Stationary solutions of the extended reduced Ostrovsky equation

Maria Obregon (1), Ramon Fernandez-Feria (1), and Yury Stepanyants (2)
(1) Universidad de Malaga, Spain (ramon.fernandez@uma.es), (2) University of Southern Queensland, Australia (yuas50@gmail.com)

The extended Ostrovsky equation,

\[(u_t + cu_x + \alpha u u_x + \alpha_1 u^2 u_x + \beta u_{xxx})_x = \gamma u,\]

is used as a model of large-amplitude internal oceanic waves affected by Earth’s rotation. It contains two types of dispersion, the Boussinesq dispersion \(\sim \beta\), which accounts for non-hydrostatic effects and Coriolis dispersion \(\sim \gamma\) which accounts for the Earth’s rotation. In addition to that, the equation contains two nonlinear terms, quadratic \(\sim \alpha\) and cubic \(\sim \alpha_1\) ones. The reduced version of the equation, that does not contain the small-scale Boussinesq dispersion,

\[(u_t + cu_x + \alpha u u_x + \alpha_1 u^2 u_x)_x = \gamma u,\]

is relevant for the description of very long internal waves when the non-hydrostatic effects are negligible. Such equation may be also of interest for description nonlinear waves of other physical origin in nonlinear media. In this paper we present a systematic analysis and categorization of stationary solutions to this extended reduced Ostrovsky equation. Periodic and solitary solutions are constructed and their typical parameters are estimated for the natural oceanic conditions.