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The velocity field of the trailing vortex behind a wing at different angles of attack has been

measured through the stereo particle image velocimetry technique in a water tunnel for Reynolds

numbers between 20 000 and 40 000, and for several distances to the wing tip. After filtering out the

vortex meandering, the radial profiles of the axial and the azimuthal velocity components and of the

radial profiles of the vorticity were compared to the theoretical models for trailing vortices by �G.

K. Batchelor, J. Fluid Mech. 20, 645 �1964�� and by �D. W. Moore and P. G. Saffman, Proc. R. Soc.

London, Ser. A 333, 491 �1973��, whose main features are conveniently summarized. We take into

account the downstream evolution of these profiles from just a fraction of the wing chord to more

than ten chords. The radial profiles of the vorticity and the azimuthal velocity are shown to fit quite

well to Moore and Saffman’s trailing vortex model, while Batchelor’s model does not fit so well,

especially in the tails of the profiles. At the downstream distances considered, the radial profiles of

the axial velocity do not adjust so well to Moore and Saffman’s model as the azimuthal velocity

profiles do, but the disagreement with Batchelor’s model is quite manifested, especially at the axis.

Thus, the details of the flow structure are in better agreement with the predictions of Moore and

Saffman’s model. The downstream evolution of several key features of the measured velocity

profiles is also in agreement with the predictions of Moore and Saffman’s model, within the

dispersion of the experimental data, but up to the largest axial distance considered in this work we

cannot decide if they follow the asymptotic behavior predicted by this model. © 2011 American

Institute of Physics. �doi:10.1063/1.3537791�

I. INTRODUCTION

The precise knowledge of the dynamics, and the control,

of trailing vortices in the wake behind commercial aircrafts

are relevant problems in civil aviation, for these vortices

strongly affect the frequencies of taking off and landing of

aircrafts in an airport.
1–3

Many recent numerical and experi-

mental researches have investigated the behavior of aircraft

vortices, aiming at their characterization and the search for

means of reducing the associated hazard �e.g., Refs. 4–7�.
Within these investigations, one of the main lines of research

is about the role of vortex instabilities on wake decay and

control.
8–13

However these works also show that the hydro-

dynamic stability predictions strongly depend on the precise

structure of the models used for these trailing vortices, par-

ticularly on the sometimes neglected axial flow, hence the

relevance of acquiring accurate experimental measurements

of trailing vortices behind aircraft wings that may allow for

an assessment of the best theoretical models from which to

analyze the stability of these wake vortices. This is the main

objective of the present work.

Other technological applications that may benefit from

the precise knowledge of the structure of wing tip vortices

are the problem of reducing the lift induced drag originated

by tip vortices, the optimization of the tip vortex interaction

with rotor blades in helicopters and propellers, which causes

rotor blade fatigue failure and excessive rotor blade noise,

and the minimization of the hazard during aerial refueling of

a fighter aircraft by a tanker, among others.
14

There exists a very abundant literature, from the 1960s

and even earlier, on the structure of trailing vortices. Here,

only the most relevant ones for our work are mentioned. The

first serious model on the structure of trailing vortices, taking

into consideration the axial velocity component, was pub-

lished by Batchelor.
15

A simplified “parallel” version of that

vortex model �i.e., neglecting the downstream axial variation

of the vortex�, usually called “q-vortex,”
16

has been used

since then as the base flow of numerous stability analysis of

trailing vortices �e.g., Refs. 9–11 and 16–21, to mention just

a few relevant, and a few recent, works�. After Batchelor’s

work, several others models were developed based on the

experimental visualizations and quantitative measurements

undertaken by McCormick et al.,
22

Olsen,
23

and especially

those by Saffman’s group in Pasadena,
24

which utilized the,

by that time just developed, technique of Laser Doppler An-

emometry �LDA�. Moore and Saffman
25

developed a model

taking into account the roll-up process in the formation of

the trailing vortices, extending Batchelor’s model to azi-

muthal velocity profiles decaying as an arbitrary power of

the radius of the vortex. Recently, Chadwick
26

published a

trailing vortex model based on a similar approach as Batch-

elor’s, with the same q-vortex structure on a given plane

perpendicular to the vortex axis, but with a different decay of

the axial velocity. It is also worth mentioning here the two-

core scales vortex model of Fabre and Jacquin,
8

which, as a
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difference with those commented on above, is a two-

dimensional vortex with no axial flow and, therefore, a gen-

eralization of the Lamb–Oseen �Gaussian� vortex, but having

the property of decaying differently to a potential vortex in

the inner core, as in the vortex model considered by Moore

and Saffman.
25

The flow structure given by the most relevant

of these models for wing tip vortices will be described with

some detail in Sec. IV A, in the context of the reported ex-

perimental results.

On the other hand, experimental measurements of iso-

lated wing tip vortices have been performed by several au-

thors. In particular, the near-field structure has been mea-

sured using different experimental techniques.
27–30

Experimental measurements several chords downstream,

which are more relevant for the present work, have been

recently made, using LDA and/or particle image velocimetry

�PIV� techniques, by Devenport et al.
31

and by Roy.
32

These

authors fitted their experimental results to a q-vortex model

and to a two-core scales vortex model, respectively. How-

ever, these measurements were only taken at fixed axial lo-

cations of the vortex, without any attempt to obtain the axial

variation of the velocity field, which constitutes one of the

main objectives of the present work. The knowledge of this

axial dependence of the velocity components is important to

decide about the family of vortex models fitting the experi-

mental measurements.

