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Abstract – This paper analyses the influence of the inlet swirl on the structure of incompressible inviscid flows in pipes. To that end, the inviscid
evolution along a pipe of varying radius with a central body situated inside the pipe is studied for three different inlet swirling flows by solving the
Bragg–Hawthorne equation both asymptotically and numerically. The downstream structure of the flow changes abruptly above certain threshold values
of the swirl parameter (L). In particular, there exist a valueLr above which a near-wall region of flow reversal is formed downstream, and a critical
valueLf above which the axial vortex flow breaks down. It is shown that the dependence upon the pipe geometry of these critical values of the swirl
parameter varies strongly with the inlet azimuthal velocity profile considered. An excellent agreement between asymptotic and numerical results is
found. 1999 Éditions scientifiques et médicales Elsevier SAS

incompressible swirling flows / Bragg–Hawthorne equation

1. Introduction

The breakdown of swirling flows is a phenomenon of technological and theoretical fluid dynamic interest
(see, e.g. Delery [1] for a review). A frequent and relatively simple tool to analyse it has been the study of
swirling flows in pipes, both experimentally (e.g. Sarpkaya [2]) and numerically (e.g. Beran and Culik [3]). In
particular, a number of theoretical and numerical works have made use of the inviscid flow equations to explain
vortex breakdown in pipes (e.g. Stuart [4], Buntine and Saffman [5] and Wang and Rusak [6]). This inviscid flow
approach has the advantage of its simplicity, because the axisymmetric swirling flow is governed by a single
partial differential equation whose structure depends on the initial or inlet swirling flow considered. Different
inlet flows have been used in the literature, most of them showing the phenomenon of vortex breakdown
downstream in the pipe when the intensity of the inlet swirl, measured by a swirl parameter, is above a certain
threshold value which depends on the inlet flow itself and on the pipe geometry. The inlet swirling flows used
in previous works usually consisted of a Rankine, or a Gaussian-like (Burgers’), vortex combined with an
uniform axial velocity. In fact, the selection of the inlet flow is independent of the inviscid assumptions and
somewhat ambiguous, because any velocity field with cylindrical symmetry is a solution to the incompressible
cylindrical Euler equations governing the far upstream flow. Thus, although the equations governing the flow
inside the pipe are non-viscous, they contain information on the inlet velocity profile, which in most of the
cases considered (e.g. Burgers’ vortex) needs the previous action of viscosity to develop. Therefore, it is not
completely clear whether the downstream structure of the flow, and in particular the breakdown of the vortex
core, is a purely inviscid phenomenon practically independent of the inlet flow considered, or it is a consequence
of the indirect action of viscosity through the inlet conditions. To shed some light on this subject, this paper
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considers a pipe with a central body situated inside, an element present upstream in most swirl generators,
being the device responsible for the intense axial swirling jet inside the downstream section of the pipe. We
consider three different possibilities for the velocity profiles far upstream of the central body base, and look
for the corresponding inviscid solutions downstream. Thus, the velocity profiles at the pipe inlet just after the
central body base are genuine ‘inviscid’ velocity profiles, corresponding to three different physical upstream
conditions of the flow. The asymptotic solution of the inviscid equations far downstream in the pipe shows that
the flow structures in the three cases considered are not just quantitatively, but also qualitatively very different.
Numerical integration of the inviscid flow equations corroborates these asymptotic results.

2. Formulation of the problem

Under the assumptions of incompressible, axisymmetric and steady flow of an inviscid fluid with velocity
field (u, v,w) in cylindrical polar co-ordinates(r, θ, z), the stream function9 of the meridional motion,

u=−1

r

∂9

∂z
, w= 1

r

∂9

∂r
, (1)

satisfies the Bragg–Hawthorne [7] equation (also called Squire–Long equation; hereafter referred to as B–H
equation),

∂29

∂z2
− 1

r

∂9

∂r
+ ∂

29

∂r2
= r2dH

d9
−C dC

d9
, (2)

whereH(9) andC(9) are the Bernoulli function and the circulation, respectively,

H = p
ρ
+ 1

2

(
u2+ v2+w2), C = rv, (3)

with p the pressure field andρ the constant fluid density. We are interested here in solving this equation inside
a pipe with the form given infigure 1, with a wall contraction and a central body located inside. The inner wall
ends atz= 0, and its non-dimensional radius is given by (seefigure 1):

