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Experimental results for instabilities present in a rotating Hagen–Poiseuille flow are
reported in this study through fluid flow visualization. First, we found a very good
agreement between the experimental and the theoretical predictions for the onset of
convective hydrodynamic instabilities. Our analysis in a space–time domain is able to
obtain quantitative data, so the wavelengths and the frequencies are also estimated.
The comparison of the predicted theoretical frequencies with the experimental ones
shows the suitability of the parallel, spatial and linear stability analysis, even though
the problem is spatially developing. Special attention is focused on the transition from
convective to absolute instabilities, where we observe that the entire pipe presents
wavy patterns, and the experimental frequencies collapse with the theoretical results
for the absolute frequencies. Thus, we provide experimental evidence of absolute
instabilities in a pipe flow, confirming that the rotating pipe flow may be absolutely
unstable for moderate values of Reynolds numbers and low values of the swirl
parameter.
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1. Introduction

Rotating pipe flows are of great interest both theoretically, mainly for their
fundamental and intriguing stability properties (see the next paragraph), and because
there are many engineering applications in which rotation plays an important role,
for instance diffusion flames supported by rotating burners (Hossain, Jackson &
Buckmaster 2009) or a new generation of swirl-inducing pipes that have improved
transportation of particle-bearing liquids (Ariyaratne & Jones 2007). Furthermore,
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the induced swirl in a sudden contraction of hydraulic systems (Sanmiguel-Rojas &
Fernandez-Feria 2006) promotes the appearance of fluctuations in the flow rate when
absolutely unstable conditions are reached (Sanmiguel-Rojas & Fernandez-Feria 2005).
Though there are many works dealing with turbulent swirling pipe flows, the turbulent
state or its transition from a laminar flow is outside the scope of the present work.

The stability of a fully developed rotating Hagen–Poiseuille pipe flow (RHPF)
has been studied by several researchers theoretically. Although the non-rotating pipe
Poiseuille flow is linearly stable for any finite Reynolds number, according to the
temporal and linear stability analyses of Pedley (1968, 1969) and Mackrodt (1976),
the introduction of rotation destabilizes the laminar flow at relatively low Reynolds
numbers, becoming unstable to non-axisymmetric disturbances. These results were
confirmed and extended by Cotton & Salwen (1981). A rotating pipe flow was
found to be supercritically unstable both in the rapid- and slow-rotation regimes in
Toplosky & Akylas (1988). These waves were later found in Barnes & Kerswell
(2000) to become unstable to three-dimensional travelling waves in a supercritical
Hopf bifurcation. To complement these results, a spatial, viscous and linear stability
analysis of Poiseuille pipe flow with superimposed solid-body rotation was considered
in Fernandez-Feria & del Pino (2002), where the convective or absolute character
of the hydrodynamic instabilities in RHPF was also determined by examining the
branch-point singularities of the dispersion relation for complex frequencies and
wavenumbers (Huerre & Monkewitz 1990). Useful information from an experimental
point of view related to wavelengths and frequencies associated with the neutral curve
for the transition from stable to convectively unstable state was reported in Fernandez-
Feria & del Pino (2002). The theoretical results confirmed that the wave packets
corresponding to the most unstable modes were the slowest travelling along the pipe.
As the Reynolds number, Re, or the swirl parameter, L, was increased (see the next
section for the definition of Re and L), eventually the complex group velocity vanished
to zero, resulting in the onset of the absolute instabilities. Thus, the transitional
neutral curve from convective to absolute instabilities was characterized, covering
all values of the parameters: Re, L, azimuthal wavenumber n, frequency ω and
axial wavenumber α. This theoretical work was supplemented with three-dimensional
numerical simulations in Sanmiguel-Rojas & Fernandez-Feria (2005), finding a good
agreement in relation to the theoretical neutral curves. The flow rate oscillations
and the nonlinear wave structures were also analysed in detail. Subsequently, Heaton
(2008) described exhaustively the different instability typologies for RHPF, and a novel
theory developed to study trailing line vortices was applied successfully to connect
high- and low-swirl-parameter regimes (see references therein for more details).

The first experimental analysis of rotating pipe flow was by White (1964), Nagib,
Lavan & Fejer (1971) and Mackrodt (1976), who found that rotation destabilizes the
laminar flow and non-axisymmetric instabilities appeared. Later Imao et al. (1992)
focused their experiments on the developing region of the axially rotating pipe. Only
one Reynolds number and several values of the swirl parameter were tested in this
work. The wavelengths and frequencies observed experimentally were later validated
theoretically using a non-parallel approximation by means of the parabolized stability
equations for developing RHPF in del Pino, Ortega-Casanova & Fernandez-Feria
(2003).