One of the main difficulties of measuring the velocity

field in a wing tip vortex is the meandering phenomenon, or

random fluctuation of the vortex centerline. This meandering

is quite significant a few chords downstream of the wing, but

it is less pronounced within a chord from the trailing edge. A

consequence of the meandering, also called wandering, phe-

nomenon is that vortices measured by static measuring tech-

niques appear to be more diffuse than in reality, so that a

correction method is needed.
31,33,34

The meandering was

originally thought to be due to free-stream turbulence.
24

Then it was understood to arise from an instability of the

vortex core.
14,35

However, recent work on transient energy

growth through an optimal perturbation analysis and a sto-

chastic forcing analysis
36

shows that the very long wave-

length observed in the meandering of wing tip vortices can

be explained by a resonant excitation due to noise located

outside of the vortex core.
37

Recent experimental studies

have corroborated this connection between free-stream tur-

bulence and the amplitude of vortex wandering.
34,38

There-

fore, vortices are very sensitive to even very small intrusive

probes, and only nonintrusive techniques such as LDA or

PIV yield consistently reliable data on the vortex structure.

On the other hand, the strong unsteadiness of the core flow

and the small vortex core dimension mitigate against the use

of anything but global, nonintrusive measuring techniques.

For these reasons we use the PIV technique in this work for

measuring the velocity field in trailing vortices, comple-

mented with statistical analysis of the experimental data to

locate the vortex centerline and to correct the measured ve-

locity field.

II. EXPERIMENTAL SETUP

The experiments were performed in a large horizontal

water tunnel in the Laboratory of Aero-Hydrodynamics

at the University of Málaga, with a working section of

0.5�0.5 m2 cross-section and 5 m long. The designed ve-

locity range in this hydrodynamic tunnel is 0–0.75 m/s,

which is achieved through two centrifugal pumps of 18.5 kW

each. Its turbulence level is less than 3%. The flow rate is

measured through a turbine flow meter with a nominal reso-

lution of less than 0.5%, located downstream of the pump.

This flow meter was calibrated previously to the experimen-

tal results reported below through axial velocity measure-

ments using a LDA technique, and through velocity measure-

ments on a plane parallel to the mean stream using a two-

dimensional PIV technique.

To generate the wing tip vortices we used a model with

a NACA 0012 wing profile, with a chord c=10 cm and with

a rounded �half-circular� tip, vertically mounted on the upper

surface of the first sector of the channel working section, in

such a way that the wing tip was approximately at the center

of the test section. This wing model was mechanized in alu-

minum, and painted with a special pigment to avoid or mini-

mize corrosion by water. We have selected this particular

wing model because it is the commonest one used in previ-

ous experimental works on the wing tip vortex �e.g., Refs.

31–34�. Of course, the particular rounded tip geometry has

an influence on the flow, especially on the roll-up process

close to the wing tip. However we have not checked this

point because we have only used this geometry. We believe

that the influence of the rounded tip geometry becomes neg-

ligible sufficiently far from the wing tip.

The wing model was attached to the upper surface of the

tunnel working section through a circular window specially

designed and built to allow for the rotation of the wing into

several positions, thus making possible the configuration of

different angles of attack between the upstream flow and the

wing. In addition, this window was provided with a connec-

tion between a system of controlled injection of dye and the

wing, permitting flow visualizations in the wake behind the

wing tip, which complemented the PIV measurements re-

ported below.
39

We used a “stereo” PIV system for measuring the three-

dimensional �3D� velocity field at different cross sections of

the wing tip vortex. As it is well known, the PIV technique

consists of the accurate, quantitative measurement of fluid

velocity vectors at a very large number of points by tracking,

registering, and processing the successive positions of par-

ticles inoculated into the flow �see, e.g., Refs. 40–42�. Stereo

or 3D PIV is used to obtain the three-component velocity

field in the planar region illuminated by a laser light sheet.

The fundamental principle behind 3D PIV is stereoscopic

imaging of particles in an illuminated plane in the flow. Two

cameras view the plane at different angles and capture par-

ticle displacement images that contain the influence of the

third velocity component. Data reduction algorithms provide

the true particle displacements and on-line 3D velocity vec-

tor field display.

The stereoscopic PIV system used in this work consists
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of a double pulsed Nd:yttrium aluminum garnet laser

�150 mJ/pulse standard�, two charge-coupled device cameras

of 4 megapixels each and a synchronizer. To create the laser

sheet a cylindrical lens was used. The particles inoculated

into the flow for capturing the velocity field through the PIV

system were hollow glass spheres with 10 �m diameter

�HGS-10 from Dantec�. These particles are neutrally buoyant

in water, thus minimizing their relative motion to the water

flow due to gravity and centrifugal forces. We did not ob-

serve in the PIV images any appreciable particle depletion in

the vortex core due to centrifugal forces.

