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ABSTRACT

A spatial linear stability analysis of Long's vortex
shows that. although both Type I and Type II vor-
tices are convectively unstable for counter-rotating
spiral modes, only Type Il Long's vortices with nega-
tive axial velocity at the axis can in addition sustain
unstable spiral modes with negative group velocities.
Thus. Type I and Type II Long’s vortices are super-
critical and subcritical swirling flows in Benjamin’s
sense. respectively. the transition between the two
types of flows taking place when the axial velocity
at the axis becomes zero.

INTRODUCTION

Long’s (1961) vortex has been extensively considered
as a simple model for high Reynolds number vortices
of geophysical and engineering interest, mainly be-
cause it is an exact solution to the near-axis approx-
imation of the Navier-Stokes equation which is non-
parallel and consistently includes a relatively impor-
tant axial flow, both characteristics present in most
real vortices of interest. In particular, its stability has
been analysed by a number of authors using different
techniques and degrees of approximation, with the
main objective of trying to elucidate and predict some
of the interesting properties that highly swirling flows
present in practice. Most of these previous works con-
sidered the femporal stability (i.e. with given real
wave number and unkuown complex frequency)
of Long’s vortex using a parallel flow approxi-
mation (see. e.g.. Ferndndez-Feria (1996) for the
most significant references: in that work. here-
after referred to as ‘I', the effect of viscosity and of
the non-parallelisin of the basic flow is also taken
into account in the temporal stability analysis of
Long’s vortex). In the present work, the results of
a spatial stability analysis (i.e. with given real fre-
quency look for the complex axial wave number)
of Long's vortex which also takes into account
the effect of viscosity and the non-parallelism of
the basic flow (locally) are reported. The spatial
analysis is more appropriate to study the evo-
lution of waves as they propagate from a given
forced oscillation at a given location. which is the

situation usually met in experiments. It is shown
that the local spatial analysis reproduces the re-
sults of the temporal instability calculations when
the group velocity is positive (convective insta-
bilities). However. new unstable counter-rotating
spiral modes with negative group velocities are
found here using the spatial formulation for Type
Il vortices, not found with the temporal analysis.
As discussed in the last seclion, these new un-
stable modes establish a fundamental difference
between Type I and Type I1 Long's vortices.

FORMULATION OF THE PROBLEM

The basic vortex.

Long’s vortex is a similarity solution to the near-
axis boundary layer approximation of the steady.
incompressible and axisyinmetric Navier-Stokes
equations. matching an inviscid low with veloc-
ity and pressure fields inversely proportional to
the distance r to the axis of symmetry. Long
(1961) showed that there are two solutions for
M > M* (termed as Type | and Type II solu-
tions by Burggraf and Foster (1977)), and none
for M < M™, where M is the dimensionless flow
force and Af* =~ 3.75 is a critical value. In cylin-
drical polar co-ordinates (.8, z), the vortex has
the self-similar structure
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where W is the stream function for the meridional
motion. through which the axial and radial veloc-
ity components, 1V and U. are:

W= 227(6). U= =2[1(€) - 26N (3)

V is the azimuthal velocity component, v the
kinematic viscosity, and 6(z) the vortex core

thickness,
vz
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W, being a constant with the same dimensions
as v characterizing the external inviscid flow: the
similarity variable £ is defined by
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The functions f.y and 8 are governed by a set
of three non-linear ordinary differential equations
(see T). An unique solution exists for each value
of the non-dimensional axial velocity at the axis,
A; = f(0), in the allowed interval —1/v2 <
A; < oc. Type | solutions have a positive ax-
ial velocity at the axis, with A; within the inter-
val (A].00). where A] =~ 0.15 corresponds to the
critical (or folding) valuc of Af, while most Type
I1 solutions have a negative axial velocity at the
axis. with 4; in the interval (—1/v/2. A})(see Fig.
1). In the limit of large 4, (M large). Type I so-
lution corresponds to an intense swirling jet with
large positive axial velocity at the axis, while for
Ay — —1/V2 (again M large), Type Il solution
lias the form of a riug-jet with large positive axial
flow on the ring and negative axial flow in its inte-
rior (see Foster and Smith (1989) for asymptotic
solutions in these two limits).
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Figure 1: (a) Function A (4;). (b) Axial ve-
locity profiles for three different values of Aj.

Stability formulation and numerical method.

