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Abstract. This paper addresses the problem
of the interaction of inviscid vortices with solid
walls perpendicular to their axis of symmetry.
An interesting feature of the boundary layer
equations describing this interaction for sev-
eral types of axisymmetric vortices considered
in the past is that they do not have self-similar
solutions, in spite of the self-similar structure
of the problem. We present here numerical so-
lutions for the boundary layer equations cor-
responding to the interaction of a family of
inviscid, but rotational, conical vortices with
a disk, showing that the problem has a solu-
tion, but, as it was already known, it is not
self-similar. As an important difference with
previous related work, the family of inviseid
vortices considered do have meridional as well
as azimuthal motion, as it is the case in most
of the swirling flows of practical interest.

Introduction

The structure of the flows resulting from
the interaction of axisymmetric vortices with
plane walls has been considered by a number
of investigators because its interest in many
swirling flows of technological and geophysi-
cal significance. The interaction of a rigid-
body rotating flow [il.e. with velocity field
(u,v,w) ~ (0,7,0) in cylindrical-polar coor-
dinates (r, 8, z)] with a disk was first analyzed
long time ago by Bédewadt [1], who found a
self-similar solution to this problem. However,
that flow is not strictly speaking a vortex, and
the pioneering work on the subject may be
considered that of Taylor [2], who analyzed
the structure of the laminar boundary layer
induced by a potential vortex [i.e. (u,v,w) ~
(0,71, 0)] with a conical wall by using integral
methods. This problem was studied by Taylor
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in relation to the swirl atomizer, and it was
later considered by some other investigators.
In particular, Rott and Lewellen (3| look for
self-similar solutions to the problem, surpris-
ingly finding that they do not exist. Burggraf
et al [4] integrated numerically the bound-
ary layer equations and showed that although
no self-similar solution exists to these equa-
tions, the boundary layer may be described by
a doubly=similarity structure. This work was
later generalized by Belcher et al. [5] for an in-
viscid vortex of the form (u,v, w) ~ (0,7, 0).
These authors found numerically that self-
similar solutions for the boundary layer equa-
tions exist when n is smaller than, approxi-
mately, 0.1217. For larger values of n, no self-
similar solutions exist, but the boundary layer
may be described again by a two-layer similar-
ity structure.

All these works assumed that the inviscid ex-
ternal vortices have no meridional motion,
that is © = w = 0. However, in most of
the vortices of practical interest the meridional
motion is as important as the azimuthal one,
and it is therefore essential to retain it in order
to study the interaction of the vortex with a
plane wall. Of particular interest in the past
has been the family of conical vortices with
velocity field inversely proportional to 7, i.e.
¥ ~ r and v ~ r~!, where ¥ is the stream
function for the meridional motion, mainly be-
cause it is the only instance for which the
Navier-Stokes equations for an axisymmetric
swirling flow have self-similar solutions. How-
ever, it was shown by Squire [6] and by Gold-
shtik [7], among others (see, e.g., [8]-[9]), that,
for Reynolds numbers above a critical value,
these self-similar solutions cannot satisfy a no-
slip velocity boundary condition at the plane if