In order to minimize the effect of refraction, two trans-

parent �Plexiglas� prismatic windows were attached to the

lateral sides of the channel working section �see Fig. 1�.
These windows, which faced normally the cameras by form-

ing an angle of 45° with the Plexiglas walls of the channel,

were filled with water and adjusted through watertight

unions to the channel walls.

We adopted a configuration of the PIV system in which

both cameras recorded forwardly scattered light emitted from

the PIV particles in the measuring plane �see Fig. 1�. The

intensity of forward scatter light is much larger than that

from backward scatter,
41

and with this configuration much

better results were obtained than with the first configuration

that we used, in which each camera was located on a differ-

ent side of the tunnel working section.

III. EXPERIMENTAL RESULTS

We have measured the 3D velocity field on normal

�x ,y�-planes to the axial mean flow in the water tunnel

�z-direction; see Fig. 1� located at six different axial dis-

tances downstream of the wing tip �z /c=0.5, 3, 4, 6, 12.5,

and 16�, for three different angles of attack ��=6°, 9°, and

12°�, and for two different flow rates through the tunnel �Q
�38, and 83 l/s, measured by the flow meter downstream of

the pump mentioned above� that fixes the two Reynolds

numbers considered. The different values of the parameters

are summarized in Fig. 2. The Reynolds number based on the

wing chord c, defined as

Rec =
W�c

�
, �1�

where W� is the measured upstream mean velocity and � the

kinematic viscosity of water, varied from approximately

2�104 for the lowest flow rate to 4�104 for the largest flow

rate. The errors bars in Fig. 2 take into account the fluctua-

tions of the measured flow rate during the PIV measurements

in each case. For the Reynolds number, the fluctuations in

the measured temperature were also taken into account

through the kinematic viscosity. We looked for an averaged

constant Reynolds number, so that in some cases we had to

change slightly the upstream velocity due to ambient tem-

perature changes �see, for instance, Fig. 2�.
The parameters used for capturing images with the ste-

reo PIV cameras were the following: PIV exposure 510 �s,

FIG. 1. Sketch of the PIV-tunnel configuration used in the 3D measurements of the velocity field. Note that both cameras are on the same lateral side of the

tunnel working section.
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FIG. 2. �Color online� Measured mean upstream velocity W� for the differ-

ent axial distances z /c and angles of attack � considered.
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laser pulse delay 425 �s, and �t=600 �s. The determina-

tion of the three velocity components in the measurement

plane requires the processing of the images captured by the

left and the right cameras at each instant of time. There exist

different techniques to perform this image processing. In or-

der to be confident with the measured experimental results

that we compare to the theoretical models, we have used

three different procedures in a number of cases, and then we

have compared the different results. In particular we have

used the software INSIGHT 3G for stereo PIV from the com-

pany TSI that supplied our PIV equipment;
43

a technique

developed by Meunier and Leweke,
44

but extended by us

from two-dimensional �2D� PIV to 3D velocity fields, which

uses a MATLAB-based software and has proven to be very

effective for measuring the 2D velocity field of vortices,
45,46

and, finally, a more sophisticated technique developed at IN-

SEAN by Di Florio et al.,
47

also appropriate for large veloc-

ity gradients, that first preprocesses the images captured by

the cameras, thus allowing better results with poor PIV im-

ages. All these techniques compute the three velocity com-

ponents in each measurement plane, including the �small�
radial velocity component that will not be shown in the re-

sults reported below.

For a given case �i.e., for a given z /c, Rec, and �� we

captured and processed the data for 450 instants of time.

Once the images have been processed by any one of the

above mentioned techniques, the next step is to center the

�x ,y� coordinates of each one of these images at the center of

the vortex, which is identified cross correlating the vorticity

with a Gaussian distribution around its maximum value, and

then average the velocity and vorticity fields using all the

valid images taken for a given configuration. For this aver-

aging process we used a square region of 2�2 cm2 centered

at the vortex axis. This recentering and averaging process

was made with a MATLAB-based software, and it is essential

to obtain a mean velocity field that filters out the meandering

phenomenon on a given plane normal to the vortex axis.

In some sample cases we have processed the PIV images

by the three techniques mentioned above, and have com-

pared the resulting mean velocity components and vorticity.

We found that the results from the three different image pro-

cessing techniques are very similar, especially for the azi-

muthal velocity component and the vorticity, the differences

being within the experimental errors �see Fig. 3 for a given

case�. This fact makes us confident about the 3D velocity

field of the wing tip vortices measured here, taking into ac-

count that the most elaborate image processing technique by

Di Florio et al.
47 �Imag. Proc. III in Fig. 3�, which includes a

preprocessing of the raw PIV images, yields practically the

same mean velocity profiles than the other two techniques,

especially when compared to the image processing technique

based on the method by Meunier and Leweke
44 �Imag. Proc.

II in Fig. 3�. For the subsequent comparison with the theo-

retical models �Sec. IV� we use the results obtained with this

last mentioned image processing technique based on the

method by Meunier and Leweke. The reason is two-fold: first

because the total computer time needed for processing the

images, including the recentering and averaging processes, is

much smaller than with the other techniques, mainly because

all the software is MATLAB-based, and, secondly, because this

image processing technique has been successfully tested pre-

viously in similar �but 2D� vortex flows.
45,46

Note also in

Fig. 3�a� that this technique gives the best results for the

imposed axial velocity W�. In any case, the mean azimuthal

velocity results obtained with the other two techniques are

practically the same for all the cases we have considered.

