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Abstract

A finite-difference method for solving the incompressible time-dependent three-dimensional Navier–

Stokes equations in open flows where Dirichlet boundary condition (BC) for the pressure are given on part

of the boundary is presented. The equations in primitive variables ðv; pÞ are solved using a projection

method on a non-staggered grid with second-order accuracy in space and time. On the inflow and outflow

boundaries the pressure is obtained from its given value at the contour of these surfaces using a two-

dimensional form of the pressure Poisson equation, which enforces the incompressibility constraint

r � v ¼ 0. The obtained pressure in these surfaces is used as Dirichlet BCs for the three-dimensional Poisson

equation inside the domain. The solenoidal requirement imposes some restrictions on the choice of the open
surfaces. However, these restrictions are usually met in most flows of interest driven by a pressure (or a

body force) difference, to which the present numerical method is mainly intended. To check the accuracy of

the method, it is applied to several examples including the flow over a backward-facing step, and the three-

dimensional pressure driven flow in a circular pipe.
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1. Introduction

Many interesting incompressible flows of practical interest are driven by a pressure (or a body
force) gradient. Typically, these include tube and channel flows with a great variety of geometries.
The main difficulty in the numerical simulation of these flows reside in the so-called �open�
boundaries. In closed flows, where the computational domain is completely bounded by solid
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walls, there is no ambiguity in the boundary conditions (BCs) for the incompressible Navier–
Stokes (NS) equations: they consist of Dirichlet BCs for the velocity. The pressure, if needed, is
usually obtained from a Poisson equation, resulting from the incompressibility constraint, fre-
quently discretized on a staggered grid which does not require pressure BCs (see, for instance, [1,
Chapter 17]). However, when open boundaries are present, through which the fluid may enter or
leave the domain, there is no general agreement on which kind of BCs are both mathematically
correct and physically the most appropriate on these boundaries (see, e.g., [2]). It is not the aim
of this paper to add new insight into the general problem of open BCs, but to present a finite-
difference scheme for solving the incompressible NS equations in primitive variables (pressure p
and velocity v) in which a �pressure drop� between the �inlet� and the �outlet� can be implemented as
part of the BCs, and to discuss the limitations on the geometry of the computational domain
brought about by this BC.
Flows driven by a pressure drop are usually simulated numerically in primitive variables (we

will not discuss here other formulations such as velocity–vector potential, or velocity–vorticity,
which, of course, cannot be used to enforce directly a pressure difference into the flow) by im-
posing a given velocity profile at the inlet, and homogeneous Neumann BCs for some velocity
components at the outlet. In these computations, the inflow surface(s) is chosen sufficiently far
upstream, and the outflow surface(s) sufficiently far downstream, so that the BCs on them do not
affect the behaviour of the solution in the region of interest. Once the flow is solved, the given flow
rate at the inlet is related to the obtained pressure difference in the region of interest. However, in
many applications it would be very convenient to fix the pressure difference at the start, and then
obtain the time evolution of the flow, the flow rate, and all the flow properties, associated to that
pressure drop. This, of course, would require the specification of the pressure at least on part of
the inlet, and on part of the outlet. In addition, as we shall see below, some other velocity re-
quirements have to be enforced on these boundaries for the solution to satisfy the momentum and
incompressibility equations on them, which will put some restrictions on the computational choice
of these open boundaries.
The finite-difference scheme presented in this paper is based on the projection method, intro-

duced by Chorin [3] and Temam [4], and then extended to high-order time accuracy, with different
variations, by many other authors (see, e.g., [5–7] for a recent account). In this method, an in-
termediate velocity variable v�, which does not satisfy the incompressibility constraint, is first
computed at each time step. Then, the pressure is used to project the tentative velocity into the
space of discretely incompressible functions. If the resulting Poisson equation for the pressure is
solved with Neumann BCs, which come from the normal component of the momentum equation
on the boundaries where Dirichlet BCs for the velocity are specified, the solenoidal constraint for
v applies also at the boundaries (see, e.g., [5,8]). However, if one imposes Dirichlet BCs for the
pressure on some boundaries, r � v ¼ 0 is not necessarily satisfied on them (see, e.g., [8,9]).
Therefore, one has to apply r � v ¼ 0 as a �BC� on these surfaces where the pressure is specified.
This is somewhat analogous to the extra numerical BC for the pressure proposed by Henshaw
[10], but in a very different numerical approach. An additional, and important, problem is that
neither the pressure nor the velocity are actually known at the inflow and at the outflow
boundaries, so that they have to be obtained as part of the solution. In particular, what we
propose in this paper is to specify the pressure only at a closed curve(s) on the inflow surface(s),
and at another curve(s) on the outflow surface(s), so that the desired pressure difference is en-
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forced in the flow. Typically, these curves are chosen to be the intersection of the inlet and outlet
surfaces with the solid boundaries that confine the flow (these curves are reduced to just a set of
points in a two-dimensional flow). Now, a two-dimensional version of the Poisson equation,
which enforces the incompressibility constraint, is solved on the inlet and outlet surfaces with the
appropriate Dirichlet BCs at the curves where p is given. The resulting pressure is then used as
Dirichlet BCs for the three-dimensional pressure Poisson equation. As we shall see, the condition
ovn=on ¼ 0 on the inflow and outflow surfaces, where n indicates the normal component to the
surface, simplifies significantly the implementation of the numerical scheme, but at the cost of
putting some additional restrictions on these surfaces.
The prescription of a pressure drop between the inlet at the outlet of the flow was also con-