they are allowed to be regular at the axis. For
high Reynolds numbers, the structure of these
flows may be described by an inviscid, but ro-
tational, flow with velocity field inversely pro-
portional to r, which is singular both at the
axis (r = 0) and at the plane wall (z = 0) (see
Appendix). This singular inviscid flow may
be regularized at the axis through an axisym-
metric boundary layer, whose self-similar so-
lution was first obtained by Long [10], though
it was not in relation to these conical invis-
cid vortices. An interesting feature of these
near-axis self-similar solutions is that they ex-
ist only for 2 particular combination of the in-
tensities of the swirl and the meridional mo-
tion, which in terms of the swirl parameter L,
defined as the ratio between azimuthal and ax-
ial inviscid velocities near the axis, is given by
L = V2 ([8],[10]-[11]). For L # V2 no solu-
tion exists, thus showing that for this family
of swirling flows the swirl and the meridional
motion are necessarily bounded, as it is the
case in many swirling flows of practical inter-
est. Near the plane, the boundary layer equa-
tions regularizing the singular inviscid behav-
ior have also a self-similar structure (see be-
low). However, it was shown in [12] that no
self-similar solution exists with the boundary
condition of zero velocity at the wall (although
other boundary conditions mav be allowed),
as it was already known from the full Navier-
Stokes equations for Reynolds numbers above
a critical value (e.g. [8]-[9]). We shall present
in this work the numerical solution to these
boundary layer equations assuming that the
plane wall is a finite disk perpendicular to the
axis of the vortex. These solutions may be
of interest for several reasons. First, to show
that the problem of the interaction of a con-
ical vortex of the type r~! with a plane for
high Reynolds numbers has a solution, though
it is not self-similar. This solution corresponds
to a relatively simple and interesting exam-
ple of a three-dimensional boundary layer for
a swirling flow on a plane where the inviscid
meridional motion is as important as the az-
imuthal one. Also, the knowledge of the ter-
minal structure of the boundary layer at the
core would provide an initial profile for study-
ing near-axis swirling flows of technological as
well as geophysical (atmospherical) interest.
Finally, and perhaps most important, the nu-

merical solution will be a guide to look for ap-
proximate asymptotic solutions, which are of
a more practical interest, and are given else-
where.

Governing equations

Our objective is to solve numerically the ax-
isymmetric boundary layer equations for an in-
compressible fluid of density p and kinematic
viscosity v, which in cylindrical polar coordi-
nates may be written as

8(ur) 4 (wr)

=0
or 8z (1)
du du  v? dplp  8%u
uar waz r or + 82°’ (2)
dv dv  wv %
ua—r +w5 T—Vazz, (3)

where p is the pressure, on a flat disk of ra-
dius R perpendicular to the axis of symmetry
z. The boundary layer is induced by the con-
ical inviscid vortex given in the Appendix. In
particular, the inviscid swirling flow outside

. the boundary layer is given by the asymptotic

expressions (45)-(48) in that Appendix, which
yield a singular radial velocity at z = 0. Equa-
tions (45)-(48) may be written as (z/r — 0):
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where ¥ is the stream function for the merid-
ional motion, through which v and w are given
by

rw=08V¥/8r, ru=-9V¥/dz. (7)

The order of magnitude of the boundary layer
thickness, 6§, may be determined, as usual, by
comparing the viscous and convective terms in
(2)-(3) when the external flow (4)-(5) is used.
In terms of the Reynolds number based on the
circulation K and v, one has

— ~ Re™ 3,

R

K
Re=— > 1. (8)




It must be remembered from the Appendix
that the intensity of the meridional motion is
of the same order as the swirl intensity, so that
the Reynolds number (8) characterizes both
motions. According to (8) and (4)-(6), it is
convenient to define the dimensionless inde-
pendent and dependent variables, (£,7) and
(F. G), respectively, as

r z _2
£ = E n= 6(7‘)? 6(r)=Re SRE, (9)
U = vRERYPF (€, 1), (10)
R
vzuﬁgcgmL (11)

through which equations (2)-(3) become (Eq.
(1) is satisfied identically)

Fm—Fg—Fszleme'FﬂFnE]

2

3
— Re 3¢ - sRe—gn, (12)

G — FGn = £[FeGy — FpGel. (13)

To write these equations, use has been made
of the definitions (7) of u and w in terms of F,

Re4/3
u=—v RE Fy, (14)
Re2/3
w=v ¢ [F + €Fe — nFy), (15)

R¢

where the subscripts  and £ mean differentia-
tion with respect to these variables. The terms
proportional to negative powers of Re in the
right hand side of (12), which come from the
centrifugal and pressure forces in (2), are very
small, and may be neglected at the lowest or-
der of the boundary layer approximation given
here (we shall solve the formal limit Re — oc).
Thus, equation (12) becomes decoupled from
(13) and may be integrated separately.

