an isolated plate and for a cascade with r ¼ 1 and n ¼ 1 (sAR¼ 3,

ReW ¼ 8� 104). Only the mean values are plotted for the isolated plate.

FIG. 12. Comparison between CP, CL, and CD vs. a for an isolated plate and for a cascade with r ¼ 1 and n ¼ 2:5.
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the cascade, the situation is qualitatively similar to that depicted in Fig. 11, but now the maxi-

mum value of CP for a single plate is slightly larger than for a plate in the cascade because CL

remains lower in this last case even in the range of values of a where CP;max is reached for the

cascade. The reason for this different behavior has to be found in the flow through the cascade,

which is shown in Fig. 14 for a ¼ 258, corresponding roughly to the maximum of CP.

Comparing Figs. 14(a) and 14(b) with Figs. 7(c) and 7(d), the main difference is that the recir-

culation region above the plates is larger when the separation between plates is smaller

(r ¼ 1:43 in Fig. 14(a)) due to the larger speed between the plates in the cascade. As a

FIG. 14. Plan view of the computed non-dimensional streamwise velocity component (a) and pressure (b) contours on a

portion of the middle plane z¼ 1.5c for the final steady state of the 3D flow through a cascade with n ¼ 1; r ’ 1:43 and

a ¼ 258 (sAR¼ 3, ReW ¼ 8� 104). The velocity is non-dimensionalized with W and the pressure with 1
2
qW2. (c)

Distribution of the pressure and friction coefficients, Cp and Cf, on the upper (þ) and lower (–) surfaces of a plate in the cas-

cade for the same time (s is the coordinate along the plate, z¼ 1.5c). (d) Computed temporal evolutions of CL and CD for a

plate in the cascade.

FIG. 13. Comparison between CP, CL, and CD vs. a for an isolated plate and for a cascade with r ’ 1:43 ðr�1 ¼ 0:7Þ and

n ¼ 1.
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consequence, the lift coefficient is smaller than for r ¼ 1 (compare Fig. 8(d) with Fig. 14(d)),

and so it is CP;max.

Figure 15 summarizes CP;max for all the values of n and r considered in this work. In par-

ticular, curves of CP;max as functions of n are plotted for different values of the solidity r (in

fact, the non-dimensional plate separation r�1). Also included is the curve of CP;max for an iso-

lated plate as a function of n. Obviously, this last curve approaches that of a plate in the cas-

cade when the separation is very large (r�1 !1; note that the curve for r�1 ¼ 10 is already

quite close to that of a single plate). It is observed that CP;max for a plate in the cascade is

larger than for an isolated plate only in a small range of values of r close to unity, provided

that n is also near unity.

Figure 16 depicts the angles of attack a corresponding to the CP;max in Fig. 15. For large n
the values of amax for a plate in the cascade are relatively small and quite similar to the values

for an isolated plate, as explained above. As n decreases, amax increases for both the cascade

and the isolated plate. Note the “zigzag” behavior of the curve for the isolated plate in the low

FIG. 15. CP;max as a function of n for different values of r�1. Also included is the curve for a single plate as a function of n.

(sAR¼ 3, ReW ¼ 8� 104.)

FIG. 16. Values of the angle of attack a ð8Þ corresponding to the CP;max in Fig. 15.
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n region, which is due to the fact that amax is within the stalled region for a single plate. The

cascade results in Fig. 16 are almost independent of r and can be approximated by the relation

amax ’ 24:874 n�0:876.

The results in Fig. 15 show that CP;max increases as r decreases (the separation between

plates increases) and n increases, approaching the values for an isolated plate as r�1 !1.

However, CP;max is not very appropriate for selecting the optimum values of r and n because

one has to take into account that the total power carried by the cascade obviously increases

with the number of plates per unit length; i.e., it increases linearly with the solidity, or blade

packing density, r. For this reason, it is convenient to define a new power coefficient,

�CP � rCP ¼ ðCL � nCDÞn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
r; (10)

which is proportional to the nondimensional power extracted per unit length of the cascade of

plates. The maximum values of this quantity with respect to a as n is varied, for selected values

of r, are plotted in Fig. 17. It is clear from this figure that the optimum value of r (yielding

the highest values of �CP;max) is close to unity. This can be explained as a compromise between

small values of r, for which CP;max is larger but the blade packing density is smaller, and high

values of r, for which the proximity between blades diminishes the lift coefficient of each

blade, as we have seen above. Within r � 1, the optimum performance is reached for n
between 2 and 2.5. However, these values of n are perhaps too large for practical interest, and

one may select the other relative maximum observed in Fig. 17 for r ¼ 1 around n ¼ 1:5. All

this is better appreciated in Fig. 18, where the maximum values of �CP are potted in a contour

map in the plane (r�1; n) by interpolating the curves shown in Fig. 17. The top value of �CP is

reached for r between 0.9 and unity when n is between 2 and 2.5. However, there is another

relative maximum, also with r close to unity, when n � 1:5, which is probably preferred

because n � 2 might not be attained from a practical point of view. These two maxima of �CP

for r � 1 are related to the shift discussed above from small optimum angle of attack amax,

when n is large and the drag coefficient is more relevant for �CP, to higher values of amax when

n diminishes (see Figs. 12 and 11, respectively). In any case, this figure tells us that the best

operating conditions are in a broad region with r between 0.8 and unity and n between 1.5 and

2.5, approximately.

