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Abstract We numerically investigate the wake flow of an afterbody at low Reynolds number in the incom-
pressible and compressible regimes. We found that, with increasing Reynolds number, the initially stable and
axisymmetric base flow undergoes a first stationary bifurcation which breaks the axisymmetry and develops
two parallel steady counter-rotating vortices. The critical Reynolds number (Recs) for the loss of the flow
axisymmetry reported here is in excellent agreement with previous axisymmetric BiGlobal linear stability
(BiGLS) results. As the Reynolds number increases above a second threshold, Reco, we report a second insta-
bility defined as a three-dimensional peristaltic oscillation which modulates the vortices, similar to the sphere
wake, sharing many points in common with long-wavelength symmetric Crow instability. Both the critical
Reynolds number for the onset of oscillation, Reco, and the Strouhal number of the time-periodic limit cycle,
Stsat, are substantially shifted with respect to previous axisymmetric BiGLS predictions neglecting the first
bifurcation. For slightly larger Reynolds numbers, the wake oscillations are stronger and vortices are shed close
to the afterbody base. In the compressible regime, no fundamental changes are observed in the bifurcation
process. It is shown that the steady state planar-symmetric solution is almost equal to the incompressible case
and that the break of planar symmetry in the vortex shedding regime is retarded due to compressibility effects.
Finally, we report the developments of a low frequency which depends on the afterbody aspect ratio, as well
as on the Reynolds and on the Mach number, prior to the loss of the planar symmetry of the wake.

Keywords Bluff body · Hydrodynamic stability · Laminar wake · Vortex instability · OpenFOAM

1 Introduction

The study of external flows over afterbodies has attracted the interest of engineers and physicists during the
last decades because of its practical relevance [36]. Most authors focused their attention on the characterisation
of aerodynamics variables in flight conditions, i.e., for compressible flows at transonic/supersonic speeds and
turbulent regime. However, the analysis of the instability mechanisms developing in laminar regime as the
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Reynolds number increases, which may lead to turbulence, is an outstanding problem which remains still
unresolved.

The present work is hence motivated by a wish to accurately characterise the bifurcation process and the
ensuing saturated non-linear regimes in the laminar wake of a slender afterbody at subsonic speeds, as well
as to discuss its relation with the incompressible case. Such aim has been considered recently for subsonic
flows by means of axisymmetric BiGlobal linear stability (BiGLS) analysis [16,17], showing that the initially
stable and axisymmetric base flow undergoes a series of bifurcations with increasing Reynolds number: the
first bifurcation is stationary and breaks the axisymmetry, whereas the second one is oscillatory and leads
to the onset of periodic flow oscillations. Such bifurcation scenario is analogous to that of the sphere in the
incompressible regime, which has been object of experiments [11,21,25], axisymmetric BiGLS [9,20,22],
direct numerical simulations (DNS) [9,12,33,34] and TriGlobal linear stability (TriGLS) analyses [19,30,37].

In the case of the incompressible wake flow of a sphere, it is now well understood that axisymmetric
BiGLS deals properly with the first regular bifurcation, which occurs according to experiments and DNS at
Recs ≈ 210. Furthermore, the shift of the critical oscillatory Reynolds number predicted by axisymmetric
BiGLS, 277.5 [20], is small with respect to the consensual threshold for the onset of vortex shedding, 272 [9],
and the refined experimental value obtained recently by Gumowski et al. [11], who found out a three-dimen-
sional peristaltic instability at Reco ≈ 267. To the authors’ knowledge, the peristaltic instability was reported
just from the experimental side [11,25], though the kink in the steady trailing vortex filaments was earlier
quantified in the numerical simulations by Thompson et al. [33], who speculated that the kinking incre-
ment in the range of Re between Recs and Reco could be associated with the transition to the periodic state.
Furthermore, though Gumowski et al. [11] mentioned that the peristaltic instability is reminiscent of Crow
instability [5,7,14,24], the vortex filament properties were not quantified (in particular, the vortices centres,
circulation and radius). Morzyński and Thiele [19] and Theofilis [31] have recently pointed out that TriGLS
would be formally needed in order to better understand the second oscillatory bifurcation, defined as a three-
dimensional peristaltic instability prior to the onset of vortex shedding [11]. However, in order to analyse
TriGLS properties of the oscillatory mode, one requires filtered solutions of the Navier–Stokes equations to
get the unstable base flow and new generation algorithms to formulate and to solve for the eigenvalue problem,
needing a large amount of time and computational resources. The complexity of such analysis can be under-
stood in view of TriGLS results for the oscillatory mode of the laminar wake of a sphere, which are nowadays
scarce and limited to the specific parameter values of Re = 300 for M = 0 [19] and M = 0.6 [37].

Indeed, TriGlobal permits a reduction to a sequence of axisymmetric and nonaxisymmetric BiGLS, see
Sect. 3.5 in [31], but the results described in the literature for the wake flow of an afterbody only cover the
first axisymmetric BiGLS analysis, and larger discrepancies appear for this type of geometry in the BiGLS
prediction of Reco with respect to experiments and DNS [2]. To overcome this limitation three-dimensional
temporal simulations are performed here in the incompressible and compressible regimes. It is already known
that DNS is consistent with axisymmetric BiGLS at determining the critical parameters associated with the
loss of the flow axisymmetry in the wake flow of a sphere [31]. In addition, we have shown that DNS values of
Recs and Reco accurately match BiGlobal and experimental results, respectively, for the laminar incompressible
wake of a short blunt-based axisymmetric body [2]. In compressible regime, a good agreement has also been
found between GLS and DNS under several scenarios, e.g. [4]. In addition, DNS provides the Strouhal number
Stsat, associated with the (nonlinear) frequency of the time-periodic limit cycle, for Reynolds numbers above
Reco. It is worth mentioning that the (linear) frequency given by a global stability analysis does not necessarily
match the non-linear frequency as the Reynolds number progressively increases far from Reco, as happens,
for instance, in the case of a circular cylinder [1,13,27]. Therefore, the authors believe that DNS by itself is
a valuable tool to quantify the critical parameters close to the steady and oscillatory neutral curves and that
results reported herein may serve to motivate a more involved global linear stability in the configuration under
study here. As a matter of fact, we shall show for the first time that the peristaltic instability is analogous to
long-wavelength symmetric Crow instability with the vortex filaments moving on planes inclined about 35°
to the horizontal.