The boundary conditions are the following: At
the disk edge (¢ = 1 and any 7), and outside
the boundary laver (n — oo and any £), the
flow is given by (4)-(6), which in terms of the
new dimensionless variables may be written as

1
F=n¥(1- zRe S0 +0(Re™3n%), (16)

G=1 (17)
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Again, we shall neglect terms proportional to
negative powers of Re in (16). On the disk
(n = 0 and any £). the velocity is zero,

F=F,=G=0. (18)

It must be noted here that in the definition (9)
of the dimensionless variable n we have used
the local boundary layer thickness, é(r), in-
stead of its value at the disk edge (19). The
reason is that for £ — 0, the right hand sides
of equations (12)-(13) become null, and the
problem (12)-(13) with (16)-(18) has a self-
similar structure. The problem is thus reduced
to solving a decoupled system of ordinary dif-
ferential equations for F(n) and G(n). How-
ever, it is shown in [12], where the solution to
Eq. (12) in this limit is further reduced to the
integration of a first order, nonlinear differen-
tial equation, that this self-similar problem has
no solution. More precisely, it is shown that
in the corresponding phase-plane of Eq. (12),
there are no trajectories going from the singu-
lar point corresponding to (16)-(17) to that of
(18). As mentioned in the Introduction, this
is a common feature of other boundary lay-
ers induced by vortices, and it is the reason
why we undertake here the numerical integra-
tion of (12)-(13) with (16)-(18) retaining the
dependence of F and G on &.

Numerical procedure

To solve numerically the above problem we use
a finite difference method. Since the system
of equations (1)-(3) is parabolic, and provided
that v < 0 (F,, > 0, as it will be the case
in the reported computations), one may start
at the edge of the disk, £ = 1, and proceeds
towards the axis £ = 0. Since the numerical
integration will start at £ = 1, it is conve-
nient to re-scale the variables (9)-(11) to ac-
count for the singularity there. It must be
noted that the variables (9)-(11) already ac-
count for the (similarity ) behavior as £ — 0.
However, these variables are not very appro-
priate near £ = 1 because, among other things,
the boundary layer thickness at £ = 1 is zero
instead of that given by (8). The appropriate
scaling factors near £ = 1 are obtained from
(2)-(3) taking into account (4)-(5) with r ~ R.
One obtains:

§~R(1-€)3. F~(1-€)3 G~1 (19)




On the other hand, from 2 numerical point
of view, it is more convenient to use the
meridional velocity components instead of the
stream function for the integration; i.e. we
shall use the original set of equations (1)-(3)
instead of (12)-(13). The new dimensionless
variables which take into account the scaling
factor near £ = 1 are:

— (20)

(1-¢)3

(1 - £)382(r)

_ o F+EF —:;F,, _ g 50) 1
(1-¢)} v(1-¢)

53/2(1')

g

Finally, we re-define the independent variable

f=2(1-¢§)58F,=-2 u. (21)

h

w, (22)

g=G= v. (23)
I=—In(£) (24)
in order to numerically reach the axis more

slowly. Introducing (20)-(24) into (1)-(3) we

arrive at:

x2(Dhy = [x2(l) — xa(D]f + x2(1)7 f~
-x3(Nfi=0, (25)

2fy + x1(0) % + [x2()7 S — x3(1)R) £y

- ~x3()fHi=0, (26)

294y + [x2 (7S — x3(1)klgy — x3(1)fa1 = 0.
(27)

where
4 -1
X1(l)=—1+§c oxe() =14z,

xa()=1-¢7".
The boundary conditions (16)-(18) become

f=g9g=h at v=0, (28)

_1 1
T =772, r(Ly)=9%, g(l,v) =1,
at 1=0 or v — . (29)

Although we shall use this set of variables
(f,9,h) and (I,74) to perform the numerical
computations, the results will be given in
terms of (F,G) and (§,7) (see next section).
The conversion between both sets of variables
is made through (20)-(24).