As an example, Fig. 4 shows the mean vorticity fields

obtained through this PIV technique at the different axial

distances z /c mentioned above for �=12° and the highest

Reynolds number considered. Vorticity is calculated by the

differentiation of a least-square spline approximation of the

velocity field to avoid any undesirable effect of the differen-

tiation of noisy field. Note that the roll-up of the vorticity is
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FIG. 3. �Color online� �a� Averaged radial profiles and error bars of the axial

velocity component w, �b� the azimuthal velocity component v, and �c� axial

vorticity component �, as they are obtained from the three different image

processing techniques mentioned in the text �numbered in the legend as I, II,

and III in the order mentioned in the text�, for z /c=3, Rec=4.27�104, and

�=12°. The dashed line in �a� corresponds to the experimental value W�

from the calibrated flowmeter �see Fig. 2�.
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not clearly visible in the first axial locations close to the wing

tip due to this averaging process and the recentering of the

PIV data, which are made in a square region �2�2 cm2�
that is not large enough to see the roll-up process. Vorticity

profiles are preferred in Sec. IV below to velocity profiles for

fitting to the experimental results the parameters of the dif-

ferent theoretical models because the mathematical expres-

sions for vorticity in the models are much simpler.

IV. COMPARISON BETWEEN TRAILING VORTEX
MODELS AND PIV MEASUREMENTS

A. Summary and discussion of theoretical models
for wing tip vortices

As commented on in Sec. I, the first comprehensive

model that included the axial flow in a trailing vortex

was that of Batchelor.
15

This author considered the

boundary-layer-type approximation of the equations of mo-

tion, � /�z	� /�r and u	w, where �u ,v ,w� are the velocity

components in the cylindrical polar coordinates �r ,
 ,z�
along the vortex axis z, an approximation valid far down-

stream from the wing tip, supplemented by the assumption

that the axial velocity defect �or excess� is small compared to

the flight speed. The resulting linearized parabolic equations

are solved with the boundary condition that the far field tan-

gential velocity tends to a potential vortex, rv→constant

��0 / �2�� as r→�, where �0 is the circulation of the vor-

tex, and the axial velocity tends to the flight speed W�, for

which Batchelor
15

found a self-similar solution of the form

u�r,z� = 0, v�r,z� =
�0

2�r
�1 − e−W�r2

/�4�z�� , �2�

w�r,z� = W� +
�0

2

32�2�z
B�W�r2

4�z
	

− 
 �0
2

32�2�
ln�W�z

�
	 +

W�
2
L

8�
� e−W�r2

/�4�z�

z
, �3�

where

B�� � e−�ln  + E1�� − 0.807� + 2E1�� − 2E1�2� �4�

being E1����
�dxe−x

/x the exponential integral function,
48

and L is an integration constant with dimensions of an area.

Batchelor found that this last parameter is related to the drag

of the wing, and can be estimated �for an elliptic loaded

wing� as
15

L  � CLs

�AR

	2

, �5�

where CL is the lift coefficient, s is the wing span, and

AR=s2
/A is the aspect ratio, being A a wing reference area

�for a rectangular wing, AR=s /c, where c is the chord of the

wing�.
It is seen that the viscous core of Batchelor’s vortex

grows downstream as ��z /W�. Therefore, it is convenient to

use the nondimensional variables

r̄ =
r

c
, z̄ =

z

c Rec

, v̄ =
v

W�

, w̄ =
w

W�

, �6�

where Rec is the Reynolds number based on the wing chord

c �defined in Eq. �1��, and the similarity variable

� � −
W�r2

4�z
= −

r̄2

4z̄
�7�

so that Batchelor’s vortex can be written in nondimensional

form as

v̄ =
S

r̄
�1 − e�� , �8�

w̄ = 1 +
S2

8z̄
B�− �� − �S2 ln�Rec

2
z̄� + ��

e�

8z̄
. �9�

In these expressions

S �
�0

2�cW�

�10�

is a swirl number, and

� �
L

c2
. �11�

In terms of the Reynolds number based on the circulation

Re� �
�0

�
. �12�

S can be written as

S =
Re�

2� Rec

. �13�

FIG. 4. �Color online� Mean vorticity fields at z /c=0.5, 3, 4, 6, 12.5, and 16

for Rec=4.27�104 and �=12°.
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It is interesting to note that, since function B vanishes at