sidered by Heywood et al. [11], but using a variational approach with given mean values of the
pressure across the inflow and outflow boundaries. This is an approximation which is not needed
in the scheme given in the present paper, where both the pressure and the velocity fields on the
inflow and outflow boundaries are obtained as part of the solution, satisfying the same NS
equations that the interior of the flow, but with the pressure specified at some points on the inlet
and outlet surfaces.
In the next section the method is described for a general three-dimensional tube flow. For

simplicity sake, it is first introduced using an explicit scheme first-order accurate in time. Then, it
is extended to second-order accuracy in time by using a predictor–corrector method. It must be
noted here that these general projection schemes are not new; what is new in this paper is the way
in which Dirichlet BCs for the pressure are implemented at the inlet and outlet sections for tube
flows. The idea of the method can be applied to other finite-difference schemes. To check the
accuracy of the method, it is first applied in Section 3 to the pressure driven flow over a backward-
facing step. The results are compared with an existing standard numerical solution. In Section 4,
the details of the implementation of the method in cylindrical coordinates, using a scheme second-
order accurate in space and time, is given together with numerical results for axisymmetric and
non-axisymmetric pipe flows. These results are compared with theoretical, and with previous
numerical, results. Finally, the conclusions are given in Section 5.
2. Formulation of the method

Consider the tube flows in the general geometries of Fig. 1. Although the numerical method we
are going to present here may be used for any incompressible flow where the pressure is specified
on part of the boundary, for reasons that will be evident below it is most suited for general tube
flows like those depicted in Fig. 1, where Sw and Swi are arbitrary cylindrical surfaces. The selected
examples solved in the following sections are a two-dimensional channel flow, and a pipe flow in
cylindrical coordinates, but the method can be applied to any curved tube with general cross-
section by just writing the incompressible NS equations in the appropriate curvilinear coordinate
system (see, for instance, [12]). In Fig. 1, z is the axial coordinate along the tube. The domain V is
bounded by the inlet and outlet surfaces Si and So, which are normal to the local axial coordinate
z, and by Sw [and Swi in the case of Fig. 1(b)], which are solid walls (the case of several inlet, and/or
several outlet, surfaces can also be considered in the formulation given below, but for simplicity
sake we shall restrict the presentation to the cases of Fig. 1).
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Fig. 1. General tube geometries without (a) and with (b) internal wall.
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One is interested in solving the incompressible NS equations in V , which in dimensionless form
may be written as
ov

ot
þ v � rv ¼ �rp þ 1

Re
r2v; ð1Þ
r � v ¼ 0: ð2Þ

In Eq. (1), the non-dimensional pressure p also includes, as usual, any volume force that can be
written in gradient form (such as gravity). Since it is assumed that the flow is driven by a pressure
(or/and a body force) difference, we use its characteristic value Dpc to non-dimensionalize the
pressure. Then, the characteristic velocity is Vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpc=q

p
, where q is the fluid density, and the

Reynolds number is defined as
Re ¼ VcL
m

¼

ffiffiffiffiffiffiffiffi
Dpc
q

s
L
m
; ð3Þ
with m, the kinematic viscosity; and L, a characteristic length (a characteristic radius, say).
We want to solve Eqs. (1) and (2) subjected to the BCs that the velocity v is known on the solid

walls, and the pressure p is given on Si and So:
v ¼ vw on Sw ðand SwiÞ; ð4Þ
p ¼ pi on Si; p ¼ po on So; ð5Þ

where vw is the known velocity of the solid walls which, in general, is a function of time. The inlet
and outlet pressure distributions, piðx; tÞ and poðx; tÞ, are obtained as part of the solution subjected
to the conditions
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p ¼ pioðtÞ on Ci; p ¼ pooðtÞ on Co; ð6Þ
where Ci and Co are the contours of Si and So, respectively (see Fig. 1). That is to say, a non-
dimensional pressure difference is set between the intersection of Sw with Si and So, which drives
the flow inside the tube (in the most common case of a constant pressure drop, one may simply
take pio ¼ 1 and poo ¼ 0; see the examples in Sections 3 and 4).
2.1. Explicit, first-order accurate in time scheme

Most numerical methods for solving Eqs. (1) and (2) in terms of the primitive variables use a
fractional step approach. An approximation to the momentum equation (1) is first made to de-
termine a provisional velocity field, and then an elliptic equation is solved that enforces the so-
lenoidal constraint (2) and determines the pressure. Methods are often called pressure-Poisson or
projection methods depending on which form of the elliptic constraint equation is being used. We
shall use a projection method, but with the particularity that Dirichlet BCs are given on part of
the boundary, in contrast to the usual Neumann (often homogeneous) BCs used for the pressure
on all the boundaries.
To introduce the details of the method, it is convenient to start with an explicit scheme first-

order accurate in time. An explicit scheme that is second-order accurate in time will be described
in the following subsection. The time-discrete form of Eqs. (1) and (2) are written as
vnþ1 � vn