Thus, to fill a gap in the experimental works on this problem, we analyse here the
results for RHPF from an experimental point of view to link the observations with
theoretically predicted convective and absolute instabilities. This is the main aim of the
present work, which is organized as follows. In § 2 the experimental setup is described,
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FIGURE 1. Sketch of the experimental setup.

together with a discussion of the flow geometry and the boundary conditions. In § 3
we show the experimental results for the transition from stable to convectively and
absolutely unstable flows, and quantitative results for the frequencies and wavenumbers
are also presented. In § 4 we sum up the main findings and draw some conclusions.

2. Experimental setup

We used the experimental setup depicted in figure 1, which allowed us to obtain
the base RHPF in a horizontal pipe. The main parts were a head tank, a condition
chamber, where a diffuser and a honeycomb were placed to reduce the noise at the
pipe inlet, a pipe (diameter, D = 19 ± 0.04 mm and length, Lp = 1960 mm), a DC
motor and a storage tank. An aluminium structure was used to hold the experimental
setup. The different sections were accurately aligned with a digital inclinometer to
within ±0.1◦.

A circulation system was employed and a transparent Perspex pipe was used for
visualization that was recorded by a digital video camera. The water was pumped
from the storage tank to the head (large) tank upstream of the pipe, which had other
smaller tank inside. These small and large tanks were connected to the pipe and to
the storage tank, respectively. Thus, the flow entered the smaller tank, and once this
tank was filled, it started to fill the second tank that was connected to the storage
tank. Thanks to this design, a pressure drop along the pipe was fixed by the constant
height H between the small reservoir upstream (high level) and the inlet of the rotating
pipe (low level). During each measurement a valve ensured a constant head loss in
the hydraulic system. The value of H was 2500 mm, while the fluctuation in the small
tank upstream was less than 2 mm, so that the accuracy of the flow rate was greater
than 99.9 %. A similar experimental setup has been used in other works on pipe flows
(see e.g. Hof et al. 2006). The water temperature was measured before and after
each test to take into account the changes in the kinematic viscosity. The temperature
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variation was less than 0.1 ◦C. The angular rotation was maintained constant by a
DC motor connected to the pipe with a transmission belt. The motor was closed-loop
controlled, and the velocity of the motor was known by means of an encoder. This
feedback control was able to keep the error between the desired and the current
angular velocities to within 0.5 %.

The test section was transparent to allow image recording. A light was projected
on dark paper with a thin rectangular hole, forming a white light sheet vertically
highlighting the flow patterns. To that end, Mearl Maid (flakes) or Kalliroscope was
added to the fluid. To avoid flow disturbance downstream, a sudden expansion was
connected at the end of the rotating pipe.

The Reynolds number is defined as Re = UD/ν = 4Q/(πDν), where U is the mean
velocity, ν is the kinematic viscosity and Q is the flow rate. The swirl parameter is
L = ΩD/(4U), Ω being the angular velocity. The final measured Reynolds number
was constant within a variation of 0.5 %. Several series of experiments corresponding
to Reynolds numbers ranging from 50 to 350 were performed and the swirl parameters
were varied between 0 and 4. At least two runs for a given Re–L pair were carried out
to ensure the reliability of the experimental results, and each experiment was running
long enough to ensure final states. Finally, the pipe length, LP ≈ 106D, was also long
enough to achieve RHPF for the values of Re and L considered here (see below).

3. Results and discussion

Typical flow visualizations in two windows along the pipe, one in the inlet region
(2D . x . 10.5D) and the other one in the downstream region (84D . x . 94D), are
shown in figure 2. Qualitative and quantitative analyses (described below) of flow
visualizations like these for different values of Re and L, allowed us to obtain the
critical values of Re and L for the onset of both convective and absolute instabilities,
as well as their corresponding critical frequencies and wavenumbers. Due to the
configuration of the experimental setup, the fluid entered the pipe without swirl, which
developed along the entrance length. The first window always corresponds to this
entrance length where the RHPF is not fully established, while the second corresponds,
in all the cases reported here, to the fully developed RHPF. In Pedley (1969) it
was reported that the minimum non-dimensional pipe length, 2Lp/D, for achieving
fully developed RHPF is of the order of the maximum between Re and Reθ , where
Reθ ≡ ReL =ΩD2/(4ν) is the Reynolds number based on the angular velocity. In our
case, 2Lp/D ≈ 212, so that both Re and Reθ have to be at most of this order in our
experiments. However, this estimation is rather conservative and good agreement was
found between theoretical frequencies and wavelengths for fully developed RHPF even
for higher values of Re and Reθ .