The flow variables. (u.v,w) and p, are decomn-
posed. as usual. into a mean part. (U, V, W) and
P, and a small perturbation. After (2)-(3).

u= 'Ii_[—f+2gj'+;—§x7.]
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where the perturbations are written in the stan-
dard form

s = [@.7,%5,p]" =S(x.6)x(z.0,t), z = zi' (8)
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with the complex amplitude,

S(z,€) = [iF(z,s),G(x.a),H(z.f),H(r.e)lT(. )
9

and the exponential part describing the wave-like
nature of the disturbances,

x(z.0,t) = exp [AL/ a(z'Ydz' + i(n0 — Qf)] .

(<]
(10)
The nse of an axial scale-length z, in addition
to the radial characteristic length §,, defined as

o

the vortex thickness at z,. 8, = vzo/W,. al-
lows the definition of the non-dimensional pa-
rameter A, = % — 2 which is assumed to

p =
be small within the pr‘g;ellt near-axis boundary
layer approximation (note that terms O(AZ2) are
neglected in the derivation of Long’s vortex). The
non-dimensional, order of miity. axial wavemun-
ber a is defined as 6, times the dimensional wave
number &:

a(z) = §,k(z) = v(x) + ia(z). (11)
whieh accounts for the fast, wave-like variation of
the perturbations. Its real part y(z) is the expo-
nential growth rate, and the imaginary part o(z)
is the axial wavenumber. A non-dimensional, or-
der of unity. frequency w is also defined:
08

w =

. (12)
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Substituting (6)-(12) into the incompressible
Navier-Stokes equations, and neglecting second-
order terms in both the small perturbations and
the inverse of the local Reynolds number,

Re™ = Az) = 6—(:-)- =A,x1, (13)

(note that the local Reynolds number is constant
along the axis in Long’s vortex), a set of linear
parabolized stability equations results for S, n and
w. In these equations. the small terms O(A) take
into account three different effects on the stability
of the perturbations: the elfect of viscosity. the ef-
fect of the non-parallelism of the basic flow, and
the effect of the streamwise evolution of the per-
turbations. Here, as in T, this last effect will be
neglecled, so that the terms proportional to Lhe
streainwise derivatives 3S /0« will disappear from
the equations, thus becoming a set of ordinary dif-
ferential equations instead of partial differential
equations (it is shown elsewhere that these terms
accounting for the history of the perturbations are
relatively important only for low Reynolds num-
bers when the growth rate is very small). The
resilting local stability equations. which include
the clfect of viscosity and the non-parallelism of
the flow partially, mmay be written as:

[Loo+ ALoi +aLy +a*AL2)JS =0,  (14)



where Loo. Lo1. L1 and Lo are linear. order of
unity, operators which depend on z and £ (note
that only the operators Ly, and Ly would appear
in an inviscid stability analysis with parallel flow
approximation). Lg, depends linearly on the fre-
quency w and contaius /J¢€ terms, while L,y con-
tains both 9/9€ and 9%/9€* terms. This equation
is solved with the following homogeneous radial
boundary conditions:

E—-o0: F=G=H=( (15)

€=0: F=G=00H/0E=0.(n=0), (16)
F+G=00F/06=0H=0 (n=%1). (I7)
F=G=1=0. (n|>1). (18)

For the spatial stability analysis considered
here. (14)-(18) constitute a non-linear eigenvalue
problem where. given a rcal frequency w. one
looks for the complex eigenvalues a and complex
eigenfunctions S. For a given basic vortex (4;).
azimuthal wave number (n). and axial location
(z). the flow is unstable for the chosen frequency
if the real part of a, «, is positive. To solve nu-
merically the problem, the £—dependence of S is
discretized using a staggered Chebyshev spectral
collocation technique developed by Khorrami
(1991).  This method has the advantage of
eliminating the need of two artificial pressure
boundary conditions at £ = 0 and £ = oo, which
for that reason are not included in (15)-(18). The
boundary conditions at infiuity (15) are applied
at a truncated radial distance &0z, chosen large
enough to ensure that the results do not depend
on that truncated distance (Emqz = 5000 was
used in most of the reported computatious).
A non-uniforin co-ordinate transformation is
used to map the interval 0 € £ < £pq, into the
Chebishev polynomials domain -1 < s < 1.
€ = c1(1 + s)/(ca — s). where ¢; is a con-
stant (c; = 3 in all the computations) and
ca = 1+ 2¢y/&mnaz- This transformation allows
large values of £ to be taken into account with
relatively few basis functions. The &£—domain
is thus discretized in N points. N being the
number of Chebyshev polynomials in which
S = [iF.G,H, )7 has been expanded. In the
results presented here, N ranged between 40 and
100. Once discretized, the non-lincar eigenvalue
problem is solved using the linear companion
matrix method described by Bridges and Morris
(1984). The resulting (complex) lincar eigenvalue
problem of dimension 8V is solved with the INISL
subroutine DGVCCG, which provides the entire
cigenvalue and eigenvector spectrum. Owing to
the fact that the malrices to solve the spatial
eigenvalue problem are lwice as larger than the
matrices in the temporal cigenvalue problem for
the same value of N, the computation time is