Dt
¼ �rpnþ1 � vn � rvn þ 1

Re
r2vn; ð7Þ

r � vnþ1 ¼ 0; ð8Þ
where, as usual, the notation vn is used to represent an approximation to vðtnÞ, tn ¼ nDt. Together
with this first-order time discretization one may use a spatial discretization accurate up to any
order. In the examples given in Sections 3 and 4 we shall use a finite-difference scheme second-
order accurate in space on a non-staggered grid. Staggered grids are used to avoid BCs for the
pressure (see, e.g., [13,14]), but in the present method we want to specify the pressure at the inlet
and outlet surfaces.
In the projection method, the first step consists on solving an analog to Eq. (7) which yields an

intermediate velocity field v� that do not satisfy the divergence constraint:
v� � vn

Dt
¼ �vn � rvn þ 1

Re
r2vn: ð9Þ
Since vn is known in all the domain V , including the boundaries (at Sw, vn ¼ vw, with vw partic-
ularized at the instant nDt), the above explicit method allows to determine v� in all the domain V ,
including the boundaries. That is to say, in the present explicit scheme, no specific BCs are needed
for the intermediate velocity field v� at each time step [13].
In the second (projection) step one writes, from (7) and (9),
vnþ1 � v�

Dt
¼ �rpnþ1: ð10Þ
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An equation for the pressure is then found by taking the divergence of Eq. (10) and using the
incompressibility constraint (8)
r2pnþ1 ¼ 1

Dt
r � v�: ð11Þ
The particularity of the present scheme resides in the way in which some of the BCs for this
Poisson equation are implemented. On the solid wall Sw (and on Swi), the usual Neumann BCs
derived from the normal component of the momentum equation is used [5]. Thus, the normal
component to Sw of Eq. (7), taking into account that vnþ1 ¼ vw on Sw, can be written as
n � ðvw � vnÞ
Dt

¼ �n � rpnþ1 þ n �
�
�vn � rvn þ 1

Re
r2vn

�
; ð12Þ
where n is the unit vector normal to Sw. Then, by using Eq. (9), one has the following Neumann
BC
n � rpnþ1 ¼ 1

Dt
n � ðv� � vwÞ on Sw ðand SwiÞ: ð13Þ
In this way, the values of the pressure in the grid points on the surface Sw (and Swi) are numerically
obtained together with the pressure in the interior points of the domain V by solving the discrete
form of the Poisson equation (11), with the consequence that the incompressibility constraint is
enforced at all these grid points.
Dirichlet BCs are now specified on the remaining parts of the computational boundary, that is,

on Si and So. To obtain the pressure on these surfaces, the two-dimensional �projection� of the
Poisson equation (11) is solved on Si and So (see below for the precise meaning of this �projection�),
with the BCs (6) and the analog to (13) on the contours Ci and Co. This procedure is selected to
guarantee that, at least, the two-dimensional projection of the incompressibility constraint
r � vnþ1 ¼ 0 is satisfied on Si and So. An additional condition has, therefore, to be applied on Si
and So to satisfy the �whole� divergence constraint on them.
From a practical point of view, this means that the surfaces Si and So cannot be arbitrary, but

have to satisfy some requirements. In particular, the implementation is simpler in the case in
which Si and So are both normal to the axial coordinate z. In this case, if one writes the velocity on
these surfaces as v ¼ wez þ vs, where w is the normal (axial) component of v; and vs, the tangential
components, one has to impose the additional BCs
ow
oz

¼ 0 on Si and So: ð14Þ
To be more precise, let us consider the inlet surface Si. The two-dimensional Poisson equation
to be solved on Si is
rs � rspnþ1 ¼ 1

Dt
rs � v�s on Si; ð15Þ
where rs is the part of the r operator with derivatives tangent to the surface Si, and v�s
is the tangential component of v�. This equation, together with condition (14), guarantees that
r� vnþ1 ¼ 0 on Si. The same applies to So.
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The requirement (14) can be easily met in most tube flow of interest by just selecting compu-
tational inlet and outlet surfaces sufficiently far away one of the other (large length to radius
ratio). In any case, this is a price that one has to pay for solving numerically the sometimes more
realistic and interesting problem with arbitrary Dirichlet BCs for the pressure at the tube ends.
Other combinations, different to (14) plus (15), that enforces r � v ¼ 0 on the inflow and outflow
boundaries may be envisaged, but the present one seems to be the most appropriate, and the
simplest to implement, in tube flows.
Eq. (15) has to be solved with the following BCs on the curve Ci
pnþ1 ¼ pio on Ci; ð16Þ
and
n � rpnþ1 ¼ 1

