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ABSTRACT

The inviscid evolution along a pipe of vary-

[ ing radius of three different inlet swirling flows
& is analyzed by solving numerically the Bragg-
k¥ Hawthorne equation. The downstream structure
& of the flow changes abruptly above certain thresh-
R old values of the swirl parameter (L). In particu-
y Jar, there exist a value L, above which a near-wall
i:region of flow reversal is formed downstream, and

s critical value Ly above which the axial vortex
breaks down. It is shown that the dependence

E’ upon the pipe geometry of these critical values
- of the swirl parameter varies strongly with the

inlet azimutal velocity profile considered. The
numerical results are compared with exact and
approximate cylindrical solutions for the down-

(. stream flow, which yield the values L, and Ly in

excellent agreement with the numerical results.

INTRODUCTION

Swirling flows in pipes of different geometries
have been extensively used as relatively simple
models to analyze the phenomenon of vortex
breakdown. In particular, a number of theoreti-

B’ cal and numerical works have made use of the in-

viscid flow equations to explain the phenomenon
(see, e.g., [1] for a review), arguing that vortex
breakdown is essentially an inviscid phenomenon,
and extrapolating this conclusion to more com-
Plex swirling flow configurations. The inviscid
approach has the advantage of its simplicity, be-
cause the axisymmetric flow is governed by just

F © & partial differential equation (see below). How-

ever, it has the drawback of the initial, or inlet
flow, conditions, which can be chosen arbitrar-
ily owing to the fact that any cylindrical velocity
profile is a solution to the cylindrical Euler equa-
tions. Therefore, one may question how the inlet
flow affects to the inviscid evolution of the flow,
particularly to the breakdown of the downstream

g/« Bow. In this work we choose a pipe geometry

Where the inlet flow conditions can be specified
with precision if viscosity were taken into account,
and follow the inviscid evolution of three differ-
ent inlet swirling flows by solving numerically
the Bragg-Hawthorne equation. The results show
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that the structure of the downstream flow changes
when the inlet swirl parameter goes across some
threshold values which depend on the flow geom-
etry. However, it is shown that, depending on
the inlet flow considered, these critical values of
the swirl parameter are very different functions of
the flow geometry. Further, some flow transitions
may even disappear when a particular inlet flow
is considered.

FORMULATION OF THE PROBLEM

Under the assumptions of incompressible, ax-
isymmetric and steady flow of an inviscid fluid
with velocity field (u,v,w) in cylindrical co-
ordinates (r,6, z), the stream function ¥ of the
meridional motion,

U= ———, w=—— (1)

satisfies the Bragg-Hawthorne (B-H) equation [2],

8%y  18¥ 8v?  LdH dC
2 rortar aw Yqw ©@

where H(¥) and C(¥) are the Bernoulli function
and the circulation, respectively,

1
H=2450 407 4u?), C=rv,  (3)

with p the pressure field and p the fluid density.
We are interested here in solving this equation
inside a pipe with the form sketched in figure 1,
with an outer wall contraction and a centre body
inside.
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Figure 1. Pipe geometry.
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The inner wall dies out at z = 0, and its non-
dimensional radius is given by:

ni(€) = r‘(z) = Rtanh(—af) for —& <£<0,

ni(€) =0 for 0 < £ < &2 (5)

Here we have used the pipe inlet radius r; as the
characteristic length, defining

, (6)

where r; is the upstream radius of the inner wall
of the pipe. « is a non-dimensional geometric
parameter that characterizes the axial length of
the inner wall. The radius of the outer wall, r,,
is defined in terms of r; and the given interior

section S(§) = %(-:31 of the pipe:

nol€) = '°‘z) - Js@+re. o

The particular forms of S(£) used in the com-
putations are specified in the next section. The
functions H (¥) and C(¥) are fixed by the veloc-
ity profiles at the pipe inlet, £ = —£;, R<n <1,
which are characterized by an axial velocity U
and an angular velocity ). These parameters are
used to define the non-dimensional velocity com-
ponents as

—_v __ v __w 8
= _Qrg’w_U' ®)
and a swirl parameter
Qr'z
L=—-.
- (©)

We shall use three different inlet velocity profiles,
denoted by (a), (b) and (c) in what follows:

(@) T=0, 5=1, =1, (10)
2 _p2
() =0, 5= n(l—;;)’ F=1, (1)
2(1 — n2
@)H:O,G:ﬁé{dé;,ﬁ=l. (12)