Figure 2(a,b) shows flow visualizations for a stable case, where one can observe the
rotating boundary layer development region with an axisymmetric conical shape (ACS)
in the inlet region (a), and no pattern in the downstream region (b). As the Reynolds
or the swirl parameter was smoothly increased, new final states were reached, so the
frames highlighted sinusoidal shapes in the downstream region (d) which represent
convective travelling waves (see below), while the inlet region remained unaffected,
with an ACS similar to the stable case (c). For higher values of L and moderate
values of Re another transition occurred, breaking the symmetry of the ACS in the
inlet region and leaving a spiral structure over the conical shape (e) (steady wavy
cone, or SWC for short), while the downstream region (f ) showed a sinusoidal
structure qualitatively similar to the previous case (d). We shall argue below that
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FIGURE 2. Flow visualizations in axial (r, x) planes at the inlet (a,c,e) and downstream regions
(b,d,f ) for Re= 250 and three values of the swirl parameter L: 0.1 (a,b); 1.0 (c,d); and 1.5 (e,f ).
The flow is stable in (a,b), convectively unstable in (c,d) and (e,f ) correspond to a case that
theoretically is absolutely unstable. The length of these frames corresponds to approximately 9D,
and they start at x ' 2D for (a,c,e), and x ' 84D for (b,d,f ). We mark in (e) with a white arrow
the ACS–SWC transition.

this corresponds to the transition from a convective to an absolute instability of the
RHPF.

3.1. Onset of convective instabilities
Firstly we focus on the transition from stable to convectively unstable flow, where the
visual information in the downstream region allows us to define the transition curve
in an (L, Re)-plane, see figure 3. The points depicted in this graph were obtained
either for a constant Reynolds number and increasing the parameter L or vice versa.
Figure 3 also contains the theoretical neutral curves for the transition from a stable (S)
to a convectively unstable state (CI), and for the onset of absolute instabilities (AI),
respectively (Fernandez-Feria & del Pino 2002). These theoretical predictions are both
for perturbations with an azimuthal wavenumber n = −1. Also included in the figure
are the theoretical curves for the onset of instabilities with azimuthal wavenumber
n = −2, which occur for higher values of Re and L. Experimental data are plotted
with crosses, circles and stars for the stable, convectively and absolutely unstable cases,
respectively (see below for the experimental characterization of the absolutely unstable
cases). Good agreement is found between the theoretical curves and the experimental
data for the stable to convectively unstable flow transition. Even for very large values
of the swirl parameter, no unstable structures were observed with a Reynolds number
below 83, confirming Pedley’s (1968) critical value of 82.9. On the other hand, even
for very high values of Re, no unstable flows were found at low L, when Reθ = ReL
is below 27. This fact corroborates Mackrodt’s (1976) critical swirl Reynolds number
of 26.96. For moderate values of the swirl parameter (0.4 . L . 1) and moderate
Reynolds numbers (Re ≈ 100) there is a small difference between the theoretically
predicted transition and the experimental values. This is due to the fact that in this
region of the (L, Re)-plane close to the neutral curve, the amplitudes of the linear
instabilities were very weak and it was not possible to detect with accuracy the
transition by means of the present visualization technique. However, as will be shown
below, the experimental frequencies were predicted very accurately.
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FIGURE 3. Stability diagram in an (L, Re)-plane. Solid and dashed lines represent the
theoretical curves for convective and absolute instabilities, respectively. Thick and thin curves
correspond to n = −1 and n = −2, respectively. Experimental data correspond to a stable flow
(crosses), and convectively (circles) and absolutely (stars) unstable flows.