ηi(ξ)≡ ri(z)
r2
=R tanh(−αξ) for − ξ16 ξ 6 0, (4)

ηi(ξ)= 0 for 0< ξ 6 ξ2. (5)

Here we have used the pipe inlet radiusr2 as the characteristic length, defining

η≡ r

r2
, ξ ≡ z

r2
, R ≡ r1

r2
, (6)

wherer1 is the upstream radius of the central body, which axial length is characterized by the geometric factor
α (seefigure 1). The radius of the outer wall,ro(z), is defined in terms ofri and the given interior sectionA(z)
of the pipe:

ηo(ξ)≡ ro(z)
r2
=
√
S(ξ)+ η2

i (ξ ), S(ξ)≡ A(z)
πr2

2
. (7)

The particular forms ofS(ξ) used in the numerical computations will be specified below in Section 4.
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Figure 1. Pipe geometry forα = 1 (continuous lines) andα = 2 (dotted lines) forR = 0.85. Although the domain shown is−36 ξ 6 2, in all the
numerical computations of Section 4 we used−106 ξ 6 10 (i.e.ξ1= ξ2 = 10).

The functionsH(9) andC(9) are obtained from the velocity profiles at the pipe inlet,ξ =−ξ1, R 6 η6 1,
which are characterized by an axial velocityU and an angular velocity�. These parameters are used to define
the non-dimensional velocity components as

u≡ u

U
, v ≡ v

�r2
, w≡ w

U
, (8)

and a swirl parameter

L≡ �r2
U
. (9)

We shall use three different inlet velocity profiles, denoted by (a), (b) and (c) in what follows:

(a) u= 0, v = η, w= 1, (10)

(b) u= 0, v = η2−R2

η(1−R2)
, w= 1, (11)

(c) u= 0, v = R
2(1− η2)

η(1−R2)
, w= 1, (12)

whereη ∈ [R,1]. All of them correspond to a cylindrical (u= 0) flow with an uniform axial velocity (w =U ).
In relation to the azimuthal velocity, the first profile corresponds to a rigid body rotation in between the two pipe
walls, both rotating with an angular velocity�; the second one corresponds to a rotation of the outer wall, with
the inner wall at rest, and the third one to a rotation of the inner wall only. These three different inlet azimuthal
profiles are plotted infigure 2. The corresponding pressure (given by the radial momentum balance,ρv2/r =
∂p/∂r) and vorticity (ω = (γ, ζ,χ)= ((1/r)∂w/∂θ−∂v/∂z, ∂u/∂z−∂w/∂r, (1/r)∂(rv)/∂r−(1/r)∂u/∂θ))
distributions at the pipe inlet are:

(a) p = 1

2
η2+ p0, γ = 0, ζ = 0, χ = 2, (13)
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Figure 2. Profiles of the inlet azimuthal velocity for the three cases andR = 0.85.

(b) p = 1

(1−R2)2

(
η2

2
− R4

2η2
− 2R2 lnη

)
+ p0, γ = 0, ζ = 0, χ = η2−R2

η(1−R2)
, (14)

(c) p = R4

(1−R2)2

(
η2

2
− 1

2η2
− 2 lnη

)
+ p0, γ = 0, ζ = 0, χ =− 2R2

1−R2
, (15)

where the non-dimensional pressure and vorticity have been defined as

p ≡ p

ρ(�r2)
2
, ω ≡ ω

�
, (16)

andp0 is a reference value, different for each of the three cases (for instance,p0= p(η = 0) for the case (a),
p0= p(η= 1) for the case (c), andp0 depends onR for the case (b)).