Dt
n � ðv� � vwÞ on Cii; ð17Þ
in the case of an inner wall (Fig. 1b), where n is now the unit vector normal to Sw at Cii. The same
procedure applies to So, but with pnþ1 ¼ poo on Co (pio ¼ 1 and poo ¼ 0 in the case of a constant
pressure drop).
Once p is known on Si and So, one can solve the 3D Poisson equation (11) with Neumann BCs

(13) on Sw (and Swi), and Dirichlet BCs on Si and So. The last step of the method is to update the
velocity field at the instant ðnþ 1ÞDt by using Eq. (10):
vnþ1 ¼ v� � ðDtÞrpnþ1: ð18Þ
This expression is used to obtain the three velocity components in all the grid points, except for
the normal component w in the interior grid points of the surfaces Si and So, which have to be
obtained discretizing Eq. (14). Actually, the discrepancy between the values of w obtained in these
points from (14), and those obtained by using (18), is a measure of how suitable are the surfaces Si
and So for applying the present Dirichlet BCs for the pressure. In the examples considered in
Sections 3 and 4 the differences are very small indeed.
As initial condition, a convenient choice is to start from the fluid at rest, vðt ¼ 0Þ ¼ 0. No initial

condition for the pressure is needed, for the Poisson equation (11) with Dirichlet BCs on Si and So
provides the appropriate initial distribution of p once the first step (9) is solved for the first time.
This fact constitutes also a fundamental difference with respect to standard projection methods,
where homogeneous Neumann BCs are used for p. The linear system resulting from the discrete
Poisson equation is then singular, and has to be solved with a somewhat artificial initial distri-
bution of p. In contrast, with the present method, the flow is driven by a realistic pressure gradient
from the start (see examples in the following sections). The only spurious pressure mode is the
constant hydrostatic pressure, which is fixed by the value poo on Co (say). No other spurious
pressure modes, as those discussed, for instance, in [15], appear in this problem because the ve-
locity field is not fixed at the inlet and outlet surfaces, but let to evolve freely according to (1) and
(2) and the given pressure difference.
The method can, of course, be applied to the much simpler case of a two-dimensional flow (for

instance, the channel flow considered in Section 3 below, or an axisymmetric pipe flow). The
computational domain V is then on a plane, and the inlet and outlet surfaces Si and So are just two
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segments. Eq. (15) on Si and So are ordinary differential equations on these two lines, which have
to be solved with the corresponding BCs on Ci and Co, which now become two grid points.

2.2. Explicit, second-order accurate in time scheme

The first-order scheme described above can be easily extended to second-order accuracy in time.
In this section we describe the general features of an explicit predictor–corrector method second-
order accurate in time, which is the scheme used in the examples solved in the next sections.
It must be noted here that although there is general agreement in that the velocity field can be

obtained with second-order (or any order) accuracy in time using a projection method, some
authors have argued that the pressure can be determined only to first order in time, and that this is
an inherent defect of the projection method (see, e.g., [16–19]). However, Brown et al. [7] have
recently shown that this is not always the case, provided that one uses appropriate pressure BCs,
and update correctly the pressure. For this reason, to avoid confusion, in this section we shall use
a projection function / to designate the result of the projection step, instead of naming it p, and
then update the pressure at the end of the time step. We shall see that the method provides second-
order accuracy in time, but for a �lagged� pressure.
In a predictor–corrector scheme, the two steps of the projection method are made twice at each

time step. At the predictor stage, one takes a time stepDt=2, so that, instead of Eqs. (9)–(11), one has
v� � vn

Dt=2
¼ �vn � rvn þ 1

Re
r2vn; ð19Þ

vnþ1=2 � v�

Dt=2
¼ �r/nþ1=2; ð20Þ

r2/nþ1=2 ¼ 2

Dt
r � v�: ð21Þ
The BCs for /nþ1=2 are formally the same used for pnþ1 in (13)–(16). Once vnþ1=2 is updated from
Eq. (20), these values are used in the correction stage to obtain vnþ1:
v�� � vn

Dt
¼ �vnþ1=2 � rvnþ1=2 þ 1

Re
r2vnþ1=2; ð22Þ

vnþ1 � v��

Dt
¼ �r/nþ1; ð23Þ

r2/nþ1 ¼ 1

Dt
r � v��; ð24Þ
where the BCs for /nþ1 are formally the same used for pnþ1 in (13)–(16), but now using v�� instead
of v�. Eq. (23) is used to update vnþ1 once /nþ1 is known.
Adding Eqs. (22) and (23), one has
vnþ1 � vn

Dt
¼ �r/nþ1 � vnþ1=2 � rvnþ1=2 þ 1

Re
r2vnþ1=2; ð25Þ
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which is the equation equivalent to the first-order explicit scheme (7) for the present explicit
predictor–corrector scheme. According to this expression, not only the obtained velocity field is
second-order accurate in time, but also the pressure, if one identifies
pnþ1=2 ¼ /nþ1: ð26Þ

It must be noted that the BCs used for /nþ1 are the appropriate ones for pnþ1=2. Thus, one obtains
a �lagged�, second-order accurate in time, pressure field [7]. This is corroborated by the numerical
examples considered in Section 4.