So, this article is aimed at reviewing and extending the bifurcations in the wake flow of an afterbody of
high aspect ratio at moderate Reynolds number (Re ≤ 1,000) in the incompressible (M = 0) and compressible
(M = 0.5) regimes. We start with the formulation of the problem in Sect. 2. Next in Sect. 3, we present some
numerical simulations and draw out the connections between this analysis and the previous ones, showing the
applicability of our numerical findings. The incompressible and compressible planar-symmetric base flows in
the range of Reynolds numbers Recs < Re < Reco are described in detail in Sects. 3.1.1 and 3.2.1, respectively.
We shall put a particular focus on the oscillatory bifurcation for incompressible flows (Sect. 3.1.2). The main
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Fig. 1 Front view of the afterbody mesh

new features are that three-dimensional effects originating from the loss of the background flow axisymmetry
and the growth of the pair of trailing vortices are taken into account. The oscillatory regime and the excitation of
non-linear frequencies in incompressible flows and at subsonic speeds for Reco < Re ≤ 1,000 are subsequently
described in Sects. 3.1.3 and 3.2.2, respectively. Finally, we draw some conclusions.

2 Formulation of the problem

For the sake of comparison, we analysed the same geometry employed in previous axisymmetric BiGlobal
linear stability studies [16,17], see Fig. 1. The cylindrical body diameter is D, and its total length is L = 9.8 D,
with an ellipsoidal rounded nose of 3:1 major-to-minor axis ratio, aligned with the direction of the free stream.
We solved for the compressible Navier–Stokes equations by means of a collocated finite volume method
(FVM) in Cartesian coordinates and in conservative form [10]. The use of FVM, the strong conservation form
of the compressible Navier–Stokes equations, and the fixed direction coordinate system ensures conservation
of physical properties at the discrete level [8]. The density ρ, velocity u, temperature T and pressure p fields
were made dimensionless using the far field quantities ρ∞, U∞, T∞ and p∞ as density, velocity, temperature
and pressure scales, respectively, whilst the positional vector x ≡ (x, y, z) was made dimensionless using D as
length scale. We considered only a calorically perfect gas with ratio of specific heats at constant pressure and
volume of γ = cp/cv = 1.4, and a unit Prandtl number [16,17]. Subsequently, the non-dimensional numbers
governing the fluid dynamics are the Reynolds Re = ρ∞DU∞/μ and Mach M = U∞/

√
γ RgT∞ numbers,

where μ and Rg denote the dynamic viscosity and the ideal gas constant, respectively. We focused attention
on incompressible (M = 0, Sect. 3.1) and compressible (M = 0.5, Sect. 3.2) flows.

The computational domain consists of the solid afterbody aligned with the x-axis into a coaxial external
cylinder of radius 15D and length 125D. The origin of the coordinate system is located at the centre of the
blunt solid base of the body and the outlet of the external cylinder is located 100D downstream from the base of
the afterbody. These upstream and radial computational lengths are similar to those employed in [2], whilst the
length downstream the afterbody base was increased from 50 D to 100 D in order to achieve accurate results.
It is worth mentioning that the downstream length of our computational domain is even larger than the low
velocity water channel of 54D employed in [11] and that employed in the previous numerical studies of the
flow around a sphere [9,12,34] of 25–30 D. As a matter of fact, we shall see in Sect. 3 that locating the outlet at
x = 100 allows us to observe for the first time the peristaltic instability that occurs far away from the afterbody
base, where the wake becomes near-parallel along the streamwise direction, and to discuss its relation with
Crow’s stability theory for a pair of trailing vortices [7]. That is, the use of a lower downstream length may
impair the quality of the numerical results for Reynolds numbers close to the oscillatory. We imposed a far
field boundary condition at the inlet of the external cylinder (x = −25) for a uniform fluid stream of velocity
U∞, temperature T∞ and pressure p∞, no-slip and adiabatic boundary conditions on the solid walls of the
body, slip condition at external cylindrical surface (y2 + z2 = 152), and non-reflective boundary condition
for the outflow (x = 100) [6,29]. In these conditions, the transient three-dimensional numerical simulations
presented in the next section preserved the steady state even in the presence of the steady state (SS) mode
without the developments of false resonance modes [29].

Parallel computations were made within 12 or 16 blocks of mesh with a total mesh of 5 × 106 hexahedras,
approximately, and GNU GPL software [10]. The grid points located in the generatrix of the afterbody and
along the x-axis were distributed as follows: 38 and 136 cell edges in the rounded nose and in the cylindrical
generatrix, respectively (see Fig. 1); 78 and 650 cell edges in the x-axis, upstream of the rounded nose and
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Table 1 Recirculation length Lr as a function of M and the critical Reynolds numbers (Regls
cs and Regls

co ): results by an
anonymous referee (private communication), denoted by AR, and our computations with a second-order accurate van Leer
(VL) and first-order accurate upwind (UPW) limiter in space

M Regls
cs Regls

co Lr (Regls
cs ) Lr (Regls

co )

AR VL AR VL UPW

0.0 460.50 909.10 1.824 1.818 2.251 2.235 2.018
0.1 461.34 911.69 1.829 1.821 2.254 2.238 2.020
0.3 470.10 939.02 1.867 1.843 2.310 2.270 2.071
0.5 488.40 998.56 1.951 1.943 2.432 2.386 2.165

at the back of the afterbody, respectively. The radial direction was divided into 38 (y2 + z2 ≤ 0.52) and 78
(y2 + z2 ≥ 0.52) edges. When distributing the grid points we ensured that the grid size is enough to solve
the viscous boundary layer near the solid walls. Finally, we split the azimuthal direction into 64 sections.
We refer the reader to [2] for additional details on the mesh topology. All the computations reported in this
paper were performed on two clusters, where each node has eight Intel Itanium Montvale dual-core processors
(Finisterrae, Centro de Supercomputación de Galicia, CESGA) and two Intel Nehalem x5670 six-core pro-
cessors (Centro Informatico Científico de Andalucía, CICA). The full system of non-linear equations was
solved following a segregated approach [8]. To ensure the convergence of the numerical solution at each time
step, we set the number of outer loops to 4. So the residual of each conservation equation lay below 10−6

during the transient numerical simulations. The physical time required for computing one single outer loop
was about 20 s (CESGA) and 10 s (CICA), and subsequently of 80 s (CESGA) and 40 s (CICA) for each time
step. The time step was adjusted during the numerical simulation so that the Courant number [8] was lower
than 0.5. Close to criticality, the runtime of a complete numerical simulation depends mainly on the growth
rate of the unstable mode (i.e. on the proximity to the neutral curve): the lower growth rate, the longer the
runtime required. On the other hand, the runtime corresponding to Reynolds numbers moderately larger than
the oscillatory threshold depends on the excitation of new frequencies in the wake (see Sects. 3.1.2, 3.1.3):
the higher the Reynolds number, the longer the runtime required. In absolute terms, the time required for
each three-dimensional numerical simulation in Sect. 3 varies between one and four months.