r=0, Batchelor’s vortex has always an axial velocity deficit

at the axis, w�r=0,z��W� or w̄�r̄=0, z̄��1. This axial ve-

locity deficit decays axially as z̄−1 ln z̄ for sufficiently large z̄

�note that � is usually very small�

�w̄ �
W� − w�r = 0,z�

W�

= 1 − w̄�r̄ = 0, z̄�

�
S2

8
z̄−1 ln�Rec

2
z̄� . �14�

Another quantity of interest to compare with the experiments

is the axial evolution of the radius at which the azimuthal

velocity of the vortex is a maximum, which for Batchelor’s

vortex is

rmax = 2.2418� �z

W�

or r̄max = 2.2418z̄1/2. �15�

Finally, it is of experimental interest the axial component of

the vorticity, �= �1 /r�� �rv� /�r, which in dimensionless form

is given by

�̄ �
�c

W�

=
S

2

e�

z̄
�16�

and its axial value is

�̄0 � �̄�r̄ = 0, z̄� =
S

2z̄
. �17�

A simplified, columnar �i.e., without axial variation� ver-

sion of Batchelor’s vortex �8� and �9�, usually called

q-vortex, has been almost universally used in stability analy-

ses of trailing vortices. Basically, it is obtained by setting

z̄=1 in Eqs. �8� and �9�, but using as the characteristic ve-

locity to render nondimensional the velocity field the axial

velocity multiplying the exponential term in Eq. �3�, instead

of W�, so that the swirl number �now usually called q� and

the Reynolds numbers are different from those defined in

Eqs. �10� and �1�. However, this is a crude idealization of the

vortex, since the axial velocity at the axis used as a reference

velocity evolves with z, in addition to other inconveniences

shared by the full version of Batchelor’s vortex which we

now comment.

Batchelor’s solutions �2� and �3� are valid when the char-

acteristic radius rc��z /W� of the vortex is sufficiently

large. Moore and Saffman
25

estimated that it has to be a

significant fraction of the wing span s

rc = �s �18�

with ��1 ��1 /5, say�. Or, in terms of the wing chord c

rc = �s = �ARc = ac , �19�

where the unknown constant a is of order unity because the

aspect ratio AR typically ranges between 7 and 10. That is to

say, Batchelor’s vortex is a good approximation for axial

distances of the order of

z = �a2
/4�c Rec or z̄  1 �20�

or larger. This means that, typically, z must be of the order of

several thousand chord lengths. This fact makes Batchelor’s

vortex unrealistic for modeling trailing vortices,
25

and, as

stated by Spalart
2

�it is unfortunate that this q-vortex is used

almost universally in stability studies.�

For these reasons, Moore and Saffman
25

developed a

somewhat more realistic laminar model for trailing vortices

which, though also asymptotically valid far downstream, it is

a good approximation just a few chords downstream, once

the roll-up process has finished. To that end, they also solved,

as it was done by Batchelor, the boundary-layer-type equa-

tions for the axial velocity induced by the viscous decay of

the swirl, but, instead of assuming an external potential vor-

tex like in Batchelor’s solution, Moore and Saffman consid-

ered a more realistic solution for the external inviscid swirl

that takes into account the roll-up process.

In particular, Moore and Saffman applied the Betz
49

method �see also Ref. 50� to complete the solution of

Kaden
51

for the class of vortex sheets with circulation distri-

bution along the wing span ��x�x1−n, 0�n�1, where x is

the coordinate in from the tip �n=1 /2 represents the sheet

near the tip of an elliptically loaded wing�. These power-law

distributions roll up into vortices having the inviscid circula-

tion distribution around the wing tip vortex ��r�=���x�,
where the Betz model was used to determine that �=2−n.

For n�0, the swirl goes to infinity at the center of the vor-

tex, vr−n, and its regularization by viscosity yields the

similarity solution of Moore and Saffman.

In terms of the nondimensional variables �6�, Moore and

Saffman solution for the azimuthal velocity can be written as

v̄�r̄, z̄� =
b

z̄n/2
Vn��� , �21�

where b is a nondimensional constant related to the circula-

tion, and

Vn��� = 2−n�� 3

2 −
1

2n��− ��1/2M� 1

2 +
1

2n;2;�� �22�

with � the gamma function �not to be confused with the

circulation� and M the confluent hypergeometric function of

the first kind.
48

For large r̄

v̄ → br̄−n as r̄ → � �23�

and the maximum of v̄ is located at

r̄max = 2��nz̄�1/2, �24�

where �n is a parameter that depends on n �e.g., �n�2.13 for

n=1 /2�.25

The nondimensional axial velocity is

w̄ = 1 +
b2

z̄n
Wn��� . �25�

Wn��� being the solution to an ordinary differential

equation,
25

and with the axial velocity defect at the axis
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�w̄ � 1 − w̄�r̄ = 0, z̄� = − Wn�0�
b2

z̄n
, �26�

where constant Wn�0� is given in Fig. 5 as a function of n.

It is interesting to note that Wn�0� changes its sign for

n�0.44, being negative for n�0.44, so that, according to

the solution by Moore and Saffman, an axial velocity defect

will develop only for n�0.44.

The nondimensional vorticity is

�̄ =
b

r̄z̄n/2
�n��� , �27�

�n��� = 2−n�� 3

2 −
1

2n��2�− ��1/2M� 1

2 +
1

2n;2;��

− � 1

2 +
1

2n��− ��3/2M� 3

2 +
1

2n;3;��� �28�

which at the axis is given by

�̄0 � �̄�r̄ = 0, z̄� =
2−n�� 3

2 −
1

2n�b

z̄�n+1�/2
. �29�

In addition to the above laminar flow studies, there have

been several attempts to develop turbulent models for the

structure and decay of trailing vortices, being the most sig-

nificant one that of Saffman,
52,53

which is an extension of an

earlier work by Govindaraju and Saffman.
54

One of the main

features of these solutions is the prediction of a mean circu-

lation distribution that is not monotonic with increasing ra-

dius, i.e., a circulation overshoot. Govindaraju and Saffman
54

show by very simple arguments that this is a necessary fea-

ture of a turbulent vortex if the turbulent stresses decay more

rapidly than the viscous stresses and the core radius grows

more rapidly than ��t�1/2. Although this overshoot has never

been observed experimentally, fully turbulent vortices have

not been studied under controlled conditions. Saffman
52

de-

veloped a more complex structure for the turbulent vortex,

including the axial velocity, to explain the observed depen-

dence of turbulent line vortices on Reynolds number.