Next we focus on how some quantitative data are obtained from flow visualizations.
To this end we first obtain spatio-temporal diagrams from a temporal sequence of
flow visualization frames, such as those shown in figure 4, corresponding to the
same cases depicted in figure 2. In these diagrams, the spatial domain is equal to a
stretch of the pipe axis (r = 0 and x in the range of the given visualization window),
while the temporal evolution of figure 4 only corresponds to 0 6 t 6 40 s, though the
videos analysed were recorded for 90 s. These spatio-temporal diagrams were made
by assembling a matrix in which each row corresponds to an image of the stretch
of the pipe axis, for successive video images. From these spatio-temporal diagrams
we were able to compute both the non-dimensional frequency [ω = (ω̂D)/(4U)], and
the dimensionless axial wavenumber (α = Dk̂/2), of the instability waves, ω̂ and k̂
being the dimensional frequency and wavenumber, respectively. This method has been
used successfully in the past to determine unstable structures in stratified Couette
flow (Le Bars & Le Gal 2007). There are no flow structures in figure 4(a,b), which
corresponds to a stable case. However, weak structures appear in figure 4(d), which
have a negative slope in the (x, t)-plane denoting travelling waves with negative phase
velocity. These results, after applying the two-dimensional Fourier transformation to
the spatio-temporal diagram of figure 4(d), are depicted in figure 5(d), where we
represent the power spectra in a (ω, α)-plane. The maximum peak is located at
(0.802, −0.294), which agrees fairly well with the theoretical frequency and axial
wavenumber reported in Fernandez-Feria & del Pino (2002) for the onset of convective
instabilities for this value of Re. The agreement for the frequency is much better than
for the wavenumber. The reason is that the video was recorded for 90 s and we were
able to see several periods of the waves whereas, due to limitations of space and
camera resolution, we could only record a pipe length equal to 9D, approximately. The
results of the frequency analysis have a non-dimensional absolute error of 0.016 for
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FIGURE 4. Space–time diagrams for Re = 250 and three values of the swirl parameter (as
in figure 2): L = 0.1 (a,b), stable; L = 1.0 (c,d), convectively unstable, and L = 1.5 (e,f ),
absolutely unstable for the inlet (a,c,e) and the downstream regions (b,d,f ). The time evolution
corresponds to 0 6 t 6 40 s.

the frequency and 0.045 for the wavenumber. As we move outside the most energetic
mode, other complex structures appear which correspond to lower energetic ones.
However, we will focus only on the most relevant pair of values in the (ω, α)-plane.
The stable state, e.g. figure 4(a,b), is characterized for values of both the frequency
and wavenumber equal to zero (see figure 5a,b). All this information was also required
for better defining the experimental stable–convectively unstable transition in figure 3.

The results thus obtained for the non-dimensional frequency (ω) and wavenumbers
(α) against the swirl parameter (L) for the stable–convectively unstable transition, as
well as the theoretical predictions for the neutral modes with azimuthal wavenumber
n = −1, are plotted in figure 6. For simplicity, only representative values for the
stable–convectively unstable transition (figure 3) obtained with a constant Re and
increasing L are depicted in figure 6. One can observe that a reasonably good
agreement is found for the frequency and wavelength in the range 0.5 . L . 2. For
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FIGURE 5. Two-dimensional-Fourier power spectra of the space–time diagram for the same
cases as figure 4.

0

0.5

1.0

1.5

10–2 10–1 100 10–2 10–1 100

0.2

0.4

0.6

L L

–0.5

2.0

0

0.8(a) (b)

FIGURE 6. Dimensionless theoretical (solid line) and experimental (circles) frequency ω
(a) and wavelength α (b) versus swirl parameter L for the convectively unstable neutral curve of
figure 3.

lower values of L, though the wavelengths were in good agreement, zero frequencies
were found, showing that the two-dimensional-FFT (fast Fourier transform) offset with
these weak waves was not enough to compute the frequency. For L & 2, disagreement
between the theoretical prediction and the measured frequencies or wavenumbers was
also found (not shown in figure 6). The explanation is that the pipe was not long
enough for developing an RHPF when L & 2 and Re of the order of 100, as was
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discussed above. Finally, it is worth mentioning that the waves described in the spatio-
temporal picture of figure 4(d) correspond to an azimuthal wavenumber |n| = −1,
since the diagrams of figure 4 depict the temporal variations of the perturbations in the
flow at the axis, which are non-vanishing only for this value of n. This is in agreement
with the theoretical predictions for the onset of convective instabilities, which always
occur for perturbations with n=−1.

3.2. Absolute instabilities
Regarding the convective–absolute transition we would have expected to see a
qualitative change in the two-dimensional Fourier analysis. However, as is shown
in figure 4(f ), the general structure of the spatio-temporal diagram in the downstream
region is similar to that in figure 4(d) for a convectively unstable case, and so is the
frequency. Another approach would have been to use the experimental version of the
linear impulse response (Delbende, Chomaz & Huerre 1998), but due to the rotation
of the pipe it was quite difficult to implement it experimentally. For these reasons, to
obtain information about the convective-absolute transition we have studied the inlet
region (2D . x . 10.5D), also shown in figures 2 and 4.