In non-dimensional form, the B–H equation (2) may be written as

ψξξ − 1

η
ψη +ψηη = 4L2

(
η2dH

dψ
−C dC

dψ

)
, (17)

where subscripts indicate differentiation and

ψ ≡ 9

(1/2)Ur2
2
, H ≡ H

�2r2
2
, C ≡ C

�r2
2
. (18)

H andC are obtained from (10)–(15):

(a) H(ψ)=ψ, C(ψ)=ψ +R2, (19)

(b) H(ψ)= 1

(1−R2)2

(
ψ −R2 ln

(
ψ +R2)), C(ψ)= ψ

1−R2
, (20)

(c) H(ψ)= R4

(1−R2)2

(
ψ − ln

(
ψ +R2)), C(ψ)=R2

(
1− ψ

1−R2

)
, (21)
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where an irrelevant additive constant inH has been omitted. The B–H equation (17) can be written in a compact
form for the three inlet flow considered as

ψξξ − 1

η
ψη +ψηη = a2

(
c1η

2−ψ + c2+ η2c3ψ + c4

ψ +R2

)
, (22)

where the constantsa, andci, i = 1,2,3,4, are given by

(a) c1= 1, c2=−R2, c3= 0, c4= 0, a = 2L, (23)

(b) c1= 0, c2= 0, c3= 1, c4= 0, a = 2L

1−R2
, (24)

(c) c1= 1, c2= 1−R2, c3= 0, c4=−1, a = 2LR2

1−R2
. (25)

Note that the resulting B–H equation is linear only for the inlet flow corresponding to the case (a); for the
cases (b) and (c) the equation is non-linear. This equations must be solved with boundary conditions on the
four boundaries. At the inlet (ξ = −ξ1), the radial distributions ofψ is given by the uniform axial velocity
profile considered in all three cases and fixingψ on the inner wall equal to zero (ψ(η = R)= 0). The wall of
the central body base and the axis of symmetry (η = ηi) are streamlines, and so is the wall of the outer wall
(η= ηo). There, the streamfunction is constant and equal to its value at the inlet. Finally, the flow is considered
cylindrical at the pipe outlet (ξ = ξ2). One may impose, for instance, that the radial velocity vanishes at the
pipe outlet (u(ξ = ξ2)= 0). However, this condition is too restrictive, and we have used the weaker condition
that the axial gradient of the radial velocity vanishes,uξ =ψξξ = 0 atξ = ξ2 (see Buntine and Saffman [5], for
a discussion of these and other possible boundary conditions at the pipe outlet). In summary, the four boundary
conditions are:

ψ(η, ξ =−ξ1)= η2−R2, R 6 η6 1, (26)

ψ(η= ηi, ξ)= 0, −ξ16 ξ 6 ξ2, (27)

ψ(η= ηo, ξ)= 1−R2, −ξ16 ξ 6 ξ2, (28)

ψξξ = 0, ξ = ξ2, 06 η6 Rp, (29)

where

Rp = r3
r2
, (30)

andr3 is the outlet radius of the pipe.

3. Downstream asymptotic solution and critical values of the swirl parameter

In this section we look for cylindrical solutions of (22) in the far downstream region (ξ � 1), whereηi = 0
andηo→ Rp, corresponding to the three inlet cylindrical flows (10), (11) and (12). We shall see that these
solutions provide critical values ofL above which the flow structure changes abruptly.

In order to linearize the equation for the cases (b) and (c), we further assume thatRp is small. Thus, far
downstream, bothη andψ are small, and the non-linear term in the right-hand side of (22) can be linearized to

η2c3ψ + c4

ψ +R2
= c4η

2

R2
+ η2ψ

(
c3

R2
− c4

R4

)
+O

(
η2ψ2). (31)
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Retaining terms up to O(η2) (and, therefore, with errors O(η2ψ) = O(R2
p(1− R2)); note that for a constant

fluid section,S = constant= 1−R2=R2
p, the errors are O(R4

p)), equation (22) becomes

ψξξ − 1

η
ψη +ψηη = a2

(
c1η

2−ψ + c2+ c4
η2

R2

)
. (32)

It must be noted that this equation is exact for the case (a), wherec3= c4= 0. Defining

F ≡ψ − c2− η2
(
c1+ c4

R2

)
, (33)

equation (32), and the boundary conditions onη= ηi = 0 andη= ηo→Rp, (27)–(29) become

Fξξ − 1

η
Fη +Fηη + a2F = 0, (34)

F =−c2− η2
(
c1+ c4

R2

)
, η= 0, −ξ16 ξ 6 ξ2, (35)

F = 1−R2− c2− η2
(
c1+ c4

R2

)
, η=Rp, −ξ16 ξ 6 ξ2. (36)