We checked the performance of the numerical solver by comparing the recirculation length Lr with previ-
ous known numerical results at the critical Reynolds numbers for the onset of the SS mode (Regls

cs ) and vortex
shedding (Regls

co ), provided an axisymmetric base flow. To this end, we used the axisymmetric version of the
numerical solver. Previous results were reported by Meliga [15] employing a Finite Element Method (FEM)
and refined values were given by an anonymous referee, denoted hereafter as AR (private communication).
Table 1 shows the evolution of the critical Reynolds numbers obtained by means of BiGLS and the recirculation
length Lr as a function of M. We also provide the values obtained in our axisymmetric computations by using
two different discretisation schemes in space: a standard first-order upwind (UPW) scheme, and a second-order
total-variation-diminishing and symmetric limiter, named van Leer (VL). As expected, the recirculation length
Lr is underpredicted when using a standard first-order upwind scheme in space. Conversely, the numerical
solution is much more accurate when we elected a second-order total-variation-diminishing and symmetric
limiter. Indeed, our VL results are nearly identical to those by AR (private communication) and Meliga [15].
Therefore, we employed the second-order total-variation-diminishing scheme in the direct numerical simula-
tions presented below. Taking into account that the accuracy of the FEM used in [15–17] is comparable to our
FVM, we expect a good agreement between previous BiGLS results and our DNS for the primary instability
(see Sects. 3.1.1, 3.2.1).

3 Results

3.1 Incompressible regime, M = 0

3.1.1 Primary instability: loss of the flow axisymmetry

In order to gain some inroads into the problem, transient three-dimensional numerical simulations were per-
formed in the incompressible limit (M = 0) increasing progressively the Reynolds number. We started from
the Reynolds number of Re = 450 that lies slightly below the critical value for the loss of the flow axi-
symmetry of Regls

cs = 460.5 [15]. After a transient stage, the numerical solution reached an axisymmetric
steady state at late time. We verified it during the numerical simulation by examining the temporal evolution
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cs ) and vortex shedding (Regls
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values of Re3d
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cs determined in the present work. At M = 0.5 we also show the error bar

of the three velocity components in the cross section x = 3 and along five straight lines (in particular, along
{y = 0, z = 0}, {y = 0, z = ±0.5} and {y = ±0.5, z = 0}). Additional computations were performed for
Re = 478, 491, 517, 570, 650 and 675 that reached the planar-symmetric steady state described below.

As in [2], the squared eccentricity of the vorticity contours, r2
cent, was computed as a function of Re to

calculate the critical Reynolds number corresponding to the first steady bifurcation from the DNS, Re3d
cs , see

Fig. 2. Close to criticality, the squared eccentricity increased linearly, and thus Re3d
cs was obtained by lin-

ear regression to yield Re3d
cs = 463. This result is in accordance with the BiGLS analysis [15], see Fig. 3,

which predicted the loss of the flow axisymmetry for Re > Regls
cs = 460.5. Notice that the relative error

between Re3d
cs and Regls

cs is just of 0.5%, showing that the current FVM is as accurate as the FEM employed
by Meliga et al. [16,17]. Below Re3d

cs , the eccentricity vanished because the afterbody wake was indeed axi-
symmetric. Conversely, the squared eccentricity increased linearly with the Reynolds number in the range
of Re3d

cs < Re < 517 and deviated from the linear dependence for larger Reynolds numbers. We found that
the squared eccentricity monotonously increases without saturation up to the second oscillatory bifurcation
which occurs at Re3d

co = 678.2 (see Sect. 3.1.2). The cause of the wake eccentricity is the development of the
SS mode owing the loss of the flow axisymmetry, and the growth of a well-known pair of steady streamwise
counter-rotating vortices, as shown in Fig. 4, which induced a velocity at the centreline of each other and
caused a misalignment with the symmetry plane. The ensuing flow field is analogous to the wake flow behind
a sphere at 210 < Re < 272 [9,11,19,21,22,25,30,33,34], does not longer exhibit a closed recirculation
bubble and diverges from the unrealistic axisymmetric solution as Re increases above Recs. Due to the global
nature of the instability, the developing azimuthal velocity perturbs not only the region downstream from the
afterbody base but also the upstream flow, modifying the axisymmetric boundary layer. Indeed, the length of
the streamwise vorticity contours ωx = ±0.05 is larger for Re = 650 (Fig. 4b) than for Re = 478 (Fig. 4a)
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Fig. 4 Contours of constant streamwise vorticity, ωx = ±0.05, at M = 0 for the steady planar-symmetric wake at Re = 478 (a)
and 650 (b). Plan view is rotated 90◦ with respect to the lateral view for each Re. The eccentricity of the vorticity contours shown
in Fig. 2 at Re = 650 is readily illustrated in subplot b where the dashed line is the axis

Fig. 5 As Fig. 4 for M = 0 and ωx = ±0.01 at Re = 650 (a), Re = 679 (b) and Re = 680 (c). Snapshots in subplot b clearly
illustrate the 3D peristaltic instability described for the sphere wake by Gumowski et al. [11], whilst c depicts the shedding of
vortices in the far wake of the solid body. See movies 1 and 2 included as supplementary material to observe the oscillatory
behaviour of the afterbody wake in the absence of vortex shedding at Re = 679

both down- and up-stream from the base. As happens in the sphere wake [11,25,33], there is a kink in the
trailing vortex filaments downstream from the base, see Fig. 4a, and the vortices get closer at, approximately,
2 diameters downstream from the afterbody base for a wide range of Re (see the discussion about Crow
instability in Sect. 3.1.2). The vortices get closer and closer as the Reynolds number increases similar to the
sphere wake (see Figure 8 in [33]). However, a difference between the afterbody and the sphere wake is the
relative gap between the critical Reynolds numbers � ≡ (Re3d

co − Re3d
cs )/Re3d

cs . In particular, we get � = 0.46
for the afterbody which is higher than for a sphere (� = 0.27). As a consequence, the new background flow that
develops prior to the development of the second oscillatory bifurcation deviates more from the axisymmetric
flow in the afterbody case than for shorter solids. Indeed, Fig. 4 clearly shows the growth of the streamwise
vorticity from Re = 478 to Re = 650 and, as a consequence, the developments of larger azimuthal velocities
as the Reynolds number increases. Given that the first bifurcation makes the flow nonaxisymmetric and that
the planar-symmetric base flow diverges from the fictitious axisymmetric solution with increasing values of
Re above Recs, there is no reason to expect that the approach followed by Meliga et al. [16] should predict
adequately the secondary instability, as we show below.