2.3. Numerical stability of the explicit schemes

Explicit schemes as the ones described in the preceeding sections are known to have severe
stability constraints over the time step. An approximate stability analysis of the linearized
equations yields the conditions [20]:
1
2
v2Dt Re6 1;

6Dt
Dx2Re

6 1 ðif Dx2 ¼ Dy2 ¼ Dz2Þ:
In the examples considered in the following sections, with Reynolds numbers ranging between 100
and several thousands, and for different mesh sizes, the maximum value of Dt ranged between 10�3

and 10�2.
This limitation on the time step can be significantly reduced by using implicit, or rather, semi-

implicit, methods (see, e.g. [13,21]). As shown by Brown et al. [7], second-order accurate implicit
schemes for the pressure are also possible provided that one uses appropriate BCs for the pressure
and update it correctly at the end of each time step. The relation between p and / is then much
more complex than (26). In addition, with an implicit method one has to impose BCs to solve the
equations for the intermediate velocity v� [13], which are not needed in the explicit schemes. For
these reasons, the numerical implementation of the implicit projection methods are much more
complex than the explicit ones, particularly when Dirichlet BCs are used for the pressure, and we
do not consider them here. All the following examples are solved using the second-order explicit
method of Section 2.2.
3. Flow over a backward-facing step

As a first application of the method, this section considers the two-dimensional channel flow
over a backward-facing step. This is a standard problem for which there exists several sources of
numerical results to compare with. In particular, we shall compare our numerical results with
those of Gartling [22] for a Reynolds number based on the flow rate equal to 800.
The geometry of the flow, non-dimensional co-ordinate system with channel dimensions, and

the BCs used are given in Fig. 2. The characteristic length is the channel height H . For xP 0, the
channel dimensions ð06 x6 30;� 1

2
6 y6 1

2
Þ are the same of [22]. However, because our flow is

now driven by a pressure difference between the inlet and the outlet sections, instead of being
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Fig. 2. Backward-facing step geometry with channel dimensions and BCs.
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generated by a specified velocity field at x ¼ 0, we have to add an inlet region x < 0. This is so
owing to the fact that the steady state pressure at x ¼ 0 for the Reynolds number considered in
[22] is smaller than the pressure at the flow exit x ¼ 30 (see Fig. 4 below), so that the pressure
driven flow cannot be numerically simulated by specifying a pressure difference between x ¼ 0 and
x ¼ 30. In the present numerical simulation we have selected an entrance region ðx < 0Þ of the
same length 30H as the xP 0 region.
For a given Reynolds number, the numerical simulation starts at t ¼ 0 with v ¼ uex þ vey ¼ 0.

The inlet and outlet pressure distributions are obtained from (15) and (16), which in the present
problem are rather simple:
o2p
oy2

¼ 1

Dt
ov�

oy
on x ¼ xi ¼ �30; 06 y6 1=2 and on x ¼ xo ¼ 30; �1=26 y6 1=2; ð27Þ
with the BCs
p ¼ 1;
op
oy

¼ v�

Dt
at x ¼ xi; y ¼ 1

2
; ð28Þ
and
p ¼ 0;
op
oy

¼ v�

Dt
at x ¼ xo; y ¼ �1

2
: ð29Þ
With the Dirichlet BCs on the inflow and outflow thus obtained, and with the corresponding
Neumann BCs (13) on the solid walls (y ¼ 1=2, xi 6 x6 xo; y ¼ 0, xi 6 x6 0; �1=26 y6 0, x ¼ 0;
y ¼ �1=2, 06 x6 xo), the pressure Poisson equation (11) yields a realistic pressure distribution
from the start, that drives the flow until it reaches a steady state (if it exists). In the numerical
simulations reported here we have used the predictor–corrector scheme described in Section 2.2,
second-order accurate in space and time, with an uniform mesh of ðnx ¼ 801Þ � ðny ¼ 41Þ nodes.
The time step used was Dt ¼ 5� 10�3, which is close to the maximum value given by the nu-
merical stability of the explicit method.
To check the numerical results, we have simulated the same Reynolds number considered in

[22]. This Reynolds number, based on the flow rate Q, is ReQ ¼ 800. Since our Reynolds number
(3) is based on the pressure difference, ReQ is not know a priori: it has to be computed at the end of
the numerical simulation from the steady state flow rate obtained with the given Re. The flow rate
is in fact a function of time which will be denoted by qðtÞ ½limt!1 qðtÞ ! Q�. Computing, for
instance, the flow rate at the outflow boundary, the relation between q and Dpc can be written as
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qðtÞ ¼
Z H=2

�H=2

ûudŷy ¼

ffiffiffiffiffiffiffiffi
Dpc
q

s
H
Z 1=2

�1=2

uðx ¼ xo; y; tÞdy �

ffiffiffiffiffiffiffiffi
Dpc
q

s
HcðtÞ; ð30Þ
where ûu and ŷy are the dimensional counterparts of u and y, respectively, and c is the non-
dimensional flow rate. Thus, using (3) and the definition
Req �
2qðtÞ
m