Thus, in this limit of largeξ , the problem can be solved separating variables,F(ξ, η)=X(ξ)Q(η). Substituting
into (34) with (35)–(36) one has a two-point boundary problem forQ(η), which yields the following solution
as an eigenexpansion in Bessel functions of the first orderJ1 (first kind) andY1 (second kind):

F = η[A0J1(aη)+B0Y1(aη)
]+ ∞∑

n=1

(
Cne

λnξ +Dne
−λnξ)ηJ1

(
j1,n

Rp
η

)
, (37)

wherej1,n is thenth zero ofJ1 (see, e.g., Abramowitz and Stegun [8]), and the eigenvaluesλn are given by

λn =
√√√√j2

1,n

R2
p

− a2. (38)

ConstantsB0 andA0 are

(a) B0=−R2Lπ, A0=
1−R2

p −B0RpY1(2LRp)

RpJ1(2LRp)
, (39)

(b) B0= 0, A0= 1−R2

RpJ1(aRp)
, (40)

(c) B0= (1−R
2)πa

2
, A0= (1−R

2)Rp −R2B0Y1(aRp)

R2J1(aRp)
. (41)

All the constantsCn in (37) should be zero, and the constantsDn cannot be determined within the present
asymptotic limit of largeξ ; they are, however, irrelevant forξ � 1, where only the first two terms in (37) are
important.

It is interesting to compare the three different near-axis (η� 1) behaviors of this solution for the three inlet
flows considered:
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case (a):

ψ = B0a

π
η2 lnη+Aη2+O

(
η4 lnη

)
, (42)

w= B0a

π
(2 lnη+ 1)+A+O

(
η2 lnη

)
, (43)

v= R
2

η
+ B0a

π
η lnη+Aη+O

(
η3 lnη

)
, (44)

p= p0+ 1

4π2

(
2 lnη

(
4Aπ2R2+ aB02R2π lnη

)− 2πR4

η2

)
+O

(
η2 ln2η

); (45)

case (b):

ψ =Aη2+O
(
η4), (46)

w=A+O
(
η2), (47)

v= Aη

1−R2
+O

(
η3), (48)

p=p0+ A2η2

2(1−R2)2
+O

(
η6); (49)

case (c):

ψ = B0a

π
η2 lnη+Aη2+O

(
η4 lnη

)
, (50)

w= B0a

π

(
lnη+ 1

2

)
+A+O

(
η2 lnη

)
, (51)

v=R2
[

1

η
− 1

1−R2

(
B0a

π
η lnη+Aη

)]
+O

(
η3 lnη

)
, (52)

p= p0+ R4

4π2(1−R2)2

[
2 lnη

{− 4Aπ2(1−R2)− aB02π
(
1−R2) lnη

}− 2π2(1−R2)2

η2

]
+O

(
η2 ln2η

)
. (53)

In the above expressionsA is given by

A≡ c1+ c4

R2
+ aA0

2
+ aB0

2π

(
2γ − 1+ 2 ln

a

2

)
, (54)

and γ is Euler’s constant. The radial velocity component has not been given explicitly because it becomes
exponentially small asξ →∞. Note that only for the case (b), corresponding to an inlet flow with zero
azimuthal velocity atη = η0 (the inner wall of the pipe does not rotate), all the flow properties are regular at
the axis. For the cases (a) and (c), the azimuthal velocity becomes singular at the axis owing to the rotation of
the inner body and the conservation of the circulation along streamlines for an inviscid flow and, consequently,
all the remaining flow properties are also singular at the axis.

The above asymptotic solution provides a criterion for the breakdown of the inlet flow: in order for the
downstream flow to decay exponentially to a cylindrical flow independent ofξ , all the eigenvaluesλn should
be real; otherwise, if any of theλn are imaginary, the downstream flow oscillates periodically alongξ . Thus,
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the conditionλ1= 0 provides a maximum value of the swirl parameter,L= Lf , above which a cylindrical flow
downstream is no longer possible for the given inlet flow. Using (38) and the different definitions of parametera

for the three inlet flows considered, one obtains the following three critical swirl parameters for breakdown:

L
(a)
f =

j1,1

2Rp
, (55)

L
(b)
f =

j1,1(1−R2)