3.1.2 Secondary bifurcation: vortex shedding via peristaltic oscillation

An exhaustive study was performed with an eye to observe if, as for the sphere wake [11], the second instability
can be defined as a 3D peristaltic oscillation which modulates the two counter-rotating vortices. To this end,
we increased the Reynolds number up to Re = 679 and inspected the temporal evolution of the velocity field
in several points of the computational domain as for the numerical simulations in Sect. 3.1.1. Once the initial
transient was washed out, the velocity signal was found monochromatic at late time, with constant amplitude
at each probe. So the flow reached the periodic state illustrated in Fig. 5b. The sinuously kink of the contours of
constant streamwise vorticity ωx = ±0.01 at Re = 679 is evident in Fig. 5b as we move downstream from the
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afterbody base and is absent in the steady planar-symmetric wake below Re3d
co, as shown in Fig. 5a at Re = 650.

Notice the absence of vortex shedding in Fig. 5b as well as in the supplementary animations 1–2. In addition,
supplementary videos 3–4 show the oscillatory contours of constant streamwise vorticity ωx = ±0.05 that
are similar to the steady ones below Re3d

co = 678.2, see Fig. 4, though they exhibit a cyclical modulation
which first enlarges and later decreases their length far from the afterbody base. However, the oscillation of
the vortex core vanishes close to the solid base. This result is in agreement with experimental observations
in [11], because the first modulations were perceptible in the far wake of the solid object and the amplitude of
the oscillations grew with the downstream distance. Furthermore, by increasing slightly the Reynolds number
up to Re = 680, we found out the shedding of vortices in the far wake when the flow reached the saturated
periodic state at late time (see Fig. 5c). The shedding of vortices in the far wake of the afterbody is consistent
with TriGLS results by Morzyński and Thiele [19] for the incompressible wake behind a sphere at Reynolds
number slightly supercritical. Indeed, they reported vanishing amplitudes of the eigenmode at the back of the
sphere and growing amplitudes further downstream. To the authors’ knowledge, this is the first time that the
3D peristaltic oscillation is reported by DNS in the wake flow of a solid body and might be due to the argument
advanced in Sect. 2. Previous DNS of the flow around spheres [9,12,34] and bullet shaped geometries [2]
employed the downstream length of the computational domain of 25–30 D and 50 D, respectively, which are
lower than that of the low velocity water channel by Gumowski et al. [11] (54D) and the present work (100D).
Therefore, the use of a short downstream length may impair the quality of the numerical results for Reynolds
numbers close to the oscillatory because the peristaltic instability occurs in the far wake.

One of the advantages of DNS is the possibility of having the flow field for all the variables in different axial
locations. This allows us to further understand the physical origin of this peristaltic oscillation. Here we want
to discuss its relation with Crow instability [7] as it was pointed out by Gumowski et al. [11]. We analysed the
pair of counter-rotating vortices generated by the afterbody wake at different axial locations. Firstly, we get the
centre of each vortex, denoted by x±. Then we calculated the distance between both vortices b ≡ ||x+ − x−||,
and defined the region of positive and negative vorticity by the perpendicular to the line joining x+ and x−.
This operation is illustrated in Fig. 6. Subsequently, we obtained the circulation of each vortex (�±) and the
second moment of the axial vorticity field, which let us define the characteristic radius a of each vortex (the
positive and negative vortices in the regions defined above), as was done in [5],

�± =
∫

S±

ωx dS±, �± a2± =
∫

S±

ωx ||x − x±||2 dS±, (1)

where S+ and S− correspond with the regions having positive and negative axial vorticity, respectively. By
computing a±, b and �± for Re = 478, 517, 570 and 650, we corroborated the expected result a+ = a− = a
and �+ = −�− = �o, as shown in Fig. 7 for 0 < x ≤ 80. Notice that, independent of Re, the ratio a/b tends to
the asymptotic value of 1.27 for increasing values of x , whilst �o monotonously decreases with x . Interestingly,
the variations of �o with x are smoother for x > 30, indicating that the base flow is nearly parallel far enough
from the body. The effect of viscosity on the spreading of the vortices must have an effect on the instability
properties, as the viscosity spreads the vortices with the streamwise distance making them more stable. This
fact led us to think that the peristaltic instability observed at Re = 679 in the far wake, see Fig. 5b, is indeed
caused because of the destabilization of the pair of trailing vortices at some critical streamwise location.
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incompressible flow, M = 0

The stability properties of a pair of counter-rotating vortices is a subject widely studied because it is a
configuration that appears in the wake of aeroplanes. For a pair of counter-rotating vortices without axial
core flow it is already known that the problem presents two kind of inviscid instabilities, see [14,24] and
references therein: long-wavelength waves, related to the mutual induction of both vortices, referred hereafter
to as Crow instability [7], and short wavelength instabilities which are related to the elliptical deformation
of the core because of the presence of the other vortex, also known as Widnall (or elliptical) instability (see
[18,35]). The peristaltic oscillation shown in this problem is a long-wavelength wave (several vortex cores
of size). Crow instability theory is formally valid for values of a/b � 1, i.e. when both vortices are away
one from the other, and is applicable for high Reynolds numbers. However, we have seen in Fig. 7b that
a/b is of the order of unity in the present case at all Reynolds numbers. Indeed, the asymptote a/b = 1.27
shows that the results are almost invariant for x > 25, where the circulation �o varies very slowly along the
streamwise coordinate, see Fig. 7c, prior to the onset of oscillations. At Reynolds numbers slightly lower than
the oscillatory threshold, we observed that �o is of the order O(10−2) for x > 25 and takes nearly the same
values within the range 570 < Re < 650. The corresponding vortex Reynolds number Re� ≡ �o Re [14],
based on the vortex circulation �o, is of the order unity. Even in this case in which Crow instability theory is
not applicable (because it is inviscid), we expect that a similar instability mechanism develops in the current
case though the maximum growth rate would be highly reduced because of viscous effects. Symmetric Crow
instability (mode S) consists on two displacement modes acting over each of the vortex, moving their centres
in two planes inclined at about θ = 45° to the horizontal [7]. For Re = 679, we analysed the position of the
vortex centres during several cycles, see Fig. 8, and found out that they lie on two planes forming an angle
of 110° corresponding with mode S. Therefore, both vortices displace on planes inclined about θ = 35° to
the horizontal. Surprisingly, the angle between planes is close to that of 104°–115° found by Roy et al [24] in
experiments carried out for higher vortex Reynolds numbers in the presence of axial core flow. It is worth to
note that the amplitude of the oscillation monotonously increases as a function of the streamwise distance, see
Fig. 8, as usually happens for spatial amplifying waves. This is not necessarily true if the streamwise distance
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is increased further, as the viscosity spreads the vortices making them more stable. Subsequently, we computed
the axial wavelength of the highest amplitude mode as the distance between two sequential troughs at a fixed
instant of time, which yield λ = 8 for 0 < x ≤ 60, though the oscillatory modulation of the core paths was
indistinguishable for x < 15. Taking into account that the main distance between the cores b varies along the
streamwise coordinate, see Fig. 7a, the scaled non-dimensional wavelength λ/b decreases downstream from
about 20 (x = 0) to 8 (x = 60). Curiously, long-wavelength instabilities reported by Leweke and Williamson
lie in the same range of λ/b, see Figure 7 in [14]. To mathematically prove that this instability is associated
with the destabilization of the pair of trailing vortices with axial core flow [24], similar to Crow instability
but for low Reynolds numbers, a parallel BiGLS can be done at different axial locations for Reynolds number
close to the oscillatory threshold. This will provide an estimation of the most unstable mode, the angle θ of the
plane where the instability develops and the most dangerous axial wavelength. However, such task is outside
the scope of the present work.