All of them correspond to & cylindrical (u = 0)
flow with an uniform axial velocity (w = U). In
relation to the azimutal velocity, the first profile
corresponds to arigid body rotation, with the two
inlet pipe walls rotating at an angular velocity Q;
the second velocity profile corresponds to a rota-
tion of the outer wall, with the inner wall at rest,
and the third one to a rotation of the inner wall
only. The corresponding pressure distributions at
the pipe inlet are:

() = 37* + o, (13)

—__l — 32)2(? - W — 2R Inq) +pg,

b)Y p=
(b) 7= |
(c) = (1-R%)Z'2 292 nn) + p, (15)
where the non-dimensional pressure has beey, d '
fined as P 3

P= )

and po is a reference value. '
In non-dimensional form, the B-H equatiop (2)
may be written as

(16

——w + $gn = 4L (P — - C—=
Yee n+ ¥m (n? o ) ) an
where subscripts indicate differentiation and
v — H =
v = ) = , €= —5.
%UT% 021'2 QT‘%

H and C are obtained from (10)-(15):

() Hw)=v, C(v)=¢ +R?,

() FW) = —gap®® - B + &),

(1

Tw) = —~

T (20) §

—_ R
(c) H(y) = Tz)rz(tli —In(v + R?)),

Q

Tw) = %1 - —~

) @) g

where an irrelevant additive constant in H has §
been omitted. The B-H equation (17) can be §
written in a compact form for the three inlet flow -
considered as

1
Yee — ;wn + Yo =

2 2 _ 2 c3yp + ey
a“(e1n” —v+ecg+n _—¢+R2 ) (22)
where the constants e, and ¢;, i = 1,2, 3,4, are
given by 1 R

((1) Cl=1, Cz=—R2, C3=0, C4=0,

a=2L, (23)
() ec1=0, c2=0, e3=1, cs =0,
2L
== 24)
1 - R? (

() er=1, ca=1—-R? ¢3=0, ¢g=—h

2LR? (29)
1 - R?

a =




Note that the (22) is linear only for the inlet flow
corresponding to the case (a); for the cases (b)
and (c) the equation is non-linear. This equation
must be solved with the boundary conditions:

Y(n=1n0.6)=0 —&<ELE,  (26)
Yn=m.)=1-R%, -6 <<, (27)
1!’("15 = _fl) = 712 - R2: R S n S 17 (28)

Vee=10, £=£9, 0S5 < Ry, (29)

§:  where

& R,=2, (30)
- ro

and r3 is the outlet radius of the pipe. The first
E two conditions indicate that the inner and outer
B wall are streamlines. The third comes from the
8* uniform axial velocity at the pipe inlet, and the
& fourth indicates that the flow is cylindrical (¢ =
K ¥ee = 0) at the pipe outlet (see [3] for a discussion
8 of other possible boundary conditions at the pipe
'_‘Jbut.let).

NUMERICAL RESULTS

To perform the numerical integration of (22)-
b (29) we shall firstly use a constant value for the
E interior section of the pipe S(£):

t

S(€)=Sp=1- R% (31)

"It is convenient to transform the fluid domain

“onto a rectangular one using the new radial co-

'_ord'mate
ni(£) = no(§)

E so that the computational domain is
6 <€<fand0<o <l (33)
ith this transformation (17) becomes

’l’f{ + fl‘rbfo + fo¥oo + f3¥o =

dH dC
2 _ 22 _ o=
b ot —m) +10P 5 -0 @9
fand the boundary conditions (26)-(29) may be
tten as

<:
"

R w(a = Ov 6) = 0! _El S E S 521 (35)

o vo=19=1-R —a<e<e (36

(0,6 = —&1) = [o(m—no)+nol’~R* 0<S o<1,

3 (37)

Yee=0, £=6, 0<o <L (38)

, (34) the different functions f;(¢,0),i =1,2,3

gare given by:

3 20

— [t =9 , 39
[ni = nol —— - (39)

T — 7o Ni

g Ji=2n

1 I3
j2 = (77: _ ,_’0)2 + Tl.' (40)

fom 2[n} — nelni |, 200n; — no)?
T Mi—ne (1 - m0)? (ni — m0)?
aln” — n” _
—M-+{la(ne—no)+no](m—no)} Lo(41)
Ni — 7o
n

Figure 2.