2Rp
+O

(
R2
p

R2

)
, (56)

L
(c)
f =

j1,1(1−R2)

2RpR2
+O

(
R4
p

)+O
(
R4
p

R4

)
. (57)

The subsequent conditionsλn = 0, n= 2,3, . . . , provide other critical valuesL= Lfn > Lf above which the
inviscid flow structure changes again, but they are not so physically relevant asLf1 ≡ Lf because the flow
has no longer cylindrical symmetry downstream forL>Lf . Note that for a straight pipe without central body
(R = 0, Rp = 1), the critical values for the cases (a) and (b) collapse intoLf = j1,1/2, which coincides with
the critical value given by Batchelor [9], for a flow rotating as a rigid body inside a straight pipe. Also, this
value coincides with that obtained by Chow [10], for a different pipe geometry in the limit of infinite length. In
the case (c),Lf →∞ for a straight pipe withR = 0 because the inlet fluid rotation disappears with the inner
body (see (10)–(12)).

Another characteristic of the downstream swirling flow is that a near-wall region of flow reversal may be
formed above a certain threshold value of the swirl parameterL= Lr . To obtain it from the above asymptotic
solution one takes into account that the functionψ increases (positive slope) betweenηi 6 η 6 ηo if no flow
reversal exists near the outer wall. The onset of near-wall flow reversal requires that the slope ofψ must be
zero first, and then negative near the wall. Therefore, the valueLr may be obtained from the condition

∂ψ

∂η
= 0 at η=Rp. (58)

Using the solution (37) forξ � 1,

∂ψ

∂η
=−2η

[(
c1+ c4

R2

)
+ aA0J0(aη)+ aB0Y0(aη)

]
, (59)

so that the condition (58) yields, for the case (a),

2L(a)r R
2=−2L(a)r

(
R2
p − 1

)
J0
(
2L(a)r Rp

)+ 2RpJ1
(
2L(a)r Rp

)
. (60)

Since equation (34) contains no approximation in this case, the resultingL(a)r from this algebraic equations is
exact, valid for anyRp. ForRp small, the values ofLr in the three cases considered are

L(a)r =
√

2(1−R)
Rp

+ 1/R− 1

2
√

2(1−R)Rp +O
(
R3
p

)
, (61)

L(b)r =
j0,1(1−R2)

2Rp
+O

(
R2
p

(
1−R2)), (62)

L(c)r =
√

2(1−R2)

RR2
p

+O
(
R2
p

(
1−R2))+O

(
R5
p

)
, (63)
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Figure 3. Critical swirl parametersLf (continuous lines) andLr (dashed lines) for the three inlet flows considered as functions ofRp =
√

1−R2.
The valueRp = 0.52678 used in the numerical computations is marked by a vertical dotted line.

wherej0,1 is the first zero of the Bessel functionJ0. Figure 3showsLf andLr as functions ofRp in the three
cases considered when the fluid section of the pipe is constant (1−R2=R2

p). For the case (a), these functions
are valid for any value ofRp (equations (55) and (60)), while in the other two cases they are valid only for small
Rp, with errors ranging from O(R2

p) to O(R4
p) (see (56)–(57) and (62)–(63)). It is interesting to note that for the

case (c)Lr > Lf whenRp is small, so that the region of flow reversal near the outer wall appears for a swirl
number larger that the critical value for breakdown, after which the present downstream cylindrical solution is
no longer valid.

4. Numerical results

To perform the numerical integration of (22)–(29) we shall use a constant value for the interior sectionS(ξ)
in (7):

S(ξ)= 1−R2≡ S0. (64)

It is convenient to transform the fluid domain onto a rectangular one using the new radial co-ordinate

σ = ηi(ξ)− η
ηi(ξ)− ηo(ξ), (65)

so that the computational domain becomes

−ξ16 ξ 6 ξ2 and 06 σ 6 1. (66)

With this transformation, the B–H equation (22) and the boundary conditions (27)–(29) can be written as

ψξξ + f1ψξσ + f2ψσσ + f3ψσ = 4L2
[{
σ (η1− η0)+ η0

}2dH

dψ
−C dC

dψ

]
, (67)
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ψ(σ, ξ =−ξ1)= [σ (η1− η0)+ η0
]2−R2, 06 σ 6 1, (68)