Finally, we observed the periodical shed of vortices close to the base by setting Re = 685, see Fig. 9a, and
that the oscillatory bifurcation, which involved the destabilization of the steady three-dimensional branch, pre-
served planar (or reflectional) symmetry. Samples were also recorded at the same control points as for previous
runs, showing at late time the monochromatic signal with constant amplitude in Fig. 10a, b. The non-dimen-
sional value of t in the abscissa of Fig. 10a, c and e, was reinitialized so that the final periodic state is given
by t > 0. The saturated amplitude of the streamwise velocity perturbation was, approximately, two orders of
magnitude larger than for Re = 679. This is consistent with previous evidences that the vortex shedding state
is a continuation of the 3D peristaltic modulation and a result of larger oscillations in the wake [11].

It is already known that the transition to the oscillatory regime corresponds to a supercritical (or nonhyste-
retic) Hopf bifurcation in which the squared amplitude of the velocity fluctuations increases linearly with the
Reynolds number, e.g. [2,21,33]. Because the current interval of Reynolds numbers which encloses Re3d

co is
really narrow, i.e. 650 ≤ Re ≤ 685, and the non-linear saturation due to the excitation of new frequencies in the
wake (i.e. the harmonics of the main frequency and low-frequency modulation) does not occur approximately
at least up to Re > Re3d

co + 60 [2], the three-dimensional global linear stability should work properly at these
Reynolds numbers. Indeed, by using the periodic flow at Re = 685 as initial condition and decreasing the
Reynolds number down to 650, we observed the exponential decay of the velocity fluctuation amplitude. In
particular, we fitted the perturbation amplitude with an exponential function of time to compute the growth
decay and, by interpolating it with the growth rate obtained during the simulation for Re = 685, we were
able to find the critical value of Reynolds number for the onset of oscillations, Re3d

co = 678.2. To the authors’
knowledge, this technique was firstly applied by Ghidersa and Dušek [9] in the context of the sphere wake. We
employed the same procedure to determine the oscillatory transition in the wake of a blunt-based axisymmetric
body of length-to-diameter aspect ratio of 1 and 2, reporting a discrepancy lower than 5% between the DNS and
the experimental critical values, and larger than 25% between axisymmetric BiGLS and DNS [2]. Similarly,
the actual Re3d

co = 678.2 is much lower than the threshold arising from axisymmetric BiGLS analyses [16,17],
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Fig. 9 Contours of constant streamwise vorticity, ωx = ±0.05, at M = 0 for Re = 685 (a), 900 (b) and 1,000 (c). Plan view is
rotated 90◦ with respect to the lateral view
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Fig. 10 Time history (left column) and PSD (right column) of the fluctuations of the streamwise velocity component [2] at M = 0
for a, b Re = 685, c, d Re = 800 and e, f Re = 900. The nondimensional value of t in the abscissa of a, c and e was reinitialized
to show just the saturated periodic state (t > 0). All probes were sampled at (x = 3, y = 0, z = 0)
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the experimental results for 1 ≤ L/D ≤ 6 in Figures 13(a) and 14 from [2], and the solid line is their linear fit. The error between
the present computations for L/D = 9.8 (circle) and the extrapolated value from experiments is lower than 1%

Regls
co = 909.1, which leads to the discrepancy of 34%, whilst the agreement with the extrapolated value from

the experiments in [2] is really good, i.e. lower than 1% (see Fig. 11). The Strouhal number of the time-periodic
limit cycle at onset St3d

sat = 0.113, which was obtained by computing the power spectral density (PSD) of the
streamwise velocity component near criticality (see Fig. 10a, b), lies very close to the experimental (0.1294)
and numerical (0.1246) value of a blunt-based axisymmetric body with a length-to-diameter ratio of 2 [2].
However, the axisymmetric BiGLS frequency [15–17], Stgls

sat = 0.066, differs from the true value of St3d
sat.

So the critical values of Regls
co and Stgls

sat reported in [16] do not predict adequately the secondary instability
given that the primary bifurcation makes the flow nonaxisymmetric and that the planar-symmetric base flow
diverges from the fictitious axisymmetric solution at Reco (	Recs), as anticipated in Sect. 3.1.1. It is worth
recalling that Regls

co and Stgls
sat are the values obtained from a global stability analysis of the axisymmetric base

flow, whilst Re3d
co and St3d

sat are the exact values obtained from our simulations, that may also be obtained from
a stability analysis of the 3D steady base flow prevailing after the first bifurcation. Indeed, when the primary
instability is oscillatory, as happens in the case of a circular cylinder [1,13,27], the (nonlinear) frequency
of the time-periodic limit cycle usually matches the (linear) frequency given by a global stability analysis
close to criticality, whilst it does not necessary predict it as the Reynolds number increases far from Reco.
The same happens in the presence of a first stationary bifurcation and a secondary oscillatory mode when
the perturbed base flow is considered in the linear stability analysis of the oscillatory bifurcation, as for the
sphere wake [19,30,37]. Therefore, the authors believe that a more involved TriGLS analysis, employing the
three-dimensional planar-symmetric base flow, would be valuable in order to predict with accuracy the linear
stability properties close to the oscillatory neutral curve [31,32]. Such study would be complementary to our
DNS because the methodology presented in our manuscript is able to capture the true bifurcations of the flow,
as stated in Sect. 1.