To solve the problem (34)-(38) we discretize
the derivatives using finite differences in a mesh
of M equidistant points along the o-direction,
and N points in the ¢-direction, resulting a sys-
tem of M x N algebraic equations for the un-
knowns ¢m n on each node (m,n), 1 <m < M,
1 < n < N. For the case (a) the system is linear,
and is solved using Newton’s method. For the
cases (b) and (c), the system of algebraic equa-
tions is non-linear, and we solved it by Newton'’s
method combined with an iterative method. In
all the three cases we use the inlet flow as the ini-
tial guess, which makes fastest the convergence
of the method. We tried several values of the
mesh size, corresponding to M x A = 100 x 100,
200 x 200, 300 x 200 and 500 x 500. Since the re-
sults were practically the same for the two latest
cases (at least the first four digits were the same),
we obviously used a grid of 300 x200 points for all
the results presented here (more points in the o-
direction than in the £-direction are used to have
greater accuracy near the inner and outer walls).
The end values £; and £2 must be large enough
for the inner and outer walls of the pipe be paral-
lel to the axis of symmetry at the inlet and outlet
regions. These values are related to a, that fixes
the length of the inner wall in relation to its ra-
dius: the appropriate values of £; and £, decrease
as a increases. Figure 2 shows the pipe geometry
for two differents values of a. It is observed that
the use of £; = 3 is enough when a = 2, but it
is not for @ = 1 (¢ = 3 is appropriate in both
cases). To be sure that the pipe wall is straight at
the inlet and outlet regions for a variety of values
of &, we have used ¢, = 10 and £ = 10 in all
the computations reported below. Also, we have
fixed R =0.95 and R, = V1 - 7 =0.31225.

The numerical computations reveal a very dif-
ferent evolution of the flow pattern as L increases



for the three cases considered, as shown in figures
3-5 fora = 1.
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Figure 3(a). Streamlines for the case (a) with
L=05< L.
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Figure 3(b). Streamlines for the case (b) with
L=025<L®,
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Figure 3(c). Streamlines for the case (c) with
L = 0.2. Dashed lines correspond to 3 < 0.
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Figure 4(a). Streamlines for the case (a) with
L =2.0> L,. Dashed lines correspond to
reversal flow near the outer wall.

Figure 4(b). Streamlines for the case (b) Witl;
L=045> LY. Dashed lines correspond tg -
reversal flow near the outer wall, R

In the cases (a) and (b), the downstream flow
changes smoothly as L increases from 0 up to g
value L,, which depends on R and Ry, for a given
inlet flow. Above L,, a region of flow Teversal §
is formed near the outer wall. An asymptotie
analysis for Rp small shows that L, for the cases’8
(e) and (b) are given by

V20-R) +

L =
Ry

1

R
2,/2(1 - R)

joa(1 — R?)
2R,

where jo 1 =~ 2.4048 is the first zero of the Besse
function Jo. These expressions are in excel-3
lent agreement with the values found numerically$
(with the present values of R and R, JAQRE:
1.0387 and LY = 0.3754). In the case (c), &
near-axis region of flow reversal is formed for any}
value of L, even for L — 0. These differences}
can be observed in figures 3 and 4. As L increaseg}
from L, in the cases (a) and (b), or from zero,
the case (c), there exist a second distinguished®
value of L, Ly, which also depends on R and Ry}
for a given inlet flow, above which the flow strucgy
ture changes dramatically, appearing a period®g
flow with many bubbles with flow recircdatlgp, o
seen in figure 5 for the case (a) (for the other {¥
inlet flows the iterative method does not converf
when L > Ly). For L > L the flow has no long¥gs
a cylindrical structure downstream: An 88Y¥
totic analysis reveals that there exist a thres
value of L above which the quasi-c)']i"dri
lution breaks down. These asymptotic values
given by

Ry +O(RY),

L® = + O(R2(1 - R?)), (4’3)

(@) _ JL1
(a) Li - 2va
Jip(l— R2)’

)
b =
() Ly TR




(e) _ M (46) geometry, creating an expansion in the down-
I~ R? stream flow section. To that end we have consid-
o (&), with tracti

4 . . ered a different section S(£), with a contraction-
where j) 1 =~ 3.8317 is the first zero c:i)the Bss(:; expansion region between two given axial loca-
‘_" function J, (L(;) is exact, while L! and .L! tions £, and £

& are asymptotic for R, small). These expressions

E' are in excellent agreement with the values found S()=S8p for —£1 <& < ¢, (47)
“numerically (for the present values of R and R,

| 1 - &
i L(f’ = 6.1356, L = 0.5082, L% = 0.6629). S) = So + _“"(“’S(Q” aoe) Y

{(¢c) L

a

for £, < £ < &, (48)

S(f) =& for £, < € < &9 (49)