ψ(σ = 0, ξ )= 0, −ξ16 ξ 6 ξ2, (69)

ψ(σ = 1, ξ )= 1−R2, −ξ16 ξ 6 ξ2, (70)

ψξξ = 0, ξ = ξ2, 06 σ 6 1. (71)

In (67) the different functionsfi(ξ, σ ), i = 1,2,3, are given by:

f1= 2η′i
1

ηi − ηo −
[
η′i − η′o

] 2σ

ηi − ηo , (72)

f2= 1

(ηi − ηo)2 +
f 2

1

4
, (73)

f3= η′′i
ηi − ηo −

2[η′i − η′o]η′i
(ηi − ηo)2 +

2σ [η′i − η′o]2
(ηi − ηo)2 −

σ [η′′i − η′′o ]
ηi − ηo +

{[
σ (ηi − ηo)+ ηo](ηi − ηo)}−1

. (74)

To solve the problem (67)–(71) we discretize the derivatives using finite differences in a mesh ofM equidistant
points along theσ -direction, andN points in theξ -direction, resulting a system ofM×N non-linear algebraic
equations for the unknownsψk on each nodek = (m,n), 16m6M, 16 n6N . This system can be written
formally as

F(ψ;λ)≡ 0, (75)

whereλ represents the different parameters of the problem andF is the matrix operator resulting from the
discretization. Equation (75) can be solved iteratively using Newton’s method. One iteration of this method
consists of solving the linear system of equations

Fψ
(
ψi;λ)δψ =−F (ψi;λ), (76)

ψi+1=ψi + δψ, (77)

whereFψ is the Jacobian matrix (the(j, k) element of this matrix isFψj,k = ∂Fj/∂ψk for 16 j 6M×N , 16
k 6M×N ). If a good initial guessψ0 is used, the successive application of this iteration will result in the
converging ofψi to the final solutionψ . In all the three cases we used the inlet flow as the initial guess, which
makes fastest the convergence of the method. Typically a solution can be found in a few iterations since the
convergence of the method is quadratic (in the case (a) the system is linear and only one iteration is needed to
reach the final solution). The valuesξ1 andξ2 have to be chosen large enough for the inner and outer walls of
the pipe be parallel to the axis of symmetry at the inlet and outlet regions. As shown infigure 1, these values
have to be increased (particularlyξ1) asα decreases. To be sure that the pipe wall is straight both at the inlet
and at the outlet for a variety of values ofα, we have usedξ1= 10 andξ2= 10 in all the computations. Also,
we fixedR = 0.85 andRp =

√
1−R2= 0.526783 (seefigure 3for the corresponding asymptotic values ofLr

andLf in the three cases). With this geometry, a grid of 300× 200 points was enough to reach a precision of
at least four digits in all the reported results. To illustrate the convergence of the method, we plot infigure 4the
radial profile of the streamfunction just after the central body base, where the radial gradient is the largest, for
3 different grids. Only the profile for the grid 200× 200 is slightly different in a thin region near the maximum
of ψ (see the detail infigure 4(b)), while for the other two grids the profiles practically collapse.

First of all we consider the case in which the geometric parameterα is unity. Figure 5shows, for the three
inlet flows (a), (b) and (c), the streamlines obtained numerically for a value ofL smaller thanLr . Note that a
near-axis region of flow reversal is formed in the case (c). This flow configuration occurs even for negligible
swirl (L→ 0). ForL larger thanLr < Lf , a region of flow reversal is formed near the outer wall, as is seen
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Figure 4. Streamfunction radial profilesψ(η) for the case (a) andL = 3 just after the central body base (ξ = 0.05025) for the three different grids
indicated. In (a) it is plotted the whole profile for 06 η6Rp , while in (b) it is shown a detail near the maximum ofψ .

in figure 6 (except for the case (c), whereLr > Lf and the solution is not shown here). Finally, whenL is
larger thanLf , the flow structure changes dramatically, appearing a periodic flow with many bubbles with flow
recirculation, as it is seen infigure 7 for the case (a) (for the other two inlet flows the iterative method does
not converge whenL > Lf ). Clearly, the flow has no longer a cylindrical structure downstream, as already
predicted by the asymptotic analysis of the previous section. New changes in the flow pattern are observed
whenL increases above the successive critical valuesLfn , given approximately by the asymptotic solution of
the last section (see Chow [10] for qualitatively similar results in a different pipe geometry).