3.1.3 Subsequent bifurcations

To conclude the incompressible study, we further explored the dynamics of the afterbody wake for the Rey-
nolds numbers of 800, 900 and 1,000. As for other geometries as the sphere at Reynolds numbers larger than
325–360 [3,25] and a blunt-based axisymmetric body of length-to-diameter aspect ratio of 2 at Re ∼ 500 [2],
a low frequency develops in the present case when Re ≥ 800. This phenomenon usually manifests through the
modulation of the streamwise velocity perturbation [3,25,34], which is illustrated in Fig. 10c. According to [3],
this event is not yet fully documented in the sphere wake and was (inaccurately) associated with the loss of
the planar symmetry due to irregular variations in the azimuthal orientation of the vortex shedding [25,34]. The
difficulty to reproduce experimentally the idealised theoretical scenario, which would allow us to observe the
same solutions, was highlighted for a sphere rolling down an incline, which exhibits similar dual spectral peaks
at Re = 225 and preserves the symmetry plane [28]. Planar symmetry is also preserved in the afterbody wake,
at least, up to Re = 900, see Fig. 9b, even in the presence of the low frequency (Stl = 0.0184) which became
dominant, see Fig. 10e, f. Bohorquez et al. [2] justified this finding in view of the developments of marked
up oscillations upstream of the body base in the presence of vortex shedding, an effect that is more severe as
the Reynolds number progressively increases. The current simulations corroborate that result. Interestingly,
the ratio between the frequency of vortex shedding (St3d

sat = 0.118) and the low frequency (Stl = 0.023) at
inception (Re = 800), see Fig. 10d, is about 5 and differs from that of the sphere, i.e., 3–4 [25,34], and shorter
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blunt-based axisymmetric bodies, i.e., 4 [2]. A possible explanation of such difference would be the different
geometries employed in each study, because during this regime the wake interaction with the boundary layer
on the solid surface is stronger than at lower Reynolds numbers [2]. The vortex shedding frequency slightly
increased up to St3d

sat = 0.137 at Re = 900 and a new regime associated with the loss of the planar sym-
metry occurred in the range of Re between 900 and 1,000, as shown in Fig. 9c. Finally, one would expect a
sharp increase of the dominant frequency in the range of 1,000 < Re < 4,140 because of the development of
turbulence, since the Strouhal number of the dominant frequency of the turbulent motion measured experi-
mentally by Sevilla and Martínez-Bazán [26] increased asymptotically with the Reynolds number from 0.245
(Re = 4140) to 0.26 (Re ≈ 13000). So the main frequency of the turbulent motion might not be related to the
saturation frequency of the oscillatory motion Stsat, e.g., see Rodriguez et al. [23] for the turbulent flow over
a sphere at Re = 3,700.

All the results reported here, complemented with those by Gumowski et al. [11], allow us to clarify the
sequence of events that generate the different transitions in the laminar wake of an afterbody. Just below
Re3d

cs the wake is axisymmetric and becomes unstable for Re > Re3d
cs when a pair of steady counter-rotating

vortices develops. The intensity of the counter-rotating vortices increases with Re and the vortices elongate
until Re = Reco, when they start oscillating without shedding vortices from the afterbody base. Such peristal-
tic instability exhibits many points in common with Crow instability in the presence of axial core flow: it is
originated by a symmetric (S) mode and the vortices displace on planes inclined about 35° to the horizontal.
By increasing even more the Reynolds number, we observe the increase of the oscillation amplitude and,
subsequently, the peristaltic instability triggers the vortex shedding. The main difference of elongated bodies
with respect to shorter geometries is that axial vorticity is less intense due to the shear forces on the surface
that slow down the flow and changes the axial velocity profile at the body base. That might be the reason why
the relative gap of the critical Reynolds numbers (�) is greater for longer bodies. Finally, when Re > Reco,
the real flow is not only three-dimensional but also unsteady and might exhibit strong nonlinearities because
of the excitation of non-linear frequencies in the wake (i.e. the low-frequency modulation and the harmonics
of the main frequency) prior to the break of the planar symmetry.

3.2 Compressible regime, M = 0.5

In Sect. 3.1.1, we have shown the capabilities of DNS to compute and to describe the non-linear state of the
perturbed base flow for Recs < Re < Reco in incompressible regime. Similarly, we present in Sect. 3.2.1
an exhaustive description of the perturbed base flow after the primary instability in compressible regime. We
shall focus our attention on the subsonic speed M = 0.5 for which detailed BiGLS results are known [16,17].
Whilst both techniques are able to compute the critical value of Recs, the main advantage of DNS compare to
the BiGLS is that it provides the full non-linear solution to the compressible Navier–Stokes equations instead
of the linear perturbation equations. As a matter of fact, to the authors’ knowledge the compressible planar-
symmetric base flow has not been described beforehand for Recs < Re < Reco in the configuration under study
here. Such results are essential to explain the evolution of Reco with M and to better understand the oscillatory
flow regimes at subsonic speed that we explore in Sect. 3.2.2.

So additional computations were performed for M = 0.5 to explore the effect of compressibility. In order
to determine the flow regime, we followed the same procedure as for the incompressible analysis and, thus,
the details of the methodology are not repeated herein.

3.2.1 Primary instability: loss of the flow axisymmetry

Firstly, we performed two numerical simulations at Re = 470 and 500 and found out a steady axisymmetric
and planar-symmetric flow, respectively. This result establishes a lower bound and upper band for the critical
Reynolds number of Re3d

cs = (470 + 500)/2 = 485 with an error of ±3%, see Fig. 3. Similar to the incom-
pressible regime, these results agree with previous BiGLS that predicts the loss of the flow axisymmetry for
Re > Regls

cs = 488.4 (Table 1). The relative difference between Re3d
cs and Regls

cs is of ±0.7%, showing that
the accuracy of the current FVM is similar to FEM [16,17] not only in incompressible regime but also at
subsonic speeds. Notice that the actual value of Regls

cs = 488.4 (AR, private communication) slightly corrects
the critical value of 483.5 reported in [16,17]. One could determine the exact value of Re3d

cs following the same
procedure as described in Sect. 3.1, but the numerical simulations are very time consuming and, as we shall
see below, there are no fundamental changes in the compressible planar-symmetric wake with respect to the
incompressible one.
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Subsequently, we increased the Reynolds number up to 675 and the wake also reached a planar-symmetric
steady state at late time. By inspecting the compressible velocity field, we observed that it was similar to the
incompressible one. For the sake of the brevity, the contours of constant streamwise vorticity, which were
nearly identical to those of the incompressible flow (see Fig. 4b), are not shown here. Instead, the dependence
of the velocity field with the Mach number was quantified by computing the difference between the incom-
pressible and compressible (Fig. 12a) streamwise velocity component, see Fig. 12b for the results obtained
in the symmetry {x, z}-plane. As expected, the major discrepancy appeared close to the end of the (axisym-
metric) recirculation bubble, of length Lr ≈ 2.2 at Re = 675 and M = 0.5, though there were no qualitative
differences. Therefore, compressibility does not alter the structure of the planar-symmetric velocity field.