There exists some other models for turbulent tip vortices

in the literature, but they are semiempirical models which are

not based on the turbulent flow equations and, consequently,

they do not model the axial evolution or decay of these vor-

tices. For these reason we will compare our experimental

results only with the laminar vortex models by Batchelor and

by Moore and Saffman.

B. Comparison with the experimental results
and discussion

We compare here the two models for laminar trailing

vortices discussed in the preceding subsection with the PIV

measurements reported in Sec. III. As mentioned in that sec-

tion, vorticity is preferred to fit the experimental data to the

models because the model expressions for the vorticity are

the simplest ones. However the resulting fitting parameters

would be practically the same if the azimuthal velocity pro-

files were used because the dispersion in the azimuthal ve-

locity profiles and in the vorticity profiles are quite similar

�see below�.
Figure 6 shows such a comparison for �=12, Rec�4

�104, and the different values of z /c considered �see Fig. 2�.
We use a Levenberg–Marquardt algorithm built in MATLAB

for the fittings. It is clear that the self-similar solution of

Moore and Saffman �MS for short� fits much better to the

experimental data than the one by Batchelor �B�. This is so

for all the cases considered, as it was expected because B

model is valid only very far downstream from the wing tip,

as discussed in the preceding subsection. The mathematical

reason is that the MS model contains an additional parameter

�power n� in relation to the B model, so that it permits the

fitting of a larger variety of velocity profiles than the B

model. This is particularly clear in the tails of the vorticity

profiles, which for the values of r /c depicted in Fig. 6 do not

decay as the power r−1 required by the B model, but with a

different power r−n. This conclusion is even clearer when the

azimuthal velocity profiles are used to compare the models

with the experimental data �see Fig. 7�.
We have fitted the experimental vorticity �and azimuthal

velocity� profiles to the self-similar models by adjusting the

best fitting parameters in these models, namely, the swirl

parameter S in B, the power n, and the parameter b in MS. In

addition, we have also adjusted in each case the best fitting

axial locations z̄− z̄0B and z̄− z̄0MS in the self-similar variable

of each model, in such a way that the axial origins are dis-

placed to the virtual origins z̄0B and z̄0MS in B and MS self-

similar solutions, respectively. The physical justification is

that the axial �streamwise� origin in these self-similar solu-

tions is not defined, and depends on the roll-up process be-

hind the wing tip. One has the liberty to select these virtual

origins as an additional parameter in the self-similar models.

By doing so one obtains a much better fit to the experimental

data �e.g. Figs. 6 and 7�. In addition, one finds that the re-

sulting values of z̄0B and z̄0MS remain practically constant for

all the configurations and axial distances z /c considered �see

Fig. 8�. This fact justifies the appropriateness of using these

virtual origins, which in the present case are z̄0B�−6.4

�10−4 and z̄0MS�−2.2�10−4, respectively. Similar virtual

origins for self-similar solutions have been used and justified

theoretically by Revuelta et al.
55

in the case of laminar jets.

The power n in the MS model fluctuates around a mean

value due to the experimental dispersion �see Fig. 9�. Note

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1
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n
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n
(0
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FIG. 5. Computed Wn�0� vs n, compared to Fig. 2 of Moore and Saffman

�Ref. 25� �squares�.
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also that the fitting process to the MS model is more in-

volved than the fitting to the B one because the MS model is

more complex. We can select a mean value n�0.54 for all

the cases considered. Of course, this power may be very

sensitive to the geometry of the wing, and, possibly, another

different mean value may result if a different wing model

would have been used in the experiments. Finally, the param-

eters b in the MS model and S in the B model approximately
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FIG. 6. �Color online� Comparison between the nondimensional vorticity �̄=�c /W� obtained experimentally �dots� with the best fitted solutions by Batchelor

�dashed lines, Eq. �16��, and Moore and Saffman �continuous lines, Eq. �27��, for �=12°, Rec�4�104, and different values of z /c, as indicated.
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tend to constants as z /c increases when they are scaled with

� �see Fig. 10�a��. This is explained by the fact that both

parameters are proportional to the circulation �see previous

section�,
which in turn is proportional to the wing angle of attack.

According to these figures, we can select b /��7.5�10−3

and S /��3.5�10−3 for the comparison with the present ex-

perimental results �see Fig. 10�b��.
The situation is rather different for the axial velocity

profiles. Figure 11 shows that the MS model does not agree

so well with the axial velocity profiles measured experimen-

tally as the azimuthal velocity, or the vorticity, does �note

that the best fitting parameters in the models are obtained

from the vorticity or the azimuthal velocity profiles�. How-

ever the disagreement with the B model is quite pronounced.