Figures 8to 10 compare the asymptotic solution given in the previous section with the numerical results. In
particular,figure 8shows the radial variation of the stream function at the pipe outlet (ξ = ξ2 = 10) forL<Lr ,
figure 9for L >Lr (only the cases (a) and (b)), andfigure 10for L> Lf (only the case (a)). As expected, the
agreement is excellent near the axis (smallη), but becomes poorer as the outer wall is reached (note that the
selected valueRp = 0.526783 for the outlet radius of the pipe is not so small).

In order to better appreciate the transformations in the downstream flow structure asL increases,figure 11
shows the axial velocityw at the pipe outlet obtained numerically for different values ofL corresponding to an
inlet flow (a). It is observed that without rotation,L= 0, the axial velocity is uniform across the outlet section
(its value is unity from continuity). When a rotation is introduced into the flow, the axial velocity becomes
singular at the axis, even for very small values ofL. The effect of increasingL until L= Lf is to accelerate the
flow near the axis of symmetry, and decelerate it at the outer wall, being zero there whenL= Lr , and becoming
negative forLr < L6Lf .
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(a) (b)

(c)

Figure 5. Streamlines whenL< Lr for the three inlet flows considered. (a)L= 1, (b)L= 0.25, and (c)L= 0.8. Dashed lines correspond toψ < 0.

We have seen that, for the third type of inlet flow considered (c), a zone of flow reversal is always present near
the axis forL > 0, with the streamlineψ = 0 starting at some point in the central body wall (seefigure 5(c)).
It would be of interest to know whether this axial ‘bubble’ with flow recirculation can be separated form the
inner wall by changing the pipe geometry, for instance by introducing a pipe expansion in the downstream flow
section just after the central body base. To that end we have considered a different interior sectionS(ξ) of the
pipe with a contraction-expansion region between two given axial locationsξa andξb:

S(ξ)=S0= 1−R2 for − ξ16 ξ 6 ξa, (78)

S(ξ)=S0+ 1

2
αc

(
cos
(

2π
ξ − ξa
ξb − ξa

)
− 1

)
for ξa < ξ 6 ξb, (79)

S(ξ)=S0 for ξb < ξ 6 ξ2. (80)
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(a)

(b)

Figure 6. Streamlines whenLr < L< Lf for the cases (a)L= 2 and (b)L= 0.8. Dotted lines correspond toψ > (1−R2).

The pipe interior has thus a minimum sectionS0−αc located atξm = (ξb + ξa)/2. We have tried different values
of ξa, ξb andαc, and found that for a contraction–expansion centered atξm = 0 (e.g.ξa =−2 andξb = +2),
there exists for eachL a contraction factorα∗c (L) above which theψ = 0 streamline becomes detached from
the inner body. Forαc > α∗c (L) a stagnation point is thus formed at some location in the axis, and a open bubble
of flow reversal is formed after it (seefigure 12).

Finally, we have also considered the influence of the axial characteristic length of the pipeα. Figure 13
shows the streamlines corresponding toα = 2 for an inlet flow of type (a) with three different values ofL. It is
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Figure 7. Streamlines for the case (a) whenL= 4.1>L(a)
f

. Dashed lines correspond toψ < 0 and dotted lines toψ > (1−R2).

Figure 8. Streamfunctionψ(η) at the pipe outlet(ξ = 10) obtained numerically (continuous lines) and asymptotically (circles) for the three inlet flows
considered withL<Lr : (a)L= 1, (b)L= 0.25, and (c)L= 0.8.

observed that, in relation to the pipe withα = 1, only minor changes are produced in the flow near the region
where the central body ends. Far downstream the flow is, as predicted by the asymptotic analysis, independent
of α (seefigure 14, where the outlet (ξ = ξ2) axial velocity profiles forα = 1 andα = 2 are compared).

EUROPEAN JOURNAL OF MECHANICS – B/FLUIDS, VOL.18, N◦ 6, 1999



Inviscid swirling flows in pipes 1081

Figure 9. As figure 8, but forL> Lr in cases (a)(L= 2) and (b)(L= 0.8).