Although there are no available theoretical studies, to our knowledge, on global
instabilities in a developing RHPF, local stability analysis along the pipe (see e.g.
del Pino et al. 2003) shows that the onset of instabilities for increasing Re or L
is always originated in the downstream region where the RHPF is fully developed.
Thus, for convective instabilities, the waves are only visualized in the downstream
region, provided that their amplitude becomes large enough to be detected downstream
experimentally, but leaving unperturbed the upstream flow (figures 2c and 4c).
However, if the flow becomes absolute unstable as Re or L increases (first in the
downstream region where the RHPF is fully established), the perturbation propagates
upstream in the pipe, until it is damped in the entrance region, breaking the symmetry
of the ACS, and increasingly pervading larger areas of this inlet region as Re or
L increases. With our visualization technique we cannot measure the group velocity
of the waves, only their phase velocity, but we can detect the onset of absolute
instabilities by looking at the inlet region and recording the transition from an ACS
to a SWC, as depicted in figure 2(e). In addition, one can also observe a significant
difference between figures 5(c) and 5(e). While in the convectively unstable case
(figure 5c) there is a neat peak at (ω = 0, α = 0), the absolutely unstable case
(figure 5e) shows a non-zero wavenumber α which corresponds to the transition
from an ACS to a SWC. Another indication of this transition is the vertical streak
pattern observed in figure 4(e), denoting spatial oscillations of the flow in the inlet
region, which is not present in figure 4(a,c). Therefore, this analysis based on the
different structures observed in the inlet region, ACS or SWC, has provided us
with the possibility of characterizing the star symbols shown in the (L, Re)-plane
of figure 3, which agree fairly well with the theoretical predictions for the onset
of absolute instabilities (Fernandez-Feria & del Pino 2002), in spite of the fact that
nonlinear effects may be relevant when the flow becomes absolutely unstable, which
obviously are not taken into account by the theoretical predictions from a linear
stability analysis.

Repeating the procedure of obtaining the spatio-temporal diagrams of the pipe axis
from a temporal sequence of flow visualization frames in the downstream region
(e.g. figure 4f ), and the two-dimensional-Fourier transformation of these diagrams (e.g.
figure 5f ), one can obtain the results shown in figure 7 for the absolute value of the
frequency and the axial wavenumber characterizing the convective–absolute transition.
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FIGURE 7. Dimensionless theoretical (dashed line) and experimental (stars) absolute value of
the frequency ω (a) and wavelength α (b) versus swirl parameter L for the absolutely unstable
neutral curve of figure 3.

In these cases, the whole flow oscillated with the absolute frequency, allowing us to
measure these quantities in the downstream measurement region. Note in figure 5(f )
that the Fourier transformation now shows narrower peaks than in the cases considered
in the previous subsection, which constitutes an additional indication of the absolute
character of the instability (see Davitian et al. 2010 for more details). As before,
excellent agreement with the theoretical predictions was found in the case of the
frequency, and a reasonably good agreement was found for the axial wavenumbers.
These last values were close to 0.1, which means that the waves had a wavelength of
λ = πD/α ' 31.4D. So in our measurements in the downstream region we were only
able to capture about one third of the entire wavelength. Nevertheless the results were
of the same order as the theoretical predictions. Finally, it is worth noting that no
hysteresis phenomenon was observed.

4. Conclusions

Novel experimental observations related to the RHPF have been reported in this
study. Good agreement has been found with the predicted critical values of the
Reynolds number and the swirl parameter for both the transition from stable to
convectively unstable flow and for the onset of absolute instability. A good agreement
was also found with the predicted values of the frequencies and wavelengths of
the corresponding travelling waves. A wide range of Reynolds numbers and swirl
parameters have been tested, though there was a constraint in this experimental study
related to the length of the pipe, which limited the fully developed RHPF to swirl
numbers L . 2 for the Reynolds numbers considered.

Experimental evidence of absolute instabilities is given here for the first time for a
confined spatially developing forward flow. In those cases, the whole flow was shown
to oscillate with the absolute frequency, and the instability modified the flow structure
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even in the base flow developing region near the inlet of the pipe, that was supposed
to be stable for these values of the parameters. Although an excellent agreement was
found here between the experimental frequencies and the theoretically predicted ones
for the convective–absolute transition in a fully developed RHPF, further theoretical
and numerical work on the absolute instability of the whole developing flow that takes
into account nonlinear and non-local effects is required.
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