The above set of non-linear equations is solved
iteratively at each station starting from the
disk edge ! = 0. To this end, for an arbitrary
function g(l;, v;), we define the symbols g;, q;.,

g; as follows:
a5 = a(li, 7;)- (30)

_ 1
g; = q(li+1. %), §; = §(qj +4g5),  (31)

where [;.; = I + Al, and vi=1 = vj = Aq.
Derivatives are defined using central differ-
ences:

8 _95—9 B8q _ Tjmi—Tj

al Al 7 By 20y (32)

etc. Thus, the momentum equations (26)-(27)
may be expressed in matrix notation as

{AHY ={a}, {AHd} = {2}, (33)

where
[v1 21 0 0 0
2 y2 z2 0 0
0 z3 y3 =23 0
{AY=| 0 0 z4 v . 0 |, (34)
\O 0O 0 0 .. yn)
and where
2k = o — o (()meFe — x3(D]
£ A2 T 2an ek = xs(Dhal,
4 2x3(l) -
= - - 35
Yk (A‘7)2 Al fk, ( )

(A2,7)2 + ﬁ[xz(f)'rkﬂ — x3()hi).

Zk —

Since the problem is nonlinear, the column
vectors {b;} and {5} depend not only on the
flow properties at the previous /;-station, but
also on the unknown properties at the present
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li+1-station. Therefore, one must solve the
problem iteratively. In each iteration, we use
a high accuracy Gaussian elimination method
from the IMSL Subroutine Library to solve
the linear equations (32). The value of h is
computed at each iteration via the continuity
equation (24) by using a numerical quadrature
also from the IMSL Library.

0.4 ] x - v
1 Figure 1.
0.3t %= (-)

V=150 ()
%=300 (+-)
f0.2 [ Y, =450 ()
\ £y~ =) (—=)
0.1
0 n i " i
0 100 200 300 400

Y

The accuracy of the results and the compu-
tation time depend on the step sizes, Al and
A+, and, since v varies between 0 and oo, also
on the truncation value of 7, v, where the
boundary condition (29) is imposed. Figure
1 shows the solution f as a function of v for
1 =0.6931 (¢ = 0.5) and different values of vo
(these calculations have been made with Al =
0.005 and A~y = 0.2). It is observed that for all
the values of 7o used the solution is practically
the same (it is difficult to recognize the differ-
ent curves in figure 1), except in a very small
Tegion Near ¥ = <e. Lherefore, the truncation
value v, is not very critical, provided that it
is, of course, much larger than unity. We have
used 4o = 300 in all the reported computa-
tion given in the next section. To choose A«
and Al, we have carried out different simula-
tions for different values of these increments.

[ Ay || 1=0.5 [ =10 |
1.0 ] (15.30.0.350) | (33.10, 0.200)
0.2 || (18.05,0.370) | (35.90, 0.219)
)
)

0.1 || (18.10, 0.371) | (36.00 , 0.220
0.05 || (18.12, 0.371) | (36.10, 0.221

Table 1. Description in the text.

Table 1 shows the effect of the variation of A~.
In paricular, we show there (vo. fo). where fg
is the maximum value of f and g its posi-
tion (see, e.g., figure 1), for two values of { and
different Avy. We have used (v0. fo) to char-
acterize the accuracy because it is the point
where the differences are, by far, the great-
est. From this table it is clear that a value
A~ of the order of 107! is appropriate. We
have used A+ = 0.15 for'all the computations
given in the next section. In relation to Al,
one should take 2 compromise between accu-
racy and computation time: As Al decreases
the computation time increases very fast be-
cause more steps are needed to reach a given
value of ! (although, the number of iterations
needed at each I/-station for convergence de-
creases). Thus, if one takes a very small value
of Al the amount of time to reach the vicinity
of the axis (I — o0) is enormous. We have used
Al'=5-1073 in all the computations except in
the first step, for which the value Al = 5-10~5
is used in order to reduce the number of itera-
tions. In general, the computations converged
rapidly at each I-station, requiring roughly be-
tween 20 and 25 iterations to pass a toler-
ance of 1075 (except at the first station, where
about 50 iterations were needed).
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Figure 2: Dimensionless radial velocity pro-

files, F, = —R€u/(vRe%/?), as a function of 7
for £ = 0.1,0.2,...,0.9. The dashed line corre-
sponds to the boundary condition at n — oc,

Fy— 1/(2y/7).