; ð31Þ
one has the following relation between Re and the Reynolds number based on the flow rate:
ReqðtÞ ¼ 2cðtÞRe; lim
t!1

Req ! ReQ: ð32Þ
For a given Re, at the end of the computations one finds the corresponding ReQ. For the present
geometry (Fig. 2), it is found that ReQ ¼ 800 is reached with Re ’ 985 [see Fig. 3 for the corre-
sponding function ReqðtÞ]. Fig. 4 shows the time evolution of the horizontal velocity profiles
across the channel at four horizontal locations, x ¼ �15, 0, 15, and 30.
To compare our results with those given in [22], the following equivalences have to be made:
vG ¼ Re
ReQ

v; pG ¼ Re
ReQ

� �2

ðp � pcoÞ; pco � pðx ¼ 0; y ¼ 0Þ; ð33Þ
where the subscript G denotes the non-dimensional variables used by Gartling [22] [note that pG is
zero at the step corner (x ¼ 0, y ¼ 0)]. Using these variables, Fig. 5(a) shows several pressure
distributions along the channel (for y ¼ 0, )1/2, and 1/2). For xP 0, these distributions practically
coincide with those given in Fig. 7 of [22]. Actually, the form of the profiles coincide, but there is a
little vertical shift of the profiles. This small shift is better appreciated in Fig. 5(b), where cross-
channel profiles of p for x ¼ 7 and x ¼ 15 are compared with Gartling�s results. It is due to the fact
that the pressure level is adjusted to be zero at the step corner, where the solution is singular [see
Fig. 5(a) at x ¼ 0]. Numerical errors are larger at this location due to the sharp gradients of the
different variables there, making very sensitive the pressure level to the mesh size (see [22]).
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Fig. 3. ReqðtÞ for the flow in the channel of Fig. 2 with Re ¼ 985 ðReQ ’ 800Þ.
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Horizontal velocity cross-channel profiles for x ¼ 7 and x ¼ 15 are plotted in Fig. 6(a). They are
almost indistinguishable from the numerical results reported in [22] (dashed lines). Also plotted in
that figure is the horizontal velocity at x ¼ 0, together with the parabolic Poiseuille profile cor-
responding to ReQ ¼ 800 (dashed line). It must be noted here that the numerical simulation given
in [22] is different to that performed here in that the velocity field is specified at x ¼ 0 in [22] (u is
given by the parabolic profile plotted in Fig. 6(a), and v is set to zero), while in the present
simulation the velocity and pressure profiles evolve from the pressure difference given along the
channel. Thus, u is not exactly a parabolic profile at x ¼ 0, nor v is zero at x ¼ 0, though it is very
small. This explains the difference between the vertical velocity profile at x ¼ 7 obtained in the
present problem and that of [22] [see Fig. 6(b); note that v is very small all over the channel].
However, at x ¼ 15 both vertical velocity profiles are almost indistinguishable.
4. Three-dimensional flow in a circular pipe

As a typical 3D pressure driven flow, we consider in this section the flow in a pipe of circular
cross-section for several Reynolds numbers. To trigger the three dimensionality in the flow, we
consider also the influence of a localized disturbance upstream of the type considered by Ma et al.
[23]. Before that, we compare the time evolution of the flow in a circular pipe, with and without
rotation of the pipe wall, with available theoretical solutions for the axisymmetric flow.
The numerical results reported below are obtained with the predictor–corrector scheme de-

scribed in Section 2.2. The equations are written in cylindrical polar coordinates ðr; h; zÞ [velocity
field ðu; v;wÞ], using the radius of the pipe R as the characteristic length ð06 r6 1Þ. The numerical
scheme is second-order accurate in time, as well as in the spatial directions r and z, and fourth-
order accurate in h. This allows the use of relatively few nodes in the azimuthal direction h.
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To simplify the equations at the axis r ¼ 0, the dependent variables ðru; rv; rw; pÞ are used. With
these variables, the numerical singularity at r ¼ 0 of the Poisson equation (21) [and of the Poisson
equation (24) in the corrector stage] is more easily avoided using L�Hospital�s Rule, to get
2
o2/
or2

þ 1

2

o4/

or2 oh2
þ o2/

oz2
¼ 1

Dt
o2ðruÞ�

or2

�
þ 1

2

o3ðrvÞ�

or2 oh
þ o2ðrwÞ�

oroz

�
at r ¼ 0; ð34Þ
together with the constraints
o2/

oh2
¼ oðrvÞ�

oh
¼ 0 at r ¼ 0;
and
o/
or

þ o3/

oroh2
¼ 1

Dt
oðruÞ�

or

�
þ o2ðrvÞ�

oroh

�
at r ¼ 0:
4.1. Starting Hagen–Poiseuille flow

For the numerical simulations we have used an uniform spatial grid with ðnr ¼ 27Þ � ðnh ¼ 8Þ�
ðnz ¼ 513Þ nodes, in a pipe of length zf ¼ 32p ’ 100:5. The pressure is set equal to unity at (r ¼ 1,
z ¼ 0), and equal to zero at (r ¼ 1, z ¼ zf ) (in both cases for 06 h6 2p). Except otherwise indi-
cated, the time step was 5�10�3, which is close to the maximum given by the numerical stability
for the Reynolds number and the spatial mesh size used. As in the example described in the
preceeding section, for a given Re (based on the pressure difference), starting at t ¼ 0 with the fluid
at rest, the flow rate evolves in time until a steady state is reached (if it exists). The instantaneous
flow rate (and the corresponding Reynolds number) is computed at the flow exit. The relation
between Re and ReQ is the following:
ReqðtÞ ¼ Re
1