FIG. 17. �CP;max � rCP;max as a function of n for different r.
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To find out the optimum values of the stagger angle c ¼ aþ h of the plates corresponding

to these top values of �CP, Fig. 19 shows the contour map of cmax in the plane (r�1; n) corre-

sponding to the maximum of �CP depicted in Fig. 18. Remember that h ¼ arctanðnÞ, so that cmax

basically increases with n, except for the additional variation of amax with n and r (Fig. 16).

For r � 1 and n � 2:5 the optimum value is cmax � 798, while for n � 1:5; cmax � 758. Note

FIG. 19. Contour plot of cmaxð8Þ in the (r�1; n)-plane corresponding to �CP;max in Fig. 18.

FIG. 18. Contour plot of �CP;max in the (r�1; n)-plane.
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that the decrease in amax as n increases commented on above is more than compensated by the

increase of h with n, resulting in a similar value of cmax for both optimum values of n.

It is interesting to plot the distribution of turbulence kinetic energy for the case of maxi-

mum power, and compare it with some other configurations, since it yields useful information

about the intensity of the vortices and it has been shown in wind turbines that its vertical flux

is of the same order of magnitude as the power extracted by the wind turbines.18 It is seen in

Fig. 20 that the turbulent kinetic energy is highly concentrated above the leading edge of the

blades,7 and it is slightly larger in the case where a relative maximum of the power coefficient

is reached (for n ¼ 1:5 and r ¼ 1) than in the other two cases for which the power coefficient

is smaller (n ¼ 1 and two different values of r; note that Figs. 20(b) and 20(c) correspond to

the same cases plotted in Figs. 14 and 7, respectively).

V. CONCLUSIONS

In this study, we have performed a series of detailed CFD simulations with the objective of

finding out the optimum hydrodynamic configuration of a particular device for extracting

energy from tidal or river currents,4 using a simplified model of the device consisting of a cas-

cade of flat plates moving perpendicularly to the current. The nondimensional parameters which

have been varied in the present study are the angle of the blades (stagger angle c in relation to

the tidal current), the separation between blades (solidity r ¼ c=s) and the blades speed

(n ¼ U=V), while the Reynolds number Re of the tidal current and the semispan aspect ratio

(sAR) of the blades have been kept constant. We have chosen values of Re and sAR which are

in the range of interest for the tidal energy device under consideration, and for which there

exists reliable experimental data for a single plate to validate the numerical simulations. Thus

we selected the turbulence model and the values of their upstream turbulent parameters that

best fitted these experimental results, in addition to the optimum number of mesh cells for the

computations in each case.

For the particular configuration selected that moves perpendicularly to the tidal current,

and for flat plates with the given aspect ratio and selected Reynolds number, we find that opti-

mal results (maximum power coefficient per unit length of the cascade �CP) are obtained when

the solidity r � 1, the stagger angle c � 798 and the blades speed, related to the the tidal cur-

rent, n � 2:5. A second best configuration, with a relative maximum value of �CP slightly

FIG. 20. Plan view of the computed turbulence kinetic energy k (m2/s2) on a portion of the middle plane z¼ 1.5c for the

final steady state of the 3D flow through a cascade with r ¼ 1; n ¼ 1:5 and a ¼ 358 (a), r ¼ 1:43; n ¼ 1 and a ¼ 258 (b),

and r ¼ 1; n ¼ 1 and a ¼ 258 (c). (sAR¼ 3, ReW ¼ 8� 104; k1 ¼ 0:0074 m2=s2.)
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smaller, is r � 1; c � 758 and n � 1:5. This last configuration is preferred because its smaller

value of n would be more easily obtained from a practical point of view. In either case, the op-

timum solidity is about unity and the best stagger angle around 75�.
Although the hydrodynamic performance of the device will obviously improve if airfoils

with more sophisticated profiles than a simple flat plate were used in the cascade, we believe

that the present aerodynamic study fulfills the basic objective of finding out a first approxima-

tion for the optimal cascade configurations in terms of c, r, and n. Further studies, both experi-

mental and computational, using blades with different profiles and aspect ratios, and moving in

a cascade at different angles in relation to the tidal current, with different Reynolds numbers,

are needed to refine the optimal configurations here obtained, which may be used as starting

points.
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APPENDIX: TURBULENCE MODELS