This is a clear evidence of the fact that the assumptions be-

hind the B model are valid very far downstream of the wing,

as discussed in the previous subsection. Thus, the axial ve-

locity defect at the axis given by the B model behaves as

z̄−1 ln z̄ for �=0 �see Eq. �14��, which is much larger than the

experimental results for the values of z̄ considered �see also

Fig. 14 below�. Although we have used �=0 in the B model,

because it is usually very small compared to S2 ln�Rec
2 z̄� in

Eq. �9�, the comparison with the experimental data would be

even worse if some �small� values of � were used in the B

model.

In addition to the fitting of the radial profiles of the vor-

ticity and the velocity, at a given axial location, to the self-

similar solutions, it is relevant to check whether these solu-

tions predict correctly the streamwise variation of the

vortices. As it was seen in Sec. IV A, there are several non-

dimensional magnitudes which are appropriate to perform

this comparison, such as the nondimensional vorticity at the

axis, �̄0, which is a measure of the vortex strength, the non-

dimensional radius where the azimuthal velocity reaches its

maximum, r̄max, which is a measure of the vortex core radius,

and the nondimensional axial velocity defect at the axis, �w̄.

According to the two models described in the above section,

the axial profiles of these nondimensional magnitudes are

independent of the Reynolds number when plotted against

the nondimensional axial coordinate z̄ �see Eqs. �6�, �14�,
�15�, �17�, �24�, �26�, and �29��. Another nondimensional

magnitude that may characterize the vortex strength is

v̄max / r̄max, but we have checked that the resulting fitting pa-

rameters are quite similar to those obtained with �̄0, and we

prefer this last one for simplicity.

Figure 12 shows the nondimensional radius at which the

azimuthal velocity reaches a maximum, r̄max, as a function of

the nondimensional axial distance z̄. Note that, although the

physical axial locations of the normal planes where PIV mea-
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surements are captured are the same for the two Reynolds

numbers, the values of z̄ are twice for the smallest Reynolds

considered �see Eq. �6� for the definition of z̄�. According to

both models, B and MS, this radius grows as z̄1/2 �see Eqs.

�15� and �24��, independently of the Reynolds number �as all

the nondimensional magnitudes�, and also independently of

the vortex strength �parameter S or b�. We use the mean

value n=0.54 in the MS model. Because the use of a virtual

origin in both models, the axial coordinate for the model

curves in the figure are z̄− z̄0B and z̄− z̄0MS for the B and MS

models, respectively, so that the behavior z̄1/2 is reached as-

ymptotically for sufficiently large z̄. In Fig. 12 this tendency

is observed for z̄ larger than 10−3, which is larger than the

maximum value at which experimental data are captured in

this work. Therefore, we cannot decide which model fits bet-

ter to the present experimental results for r̄max�z̄�, although

the agreement is quite good with both models up to the maxi-

mum value of z̄ considered. Note that although the tails of

the azimuthal velocity radial profiles are better captured by

the MS model �see Fig. 7�, both models are similarly valid

close to r̄max.

Figure 13 shows the experimental values of �̄0, scaled

with the angle of attack �, plotted against z̄ for the two

Reynolds numbers and the three angles of attack considered,

comparing them with the expressions �17� and �29� for the B

and MS models, respectively, divided by �. The values of the

parameters in the models are the mean ones for S /�, b /�,

and n discussed above. Both solutions predict practically the

same evolution for �̄0 /� in the range of z̄ considered when

the virtual origins are used. Again, the values of z̄ where the

experimental data are captured are too small to decide

whether they fit better to the asymptotic behavior z̄−1 of the B

model �17�, or to the behavior z̄−�n+1�/2 of the MS model �29�.
However, as noted above, the details of the radial profiles of

the vorticity at each streamwise location are much better pre-

dicted by the MS model than by the B model �see Fig. 6�.
Finally, Fig. 14 plots the values of �w̄ obtained experi-

mentally as a function of z̄, and compare them to the two

models with the parameters S, n, and b given in the legend

�S and b are the mean values of S /� and b /� discussed

above multiplied by the extreme values of ��. For the mean

value n=0.54 used, the parameter Wn�0� in the MS model
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appearing in Eq. �26� is Wn�0��−0.3, so that the radial pro-

file of the axial velocity component in the MS model is

wakelike, as it happens in all the profiles measured experi-

mentally �e.g., Figs. 3�a� and 11�. As in the previous figures,

it is difficult to decide which model predicts better the down-

stream evolution of the axial velocity defect because the

small values of z̄ in the experimental data. However, the MS

model clearly yields much better the order of magnitude of

�w̄ along z̄ obtained in the experiments.

V. SUMMARY AND CONCLUSIONS

We have undertaken a series of measurements of the 3D

velocity field of the trailing vortex behind a NACA 0012

airfoil using a stereo PIV technique. We have considered two

different Reynolds numbers �2 and 4�104, approximately�,
three angles of attack �6°, 9°, and 12°�, and six axial dis-

tances from the wing tip, ranging from 0.5 to 16 chord

lengths. We have made a comprehensive review on the lit-

erature about theoretical models for the structure of trailing

vortices, paying special attention to those viscous models

that include the axial velocity component and consider the

downstream evolution along the vortex axis of the velocity

field. This last point is important because the viscous insta-

bilities of vortices, relevant for the prediction of trailing vor-

tex dynamics and decay, are strongly affected by the axial

flow and by the velocity evolution along the vortex axis.