about eight times larger. Also, due to the large
dimensions of the matrices in (14), a relatively
large amount of spurious numerical eigenvalues
with very small wavenumbers (large wavelengths)
are produced by Lhe eigenvalue solver, particu-
larly when w is also very small. They are easily
discarded, however, because the corresponding
growth rates v iucrease without bound with N,
instead of rapidly converging to a given finite
value as it happens for eigeuvalues corresponding
to physical modes. Thus, a minitmum or cut-off
value of a has to be used when looking for the
most unstable mode (highest 4) for a given
frequency and flow parameters. This lower limit
is easily selected by just increasing N.
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Figure 2: v(w) (continuous lines) and a(w)
(dashed lines) for conveclively unstable modes
with n = =1, for » = 1, A, = 0.001 and in-
creasing values of A;. N = 40 and 60.

RESULTS AND DISCUSSION

Figure 2 shows the growth rates (y) and axial
wavenumbers (o) of the most unstable inviscid
(A = 1073) modes with positive group velocities
(cg = Ow/Oa > 0) for azimuthal wavenumber
n = —1 and values of 4| ranging from 0.2 (Type
I vortex near the folding value A7) to —0.6 (Tvpe
IT vortex near its minimum value —1/v/2). The
maximum growth rate is always about 0.1. with
the range of unstable frequencies increasing as
Aj decreases. These conuvectively unstable modes
are the most unstable ones for 4; > 0, and
correspond to those obtained with the temporal
stabilily analysis of T. However, as shown in
Fig. 3, the spatial analysis reveals the existence
of highly unstable modes with negative group
velocities for 4, < 0. which do not exist for
Ay > 0. In fact, ¢g — 0 as Ay — 07 (see Fig.
4). For —Aj small, both the growth rate and the
wavenumber are very large for low freqnencies,
with cg(w) almost constant for all values of w. As
Aq decreases, ¥ decreases, but remaining always
larger than the correspounding to the convectively
unstable modes of Fig. 2, and —¢, increases.



TFor 47 very near its minimum value —1/ V2, a
bunch of unstable modes, both with positive and
negative cg. appears. The unstable mode for
A; = —0.7 plotted in Fig.3 does not correspond
to that with largest ~, which has ¢; > 0 and
it is neither plotted in Tig.2, but to the one

with ¢g < 0 in some frequency range (note that |

cg — —?o for w = 0.2).
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Figure 3: vy(w) (continuous lines) and

a(w) (dashed lines) for modes with n = -1
and ¢g < 0. z = 1. A, = 0.001 and
4, = -0.05.-0.1,(~0.1),-0.7 (top to bot-

tom). N = 100.
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Figure 4: Group velocity at w = 0.2 for the
unstable modes of Fig. 3.

These results show that Type II Long’s vor-
tices with 4; < 0 can sustain both upstream-
and downstream-propagating unstable modes
with n = —1. so that they are subcritical in
Benjamin's (1962) sense. Type I Long’s vortices.
on the other hand. are supercritical because they
can only sustain downstreain-propagating. or
convective. unstable modes. This fundamental
difference between Type I and Type II Long's
vortices has to be added to that found in T.
where it was shown that only Type Il Long's
vortices are unstable for axisymmetric (n = 0)
disturbances. Another interesting result is that.
although convectively unstable modes for Type

II flows exist for any value of the azimuthal
wave number n, unstable modes with ¢, < 0
exist only for counter-rotating spiral modes with
n = —1: As shown in Fig. 5 for A, = —0.5, the
most unstable mode with n = -2 has ¢, > 0,
as it occurs for co-rotating spiral disturbances
and for axisyminetric disturbances (n = +1 and
n = 0 in Fig. 5; note that the growth rate for
axisymmetric disturbances is about an order of
magnitude smaller than for non-axisymmetric
ones).
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Figure 5: ~v(w) (continuous lines) and a(w)
(dashed lines) for the most unstable modes when
A1 = =05 for z = 1, Ay, = 0.001 and n =
0,+1.-2. N =100.
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