Results and discussion

All the results presented here are in the vari-
ables (£,n) and (F.G). Figure 2 shows Fy
(proportional to the radial velocity, see (14))
as a function of 7 for différent values of £&. The
maximum value of Fp, uo(€), and its position,
no(€), are plotted in figures 5 and 6, respec-
tively. The dimensionless azimuthal velocity
G and the stream function F are plotted as
a function of 7 for several values of £ in fig-
ures 3 and 4, respectively. The function F has
been calculated from f via equation (21) by a
simple numerical quadrature. Finally, figures
5 and 6 depict also the magnitudes Fpp( = 0)
and G,(n = 0) as a function of £, which are
proportional to the radial and azimuthal shear
stresses at the surface, respectively, and their
ratio Fpp(n = 0)/G,27(77 = 0), of interest to
characterize the structure of the solution near
the plane.

Several comments may be said from these re-
sults. First, it is shown that, indeed, the prob-
lem has a solution, though it is clear that the
solution is not self-similar, since the functions
F and G depend strongly on £, as well as on 7.
However, a two-laver structure of the solution
may be envisaged, mainly from figures 2 and 3
for the radial and azimuthal velocity profiles:
there is an outer region where the solution dif-

F=0.1

n

Figure 3: Dimensionless azimuthal velocity,
G = Rév/(vRe), as a function of n for £ =
0.1,0.2,...,0.9. The boundary condition as
n—ocisG=1

fers only slightly from the outer inviscid fiow.
and an inner region where F; has a pro-
nounced maximun and G reaches its outer
value quite rapidly. The thicknesses of each
of these two layers depend on £. We can es-
timate the thickness of the interior layer from
the value 7ng(€), or position of the maximum
of the radial velocity Fy, (figure 6). For small
¢, figure 6 tells us that this thickness varies as
£~2. Also from figure 6, it is observed that the
ratio Fpy(n = 0)/6‘%(17 = 0) varies as £~ for
small &, which tell us that F is of that order
in the interior layer. These two scaling factors
are useful to describe the solution in the inte-
rior layer. Indeed, using the present numerical
results we show elsewhere that, for small €, the
structure of these two layers may be described
in terms of asymptotic similarity solutions.

Appendix: Inviscid conical flow

In this appendix we consider the solution to

the steady Euler equations for an incompress-
ible fluid

V-u=0, pu-Vu+Vp=0, (36)
of the form:

U="T(y)r, y=r/z (37)

Dimensionless stream function,

F = U/(vRERe?*/3), as a function of n for
€ = 0.1,0.2....,0.9. The dashed line corre-
sponds to the boundary condition as  — 00,

F — /7.

Figure 4:
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v= Q(y)r_l, (38)
p/p=T(y)r = (39)

This is a particular case of the more general
family of inviscid conical vortices considered in
[12] (case m=1), for which the resulting equa-
tions may be solved in a closed form:

T(y) = %[——W’ (40)
0=k, (41)

K
oI = (I-)4T"2—(T+yT')2—y4TQ—QQ, (42)

where K and L are arbitrary constants. K/27
is the circulation of the vortex, while L is
the swirl parameter, or ratio between the az-
imuthal and axial velocity components near

the axis:
L= (3) . (43)
w /g0

At the axis (y = 0), expressions (40)-(42) yield
a singular inviscid flow field. As mentioned in
the Introduction, the regularization of this sin-
gular flow through a near-axis boundary layer
fixes L = +/2 [10)-[11]. At the plane (y — o),
(40) behaves as:

Ltrony) )

T() ~ Ky 2(1- 5

0.5¢

04}

03¢

0.2

0.1}

Figure 5:

Fup(n = 0) (continuous line);
Gq(n = 0) (dashed line) and ug, or maximum
of Fy, (dotted line), as function of £.

which, again, yields a singular velocity field,

w ~ %Kr_%z%(l-i-O(;)). (45)

u~ —%K(rz Sarod). @)

v~ Krl (47)
P Kizui0¢), @)
p 2 3 '

and must be regularized through a near axis
viscous boundary layer, as done in the main
text.
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