In particular, we have compared our experimental results

with the models �self-similar solutions� by Batchelor
15

and

by Moore and Saffman.
25

We find that the radial profiles of

both the azimuthal and axial velocity components on a nor-

mal plane to the vortex axis fit better to the model by Moore

and Saffman in all the axial locations considered, provided

that a virtual origin z̄0MS�z0MS / �c Rec��−2.2�10−4 is used

for the nondimensional axial distance. Actually, Batchelor’s

model predicts quite poorly the radial profiles of the axial

velocity at the downstream distances considered, especially

the axial velocity defect at the axis, in consonance with the

fact that the hypotheses behind this model are valid very far

downstream the wing tip.

We have also compared the streamwise variation of

some relevant features of the vortex with the predictions

from both models. We find that, up to the maximum axial

distance considered in the experiments, both models agree

reasonably well, within experimental dispersion, with the ex-

perimental data for the evolutions of the vortex strength

�maximum of vorticity� and the vortex core radius. However,

these axial distances are shown to be too small to decide

which of the models fits better to the downstream evolution

of the vortex, in spite of the fact that we have captured the

3D velocity field up to 16 chords, which is the maximum

axial distance for PIV measurements available in our experi-

mental facility. Although one may increase the nondimen-

sional axial distance z̄ by reducing the Reynolds number, the

needed of Rec would be too low for practical interest. There-

fore, detailed experimental measurements farther down-

stream of the wing tip than the ones reported in the present

work would be needed to shed more light on this question.

ACKNOWLEDGMENTS

This work has been supported by the Junta de Andalucia

�Spain� Grant No. P05-TEP-170. The final version of the

paper has greatly improved thanks to the comments by the

anonymous referees.

1
S. E. Widnall, “The structure and dynamics of vortex filaments,” Annu.

Rev. Fluid Mech. 7, 141 �1975�.
2
P. Spalart, “Airplane trailing vortices,” Annu. Rev. Fluid Mech. 30, 107

�1998�.
3
Th. Gerz, F. Holzapfel, and D. Darracq, “Commercial aircraft wake vor-

tices,” Prog. Aerosp. Sci. 38, 181 �2002�.
4
L. Jacquin, D. Fabre, P. Gefroy, and E. Coustols, “The properties of a

transport aircraft wake in the extended near field: An experimental study,”

AIAA Paper No. 2001-1038, 2001.
5
Th. Gerz, F. Holzapfel, W. Bryant, F. Kopp, M. Frech, A. Tafferner, and G.

Winckelmans, “Research toward a wake-vortex advisory system for opti-

mal aircraft spacing,” C. R. Phys. 6, 501 �2005�.
6
A. Allen and C. Breitsamter, “Experimental investigation of counter-

rotating four vortex aircraft wake,” Aerosp. Sci. Technol. 13, 114 �2009�.
7
H. Deniau and L. Nybelen, “Strategy for spatial simulation of co-rotating

vortices,” Int. J. Numer. Methods Fluids 61, 23 �2009�.
8
D. Fabre and L. Jacquin, “Short-wave cooperative instabilities in repre-

sentative aircraft vortices,” Phys. Fluids 16, 1366 �2004�.
9
D. Fabre and L. Jacquin, “Viscous instabilities in trailing vortices at large

swirl numbers,” J. Fluid Mech. 500, 239 �2004�.

10
−4

10
−3

10
−2

10
−1

10
0

z

ω
0
/α

α=6º, Re
c

∼ 4 × 10
4

α=9º, Re
c

∼ 4 × 10
4

α=12º, Re
c

∼ 4 × 10
4

α=6º, Re
c

∼ 2 × 10
4

α=9º, Re
c

∼ 2 × 10
4

α=12º, Re
c

∼ 2 × 10
4

MS n=0.54, b/α=7.5 × 10
−3

B S/α=3.5 × 10
−3

FIG. 13. �Color online� Nondimensional vorticity at the axis scaled with �,

�̄0 /� vs z̄ measured experimentally �symbols� for the two Reynolds number

and three values of � considered �as indicated in the legend�, and their

comparison to different models with the indicated parameters.

10
−5

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

z

∆
w

α=6º, Re
c

∼ 4 × 10
4

α=9º, Re
c

∼ 4 × 10
4

α=12º, Re
c

∼ 4 × 10
4

α=6º, Re
c

∼ 2 × 10
4

α=9º, Re
c

∼ 2 × 10
4

α=12º, Re
c

∼ 2 × 10
4

B S=0.042, Re
c

∼ 4 × 10
4

B S=0.021, Re
c

∼ 2 × 10
4

MS b=0.09, n=0.54

MS b=0.045, n=0.54

FIG. 14. �Color online� Nondimensional axial velocity defect at the axis

��w̄� vs z̄ obtained experimentally for all the cases considered �as indicated

in the legend�, and their comparison to the models with the indicated

parameters.
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