Figure 10.As figure 8, butL= 3.7>Lf and only for an inlet flow of type (a). Note that in this caseψ < 0 and its absolute value is much larger than
the previous cases owing to the bubble structure of the downstream flow.

5. Conclusions and discussion

We have analyzed the influence of the inlet flow on the inviscid evolution of an incompressible swirling flow
in a pipe with a central body inside, an element present in most swirl generators, which usually concentrates
the swirl at the axis of the pipe. Three different inlet flows have been considered far upstream. These inlet flows
yield genuine inviscid velocity profiles at the entrance of the straight section of the pipe just after the central
body base. Two of these entrance flows are singular at the axis of symmetry, corresponding to a rotation of
the central body, with and without rotation of the outer wall upstream (cases (a) and (c)), and the other one
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Figure 11.Axial velocity profiles at the pipe outlet(ξ = 10) for (i) L= 0, (ii) L= 1<Lr , (iii) L= Lr ≈ 1.1246, and (iv)L= 2>Lr , in the case of
an inlet flow of type (a).

Figure 12. Streamlines for the same case plotted infigure 5(c)but with a contraction–expansion region in the pipe centered atξm = 0, with ξa =−2,
ξb = 2, andαc = 0.25. Dashed lines correspond toψ < 0.

is regular at the axis, corresponding to a rotation of the outer wall with the central body at rest (case (b)).
Asymptotic and numerical solutions to the Bragg–Hawthorne equation governing the inviscid evolution of
the axisymmetric swirling flow show that the structure of the downstream flow changes when the inlet swirl
parameterL passes two different threshold values, which depend on the pipe geometry and on the inlet flow.
It is shown that dependence on the inlet velocity profile is not just quantitative, but qualitative. In particular,
the valueLf above which the far downstream flow has no longer cylindrical symmetry (vortex breakdown)
depends strongly on the inlet flow considered. The inlet flow corresponding to a central body rotation with the
outer pipe wall at rest (case (c)) is of particular interest because the inviscid evolution of the flow predicts that a
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(a) (b)

(c)

Figure 13.Streamlines for an inlet flow of type (a) withα = 2. (a)L= 1, as infigure 5(a), (b)L= 2, as infigure 6(a), and (c)L= 4.1, as infigure 7.
Dashed lines correspond toψ < 0 and dotted lines toψ > (1−R2).

near-axis region with flow reversal is always present downstream, even for vanishing inlet swirl. Also, for this
case, the value ofLr above which a zone of flow reversal near the outer wall is formed downstream is larger
thanLf , so that, contrary to the other two cases, this flow configuration is never reached. In the other two cases
considered,Lr < Lf , so that, asL increases, a region of flow reversal near the outer wall is always formed
before the axial swirling flows breaks down. All these results show that one has to be cautious before drawing
conclusions about the behavior (particularly breakdown) of swirling flows in pipes from the inviscid equations
alone.

Finally, it must be stressed here that we have only considered the effect of three different circumferential
velocity profiles at the pipe inlet on the downstream evolution of the inviscid flow according to the B–H
equations. Although these profiles correspond to three realistic combinations of upstream pipe rotation, we
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Figure 14. Comparison between the outlet axial velocity profiles(ξ = 10) for an inlet flow of type (a) whenα = 1 (lines) andα = 2 (circles), for the
same values ofL of figure 11.

have not considered the effect of viscosity on the inlet axial velocity profiles (thin boundary layers on the pipe
walls), to be consistent with a purely inviscid analysis. The evolution of these boundary layer may modify in a
significant way the downstream flows found here, especially when separation occurs at the pipe wall or at the
axis. In fact, although we have found that separation may occur even when no boundary layers are taken into
account, the inviscid flow inside the regions of recirculating flow forL > Lr or L > Lf (near the wall or at
the axis) are not uniquely specified within the present analysis because the functionsH andC are not defined
when the streamlines are not connected to the inlet. In addition, viscosity is essential to describe the flow near
the separating streamlines, connecting separated regions to the main flow in a realistic way. However, these
viscous analyses are out of the scope of this paper. What we show here is that swirling flows in pipes are very
sensitive to the way in which the swirl originates upstream even when viscosity is wholly neglected.
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