One aspect that is highlighted regards the identification of the differences between the density and temper-
ature fields of the planar-symmetric perturbed flow with respect to the axisymmetric base flow for Re = 675
and M = 0.5. Recall that the symmetry plane is the {x, z}-plane. Figure 13a depicts the density field of the
axisymmetric background flow, whilst Fig. 13b, c show, respectively, contours of the perturbed density field in
the {x, y}- and {x, z}-plane. The shape of the axisymmetric and perturbed field in the {x, y}-plane were found
similar and the differences were, interestingly, lower that 0.5% (see Fig. 14a), even in the presence of swirl in
the perturbed flow. The double tail composed by a counter-rotating vortex pair also induced a misalignment of
the density field with respect to the streamwise direction, as observed in Fig. 13c, but the relative differences
in the {x, z}-plane were as small as in the {x, y}-plane, see Fig. 14b. It is worth mentioning that the density
variation of the perturbed flow with respect to the axisymmetric base flow progressively decreased upstream
of the afterbody base and was lower than 0.05%. Furthermore, the azimuthal density variations in the pla-
nar-symmetric flow vanished upstream of the solid base, which is in accordance with vanishing magnitudes
of perturbation predicted by BiGLS [16]. Hence, we believe that the global instability originated near the
afterbody base hardly affects the density field close to the afterbody nose, at least for the present afterbody
aspect ratio. Finally, the temperature behaved as the density, and the maximum relative difference with respect
to the unperturbed flow shown in Fig. 14c, d, i.e. 0.15%, was even lower than for the density.

3.2.2 Secondary and subsequent bifurcations

We increased the Reynolds number from 675 to 700 for M = 0.5. In order to avoid reporting transient effects,
we proceeded as for incompressible flows. By examining the temporal evolution of the three velocity compo-
nents during the numerical simulation, we ran the case during a minimum of ten cycles of the lowest frequency.
We obtained at late time a monochromatic signal for the streamwise velocity component of constant amplitude
and with the Strouhal number of St3d

sat = 0.109, which is associated with periodic shedding of vortices, see
Fig. 15a. At this Reynolds number, vortices were shed from the afterbody base, indicating that the flow is
supercritical. Given the proximity between the upper bound (Re = 700) and lower band (Re = 675) for the
shedding of vortices, we did not perform numerical simulations at intermediate values of the Reynolds number.
Instead, we estimated the critical value as the average of Re3d

co = 687.5, which is represented in Fig. 3 together
with the error bar of ±1.85%. Notice the similarity between the incompressible and compressible vorticity
contours shown in Figs. 9a and 15a, respectively. In accordance with the finding by Xin et al. [37] in the
wake flow around a sphere, no fundamental changes were observed in the compressible regime justifying our
exhaustive incompressible study in Sect. 3.1. Indeed, the axisymmetric BiGLS analysis [16,17] also predicted
a small variation of the compressible critical parameters, Stgls

sat = 0.063 and Regls
co = 998.5 (see Fig. 3), though
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Fig. 13 Contours of constant density, ρ, for Re = 675 and M = 0.5: a axisymmetric background flow, b, c steady planar-symmetric
perturbed flow in the {x, y} and {x, z} plane, respectively. Each level differs in 5 × 10−4

they remain far from the DNS values. The low increment in the true value of Re3d
co with M can be understood

in part because of the small variations of the steady, planar-symmetric velocity field described for the first
time in Sect. 3.2.1. As a matter of fact, we reported a relative difference between the compressible (M = 0.5)
and incompressible (M = 0) planar-symmetric velocity field lower than 1.5% close to criticality (Re = 675).
Such differences would be even lower for M < 0.5 because compressible effects decrease with Mach number.
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sional perturbed flow for Re = 675 and M = 0.5

Fig. 15 Contours of constant streamwise vorticity, ωx = ±0.05, at M = 0.5 for Re = 700 (a), 800 (b), 900 (c) and 1,000 (d).
Plan view is rotated 90◦ with respect to the lateral view

The slow variation of Reco also indicates that the dominant three-dimensional mode is nearly independent of
the Mach number for M ≤ 0.5, and that the secondary instability is unrelated to effects of compressibility.
Similar results were found for three-dimensional instabilities in compressible flow over open cavities by Brès
and Colonius [4]. Subsequently, the discrepancy between Re3d

co and Regls
co is to be attributed to the break of the

axisymmetry of the flow past the first regular bifurcation, as for incompressible flows.
In addition, we explored the flow regimes at the higher Reynolds numbers of Re = 800, 900 and 1,000.

Figure 15 shows the contours of constant streamwise vorticity at late time for each case, illustrating that the
planar-symmetric state is preserved, at least, up to Re = 1,000. The aspect of the vorticity contours at Re = 800
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Fig. 16 Time history (left column) and PSD (right column) of the velocity fluctuations [2] for M = 0.5 and Re = 1,000: a, b
streamwise velocity component; c, d tangential velocity component. The nondimensional value of t in the abscissa of a and c
was reinitialized to show just the saturated periodic state (t > 0). Probes were sampled at (x = 3, y = 0, z = 0)

(Fig. 15b) and 900 (Fig. 15c) is quite similar to that of incompressible flow at the same Reynolds numbers,
e.g. see Fig. 9b for Re = 900. By inspecting the PSD of the streamwise velocity component at Re = 800, we
observed the developments of the harmonics of the main frequency St3d

sat = 0.117 and a low-frequency modu-
lation corresponding to Stl = 0.0173, as for incompressible flow (recall Fig. 10c, d). So the ratio between the
main and low frequency is of 6.75 at Re = 800 and M = 0.5. Such value is larger than that of 5 corresponding to
the same Reynolds number in incompressible regime, see Sect. 3.1.3. On the other hand, the excitation of new
frequencies in the wake (i.e. the low-frequency modulation and the harmonics of the main frequency) leads to
a decrease of the energy associated with the leading velocity fluctuations due to the non-linear energy transfer
from the natural frequency Stsat to the newly excited ones. Indeed, the increment of the energy associated
with the low-frequency modulation is much more evident at Re = 1,000. Figure 16a depicts the details of the
streamwise velocity oscillations for Re = 1,000 at (x = 3, y = 0, z = 0), whilst the associated PSD is shown in
Fig. 16b. As happens for supercritical, incompressible flows far enough from criticality, the dominant frequency
of the motion along the x-axis, Stl = 0.0144, is much lower than the vortex shedding frequency (St3d

sat). The
dominance of the low frequency manifests as the shed of weaker vortices or thinner filaments, approximately,
every 60 time units, as shown in Fig. 15d. In the PSD of the streamwise velocity fluctuations is difficult to
identify St3d

sat and, consequently, we followed our previous work [2] where we analysed the oscillations of the
tangential velocity component, see Fig. 16c, d, which yields St3d

sat = 0.144. Such values lie very close to the
incompressible ones of St3d

sat = 0.143 and Stl = 0.0145 for the same Reynolds number. Interestingly, the ratio
between the frequency of vortex shedding and the low frequency is, approximately, of 10 at Re = 1,000 both
at subsonic speeds and for incompressible flow. In doing so for lower Reynolds numbers, we found that the
vortex shedding frequency varies, approximately, as St3d

sat(Re) = 0.00012 (Re − Re3d
co) + 0.1058.