p

Z 2p

0

Z 1

0

ðrwÞz¼zf
dhdr; lim

t!1
Req ! ReQ: ð35Þ
Fig. 7 shows the time evolution of Req for ReQ ¼ 500, which for the given pipe length corre-
sponds to Re ¼ 448:4 ½’ ð4ReQzf Þ1=2�. Both, zf and ReQ are selected to compare with [23] (see
Section 4.3 below). An almost linear pressure distribution along the pipe is set from the first time
step, when the velocity is still zero. Then, the flow evolves from rest, remaining always axisym-
metric (in accordance with linear stability theory; see, e.g., [24]), reaching the parabolic streamwise
velocity profile corresponding to ReQ ¼ 500 all over the pipe, together with u ’ v ’ 0, as t ! 1.
Fig. 8 shows the time evolution of the axial velocity w at r ¼ 1=2 and z ¼ zf=2 (both for h ¼ 0 and
h ¼ p), together with the well-known analytical solution for the transient Hagen–Poiuseuille flow
in a pipe, obtained by separation of variables (see, e.g., [25]):
W ðr; tÞ ¼ Re
4zf

1

"
� r2 �

X1
n¼1

8J0ðk0nrÞ
k30nJ1ðk0nÞ

expð�k20nt=ReÞ
#
; ð36Þ
where Ji is the Bessel function of the first kind of order i, and kin is the nth zero of Ji. It is seen that
the agreement is excellent, corroborating that the present method yields physically correct time
evolutions of the flow when a pressure difference is set between the inflow and the outflow sec-
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tions. Actually, the inset of Fig. 8 shows that the flow remains always axisymmetric (the numerical
solutions for h ¼ 0 and h ¼ p coincide), and that the difference with the theoretical solution (36) is
smaller than OðDtÞ. In fact, the error of the numerical solution, in relation to the theoretical one
shown in Fig. 8, is not controlled by the time step, but by the spatial mesh size, for the numerical
solutions obtained with smaller values of Dt and the same spatial mesh coincide exactly with that
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depicted in Fig. 8. For the given Re and mesh size, larger values of Dt cannot be used because the
explicit method becomes numerically unstable.
4.2. Starting rotating Hagen–Poiseuille flow

In the above example, the steady state consists on a Hagen–Poiseuille flow, where the pressure
varies linearly with z, but it is constant at every section of the pipe. However, the pressure is allow
to evolve freely during the numerical computation, including the inlet and the outlet sections. In
order to show that the present method yields correctly the radial, as well as the axial, pressure
evolution of the flow, including the inflow and outflow boundaries (where the pressure is specified
only at their contours), we consider here an example where a known radial pressure distribution is
reached at the steady state, namely, the flow in a rotating long pipe. In particular, we consider a
pipe of length zf ¼ 200 for ReQ ¼ 100 ðRe ’ 282:84Þ, with the pipe wall rotating at a given angular
velocity X such that the azimuthal Reynolds number, Reh ¼ XR2=m, is equal to 30. For these
values of ReQ and Reh the rotating pipe flow is linearly stable (see, e.g., [26]), so that the flow will
remain, as in the preceeding section, always axisymmetric.
An analytical solution for the transient azimuthal velocity, obtained by separation of variables,

is also well known (see, e.g., [27]):
Fig. 9

(dashe

Reh ¼
and th
V ðr; tÞ ¼ Reh
Re

r

"
þ 2

X1
n¼1

J1ðk1nrÞ
k1nJ0ðk1nÞ

expð�k21nt=ReÞ
#
: ð37Þ
Fig. 9 shows the comparison of this solution with the numerical one at (r ¼ 0:5, h ¼ 0, z ¼ zf=2)
obtained with a grid of ðnr ¼ 25Þ � ðnh ¼ 8Þ � ðnz ¼ 1001Þ nodes, and Dt ¼ 5� 10�3. The agree-
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ment is excellent, corroborating again the second-order accuracy in time of the numerical scheme
used (as in the preceeding example, the numerical errors in Fig. 9 are not controlled by Dt, but by
the spatial mesh size). Fig. 10 depicts the steady state ðt ¼ 350Þ radial profiles at the inlet and
outlet sections of the axial and azimuthal velocity components, and the pressure. As expected, the
axial velocity profile is the parabolic Poiseuille flow, the azimuthal velocity profile is linear,
corresponding to a solid-body rotation, and the pressure profile is parabolic, in accordance with
the steady state radial momentum equation. Thus, this example corroborates again that the ve-
locity and the pressure should not be specified neither at the inlet nor at the outlet, but they are
part of the computation provided that the pressure is given on Ci and Co.
4.3. Non-axisymmetric, 3D flow