The pipe interior has thus a minimum section
Sp — a. located at £, = 5‘—5* We have tried
differents values of &,, & and a., and found that
for a contraction-expansion centered at £,, = 0
(e.g. €o = —1 and & = +1), for each value of
L there exists a contraction factor al(L) above
which the ¥y = 0 streamline becomes detached
from the inner body. For a. > o2(L) a stag-

4 2 e 2 nation point is thus formed at some location in
: Figure 5. Streamlines for the case (a) with the axis, and an open bubble of flow reversal is
§ L — 7.0 > L,. Dashed lines correspond to % < 0. formed after it (see figure 7, where we plot the

streamlines for the same case of figure 3(c) with

a contraction; £, = —1, £, = 1 and a, = 0.08).
Finally, we have also considered the influence

e of the axial characteristic length of the pipe a.

In particular, figures 8-10 show the streamlines

. : : corresponding to a = 2 for an inlet flow of type

: N g : (a) with three different values of L. One may see

) i that only minor changes are produced in the flow

- .« o LeL<ly near the region where the inner body ends.
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3 L1 o8
': B+ Figure 6. Axial velocity profiles downstream o7
: 3 (é2 = 10) for several values of L. os
n o5
= B In order to better appreciate the transforma- o4
R/ - . . 03
P ¥ - tions in the flow structure as L increases, we show o
. 8 in figure 6 the axial velocity W at the pipe out- o
"3 let corresponding to an inlet flow (a) for different . e
S values of L. It is observed that, without rotation 4 3 2 '; ° ; 2
Wy (L = 0), the velocity is uniform across the out- . . ) .
.. let section. When the inlet flow rotates, the axial Figure 7. As in figure 3.(0) but with a pipe
. contraction.

- velocity becomes singular near the axis, even for
j: very small values of L. The effect of increasing L
B is to accelerate the flow near the axis of symmetry
i- and decelerate it near the outer wall, being zero
g at the wall when L = L,, and becoming negative
b for L, < L < Ly. For L > Ly the outlet flow is
k No longer cylindrical.
[ - We have seen that, for the third type of inlet
@ flow considered (c), a zone o flow reversal is al-
B ways formed near the axis for L > 0, with the
Ml streamline ¥ = 0 starting at some point in the
BB inner wall (figure 3(c)). It is of interest to know o
whether this recirculation "bubble” can be sepa-
Tated form the inner wall by changing the pipe Figure 8. As in figure 3(a) but with a = 2.
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Figure 9. As in figure 4(a) but with a = 2.

\

o9

[}.]
o7
06}

n 0sf
04t
03f
o2}

[ A]

Q
-« B ] 2 -1 ] 1 2

Figure 10. As in figure 5 but with a = 2.

Far downstream the flow is, as predicted by
the asymptotic analysis, independent of a (see
figure 11, where the outlet (£ = &) axial velocity
profiles for « = 1 and a = 2 are compared).
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Figure 11. Axial velocity profiles downstream
(¢2=10) fora=1and a = 2.

CONCLUSIONS

We have solved numerically the Bragg-
Hawthorne equation governing the inviscid evolu-
tion of axisymmetric swirling flows in pipes, and
find out that the downstream flow depends on the
inlet velocity profile not only quantitatively, but
also qualitatively. We have seen that the flow
structure changes when the inlet swirl parame-
ter L goes across two different threshold values,
which depend on the pipe geometry. The numer-
ical results show, in agreement with the asymp-
totic results, that the pipe geometry dependence
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of these critical values of the swirl Paramete, 3
very different for the three inlet fiows copg; de' B
In particular, the value Ly above which the do N

stream flow has no longer a cylindrical symmet .
(vortex breakdown) depends strongly on the ind /.
flow considered. The inlet flow °°"‘5P0ndin'*
an inner body rotation with the outer pipe 5&7
at rest (case (c)) is of particular interest becal, 'f
the inviscid evolution of the flow predicts thay' o
inner (near-axis) bubble with flow recirculatjg¥
is always present downstream, even for vanig 3
ing swirl at the pipe inlet. Also, for thig ¢ i
the value L, above which a region of flow reverd
sal near the outer wall is produced downstregyy §
is larger than Ly, so that this flow conﬁguratio‘n'
is never reached. In the other two caseg °°nsid,‘
ered, Ly < Ly, so that, when L increases, a re.
gion of flow reversal near the outer wal] is always 3§
formed before the swirling flow breaks dowr,_ Al 3
these results show that one has to be cautioyg §
before drawing conclusions about the behaviog 4
of swirling flows inside pipes from the invisciq 3
equations alone, and that the effect of viscosity §
should be taken into account in order to predict €
the breakdown of the flow.
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