So we found out that compressibility effects delay the loss of the planar symmetry of the wake reported
in incompressible regime between Re = 900 and 1,000, see Sect. 3.1.3. This is the most noticeable difference
we found between incompressible (M = 0) and compressible (M = 0.5) flows up to the Reynolds numbers of
Re = 1,000. Notice that even in the absence of the loss of the planar symmetry, we have reported the devel-
opments of low frequencies that are from 5 to 10 times lower than the saturation frequency of the oscillatory
motion. In the widest studied case of spheres shaped geometries, the low frequency was incorrectly associated
with the break of the planar symmetry of the flow [2] and our study reports now that there is no connec-
tion between the developments of the low frequency Stl and the loss of the planar symmetry, not only in
incompressible regime but also at subsonic speeds.

According to our results, the flow at M = 0.5 and Re > 700 is not only three-dimensional but also
unsteady and might exhibit strong nonlinearities as for the incompressible regime. Indeed, our DNS indicates
that at M = 0.5 and Re = 1,000 the real flow is three-dimensional and highly unsteady because of the excita-
tion of non-linear frequencies in the wake (i.e. the low-frequency modulation and the harmonics of the main
frequency). However, Meliga et al. [17] evaluated the sensitivity of BiGLS eigenvalues to forcing at M = 0.5
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and Re = 998.5 (≈1,000) considering a steady, axisymmetric base flow. Linear stability might not work well
so far from the true value of Reco ≈ 687.5 and hence we expect a strong impact of base flow nonlinearities on
the linear sensitivity analysis carried out in [17]. Consequently, results in [17] on the control of the oscillatory
global mode of the afterbody at M = 0.5 and Re = 998.5, although are interesting from a theoretical point of
view, are questionable in terms of applicability and deserve further research.

4 Conclusions

In this article, we have performed direct numerical simulations of the wake flow of an afterbody at low Reynolds
number (Re ≤ 1,000) in the incompressible (M = 0) and compressible (M = 0.5) regimes. We have shown that
the bifurcation scenario is not fundamentally changed with respect to the incompressible flow behind a sphere.
With increasing Reynolds number, the initially stable and axisymmetric base flow undergoes a first stationary
bifurcation at Recs ≈ 463 (M = 0) and Recs ≈ 485 (M = 0.5) owing the loss of the flow axisymmetry.
The current numerical simulations accurately predict the first instability and are in excellent agreement with
previous known axisymmetric biglobal linear stability analysis, see Fig. 3. We have found that the intensity
of the azimuthal velocity monotonously increases with the Reynolds number, which induces a misalignment
with the symmetry plane: the higher the Reynolds grows, the larger the eccentricity observed (see Figs. 2, 4).
Subsequently, we have reported the transition to a periodic state at Reco ≈ 678.2 (M = 0) and Reco ≈ 687.5
(M = 0.5). For incompressible flows, we have shown that the secondary bifurcation corresponds with a three-
dimensional peristaltic oscillation, modulating the two parallel counter-rotating vortices, as shown in Fig. 5b
and supplementary videos 1–4. To the authors’ knowledge, this second instability has not been documented
in the wake flow of an afterbody beforehand. It has been shown that this modulation of the vortices is closely
related to Crow instability in the presence of axial core flow: it is originated by a long-wavelength symmetric
mode, the vortex centres displace on planes inclined about 35° to the horizontal, see Fig. 8, and the scaled
nondimensional wavelength λ/b decreases from about 20 (x = 0) to 8 (x = 60) whilst the nondimensional
wavelength λ takes the constant value of 8. The ensuing bifurcation scenario is not fundamentally changed
with respect to previous axisymmetric biglobal linear stability predictions, though both the critical Reynolds
number for the onset of oscillation, Reco (see Fig. 3), and the Strouhal number of the time-periodic limit
cycle, Stsat (see Sect. 3), are substantially shifted in comparison with the sphere case. Interestingly, though the
sequence of bifurcations is analogous to that found in the wake flow around a sphere, e.g. [11], our gap between
critical Reynolds numbers is higher, 0.4 versus 0.27, and the axisymmetric biglobal linear stability does not
work well because it neglects the primary bifurcation and the real, planar-symmetric base flow diverges from
the fictitious axisymmetric solution at Re > Recs. No fundamental changes are observed in the compressible
regime. Subsequently, in order to quantify the stability properties of the pair of trailing vortices with axial
core flow close to the oscillatory neutral curve for the geometry under consideration, we highlight the need of
triglobal linear stability analysis [19,30,31,37] complementary to our DNS. Furthermore, for incompressible
and compressible flows in the range of 800 ≤ Re ≤ 1,000, we have reported the excitation of new frequen-
cies in the wake (i.e. the low-frequency modulation and the harmonics of the main frequency) which leads
to a decrease of the energy associated with the leading velocity fluctuations. The developments of the low-
frequency modulation at Re ≈ 800 are clearly not associated with the loss of the planar symmetry of the wake,
which occurs at M = 0 in the range of Re between 900 and 1,000. Furthermore, the loss of the planar symmetry
did not occur at M = 0.5 in such interval of Reynolds numbers. The values of the low frequency are from 5 to
10 times lower than the saturation frequency of the oscillatory motion Stsat for the parameter values studied
here. Subsequently, we expect a strong impact of base flow nonlinearities on the linear sensitivity analysis
carried out in reference [17] for M = 0.5 and Re = 998.5, and so our findings have important consequences not
only for the oscillatory critical parameters but also for the control of the oscillatory global mode. We conclude
by pointing out that several of our findings are not fully documented for the wake flow behind a sphere, and
thus, the results reported herein may serve to motivate a more involved stability analysis [19,30,31,37].
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