To trigger three dimensionality in the flow inside the pipe, once Hagen–Poiseuille flow is
reached for a given Re, we have also simulated the flow with disturbances at the pipe wall. In
particular, in order to compare with previous numerical simulations, we have implemented the
same periodic suction and blowing (PSB) disturbances used by Ma et al. [23]. This disturbance of
the radial velocity, imposed through a slot located at some position along the pipe wall, is given by
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udis ¼ A1
2
½cosð2zÞ þ 1� sinðhÞ sinðxtÞ; r ¼ 1; 06 h6 2p; p6 z6 2p; ð38Þ
where A is the disturbance amplitude and x, the disturbance frequency.
It must be noted that the numerical method used by Ma et al. [23] is quite different to the

present one. In addition, their simulation differ with the present one in that these authors specify a
Hagen–Poiseuille velocity field at the inflow boundary, and, what is more relevant, in that a fringe
region of a certain length is added to the end of the pipe with the objective of damping out the
disturbance back to Hagen–Poiseuille flow. Neither of these two features are necessary with the
present numerical method, where the inflow and the outflow velocity fields are left to evolve freely.
Fig. 11 shows temporal evolutions of the pressure at the pipe exit for r ¼ 1=2 and two values of h
(h ¼ 0 and h ¼ p), for ReQ ¼ 500 and 3000, when a disturbance with x ¼ 0:5 and A ¼ 0:031 is
imposed on the corresponding Hagen–Poiseuille flow. For a particular instant of time after the
disturbance has been introduced into the flow ðt ¼ 26� 2p=xÞ, Figs. 12(a) and 13(a) show, in a z,
h cross-section of the pipe at r ¼ 0:5, the difference between the streamwise velocity w and the
axial velocity W of the initial Hagen–Poiseuille flow, for Re ¼ 500 and 3000, respectively. For the
same values of Re and the same instant of time, Figs. 12(b) and 13(b) show several 3D isosurfaces
of the streamwise streaks w� W . For ReQ ¼ 500 [Fig. 11(a) and 12], it is observed that the dis-
turbance is damped out along the pipe, and the flow becomes axisymmetric, with Hagen–
Poiseuille velocity profile, before exiting the pipe. However, for ReQ ¼ 3000, the disturbances first
grow in time during a transient period [see Fig. 11(b)], and then their amplitude decrease. But they
are not damped out. In fact, since what is fixed along the pipe is not the flow rate, but the
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Fig. 12. (a) Instantaneous streamwise streaks w� W at t ¼ 26� 2p=x, shown in a z, h cross-section at r ¼ 0:5, for
ReQ ¼ 500; disturbance�s amplitude A ¼ 0:031, and frequency x ¼ 0:5. The �– � –� line delimit the region where the

disturbance is introduced into the flow. (b) 3D view of the streamwise streaks w� W , represented by the isosurfaces

)0.01 (darker one) and 0.01.
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Reynolds number based on the pressure difference, the value of ReQ after the transient is not
longer 3000, but slightly smaller (for the time plotted in Fig. 13, ReQ ’ 2976). The results plotted
in Fig. 13 may be compared with those obtained by Ma et al. [23] for the same value ReQ ¼ 3000,
and for the same disturbance characteristics (A and x) and pipe length. The streamwise streaks
shown in Fig. 13 are quite similar to those depicted in Figs. 19 and 20 of [23], in spite of the
essential differences in the numerical method and in the outflow and inflow BCs. This shows that
the present numerical method simulates correctly the three-dimensional features of the flow in the
circular pipe.
5. Conclusions

This paper presents a finite-difference projection method for solving, in primitive variables, the
incompressible NS equations in open flows where Dirichlet BCs for the pressure are given on part
of the boundary. The way in which the pressure BCs are imposed is specially suited for solving
tube and channel flows driven by a pressure (or body force) difference. At each time step, the
pressure on the inflow and outflow boundaries are obtained from their given value at the contour
of these surfaces using a two-dimensional form of the pressure Poisson equation, which enforces
the incompressibility constraint. The obtained pressure in these surfaces is then used as Dirichlet
BCs for the pressure Poisson equation inside the domain. The implementation of the method is



Fig. 13. As in Fig. 12, but for ReQ ¼ 3000. The isosurfaces plotted in (b) are )0.25 (darker one) and 0.15.
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presented for several (known) explicit numerical schemes. In particular, an explicit scheme with
second-order accuracy in space and time is used to evaluate the qualities of the method by
comparing the results for two-dimensional, axisymmetric, and three-dimensional flows with those
obtained by other numerical methods, and theory. The comparison was satisfactory in all cases.
One of the main advantages of the method is that no velocity field has to be specified on the inflow
and outflow boundaries: the velocity (and the pressure) adjust itself in a natural way to the im-
posed pressure difference. We think that this method is of interest for the simulation of three-
dimensional pipe flows, especially for stability and transition studies.
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