Two different turbulence models are used in this work: a RNG k � � model,11 and a SST k � x
model.12 In the RNG� k � � model, the equation for the dissipation � accounts for the different

scales of motion through changes to the production term, while the equation for the kinetic energy k
does not differ from that of the standard k � � model.9,10 For a constant density flow,

@k

@t
þr � ðkvÞ ¼ r � � þ �t

rk

� �
rk

� �
þ Pk � �; (A1)

@�

@t
þr � ð�vÞ ¼ r � � þ �t

r�

� �
r�

� �
þ C1�

�

k
Pk � C	2�

�2

k
: (A2)

In this model, the kinematic eddy viscosity is given by

�t ¼ Cl
k2

�
: (A3)

The energy production term is

Pk ¼ �tS
2 ; (A4)

with S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2S : S
p

, the modulus of the mean rate-of-strain tensor, S ¼ ½rvþ ðrvÞT 
=2, and

C	2� ¼ C2� þ
Clg3ð1� g=g0Þ

1þ bg3
; g ¼ Sk

�
: (A5)

For the nondimensional constants in the above expressions we use the following common values,

which differ from those commonly used in the standard k � � model:10,11

Cl ¼ 0:0845; rk ¼ r� ¼ 0:7194; C1� ¼ 1:42; C2� ¼ 1:68; g0 ¼ 4:38, and b ¼ 0:012.

The SST� k � x model is directly usable all the way down to the wall through the viscous

sub-layer without any extra damping functions, being more appropriate than the k � � model for

low Reynolds number turbulence, and is equivalent to a k � � model in the free-stream, avoiding

the common k � x problem that the model is too sensitive to the inlet free-stream turbulence

properties.10,12 The maximum of the kinematic eddy viscosity, which in the standard k � x model

is given by �t ¼ k=x, is limited by forcing the turbulent shear stress to be bounded,
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�t ¼
a1k

maxða1x; SF2Þ
; (A6)

where a1 ¼ 0:31 and F2 is an auxiliary function of the wall distance y given by

F2 ¼ tanh max
2
ffiffiffi
k
p

b	xy
;
500�

y2x

 !" #2
8<
:

9=
; : (A7)

The equations for the turbulent kinetic energy k and the specific dissipation rate x can be written,

for a constant density flow, as

@k

@t
þr � ðkvÞ ¼ r � ½ð� þ rk�tÞrk
 þ Pk � b	kx ; (A8)

@x
@t
þr � ðxvÞ ¼ r � ½ð� þ rx�tÞrx
 þ aS2 � bx2 þ 2ð1� F1Þrx2

1

x
rk � rx ; (A9)

where now

Pk ¼ minð�tS
2 ; 10b	kxÞ ; (A10)

and b	 ¼ 9=100,

F1 ¼ tanh min max

ffiffiffi
k
p

b	xy
;
500nu

y2x

 !
;

4rx2k

CDkxy2

" #( )4
8<
:

9=
; ; (A11)

CDkx ¼ max 2rx2

1

x
rk � rx ; 10�10

� �
: (A12)

If we denote any of the model coefficients b, a, rk, and rx as /, they are defined by blending the

coefficients of the original k � x model, denoted as /1, with those of the transformed k � � model,

denoted as /2, through

/ ¼ F1/1 þ ð1� F1Þ/2: (A13)

The specific values of the non-dimensional parameters used here are:12 a1 ¼ 5=9; a2 ¼ 0:44;
b1 ¼ 3=40; b2 ¼ 0:0828; rk1 ¼ 0:85; rk2 ¼ 1; rx1 ¼ 0:5, and rx2 ¼ 0:856.

In Sec. III we selected the upstream values of k, � and x for each model that best fit the exper-

imental data for an isolated plate, but we used the common values of the turbulence model con-

stants given above.

In relation to the boundary conditions on the plate walls, we used several standard wall func-

tions (see, e.g., Ref. 19) implemented in the OPENFOAM toolbox. In particular, these boundary con-

ditions are applied at a distance to the wall y ¼ yp in the log-law region where yþ is around 50,

where yþ � y=ð�=u	Þ is the distance to the wall in wall units. They are

@k

@y

				
y¼yp

¼ 0 ; � ¼ �p ¼
C3=4

l k3=2
p

jyp
; x ¼ xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

vis þ x2
log

q
; (A14)

xvis ¼
6�

by2
p

; xlog ¼
k1=2

p

C
1=4
l jyp

; (A15)

with kp ¼ k at y ¼ yp, and j ¼ 0:41 the von K�arm�an constant. In our computations with the me-

dium mesh (e.g., case 6 in Table I), the minimum value of yþ was 0.1 and its medium value for
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the wall grid cells was 3.1. The corresponding minimum cell area in a constant z plane was

3:1� 10�6 c2, where c is the chord length.
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