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Inviscid evolution of incompressible swirling flows in pipes: The dependence of the flow
structure upon the inlet velocity field
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Abstract — This paper analyses the influence of the inlet swirl on the structure of incompressible inviscid flows in pipes. To that end, the inviscid
evolution along a pipe of varying radius with a central body situated inside the pipe is studied for three different inlet swirling flows by solving the
Bragg—Hawthorne equation both asymptotically and numerically. The downstream structure of the flow changes abruptly above certain threshold value
of the swirl parameterZ(). In particular, there exist a valug- above which a near-wall region of flow reversal is formed downstream, and a critical
valueL ¢ above which the axial vortex flow breaks down. It is shown that the dependence upon the pipe geometry of these critical values of the swirl
parameter varies strongly with the inlet azimuthal velocity profile considered. An excellent agreement between asymptotic and numerical results is
found.O 1999 Editions scientifiques et médicales Elsevier SAS

incompressible swirling flows / Bragg—Hawthorne equation

1. Introduction

The breakdown of swirling flows is a phenomenon of technological and theoretical fluid dynamic interest
(see, e.g. Delery [1] for a review). A frequent and relatively simple tool to analyse it has been the study of
swirling flows in pipes, both experimentally (e.g. Sarpkaya [2]) and numerically (e.g. Beran and Culik [3]). In
particular, a number of theoretical and numerical works have made use of the inviscid flow equations to explain
vortex breakdown in pipes (e.g. Stuart [4], Buntine and Saffman [5] and Wang and Rusak [6]). This inviscid flow
approach has the advantage of its simplicity, because the axisymmetric swirling flow is governed by a single
partial differential equation whose structure depends on the initial or inlet swirling flow considered. Different
inlet flows have been used in the literature, most of them showing the phenomenon of vortex breakdown
downstream in the pipe when the intensity of the inlet swirl, measured by a swirl parameter, is above a certain
threshold value which depends on the inlet flow itself and on the pipe geometry. The inlet swirling flows used
in previous works usually consisted of a Rankine, or a Gaussian-like (Burgers’), vortex combined with an
uniform axial velocity. In fact, the selection of the inlet flow is independent of the inviscid assumptions and
somewhat ambiguous, because any velocity field with cylindrical symmetry is a solution to the incompressible
cylindrical Euler equations governing the far upstream flow. Thus, although the equations governing the flow
inside the pipe are non-viscous, they contain information on the inlet velocity profile, which in most of the
cases considered (e.g. Burgers’ vortex) needs the previous action of viscosity to develop. Therefore, it is not
completely clear whether the downstream structure of the flow, and in particular the breakdown of the vortex
core, is a purely inviscid phenomenon practically independent of the inlet flow considered, or itis a consequence
of the indirect action of viscosity through the inlet conditions. To shed some light on this subject, this paper

* Correspondence and reprints; jortega@uma.es
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considers a pipe with a central body situated inside, an element present upstream in most swirl generators,
being the device responsible for the intense axial swirling jet inside the downstream section of the pipe. We
consider three different possibilities for the velocity profiles far upstream of the central body base, and look
for the corresponding inviscid solutions downstream. Thus, the velocity profiles at the pipe inlet just after the
central body base are genuine ‘inviscid’ velocity profiles, corresponding to three different physical upstream
conditions of the flow. The asymptotic solution of the inviscid equations far downstream in the pipe shows that
the flow structures in the three cases considered are not just quantitatively, but also qualitatively very different.
Numerical integration of the inviscid flow equations corroborates these asymptotic results.

2. Formulation of the problem

Under the assumptions of incompressible, axisymmetric and steady flow of an inviscid fluid with velocity
field (u, v, w) in cylindrical polar co-ordinate¢, 9, z), the stream functiod of the meridional motion,

10w 1ov
U=———, w=—-—",
r 0z r or

(1)

satisfies the Bragg—Hawthorne [7] equation (also called Squire—Long equation; hereafter referred to as B-H
equation),

W 19¥ 9 L,dH dcC

— -t —t——=r'——-C—,

0z2 r or  0Or2 A A
whereH (V) andC (W) are the Bernoulli function and the circulation, respectively,

(@)

1
H=£+§(u2+v2+w2), C=rv, (3)
0

with p the pressure field andthe constant fluid density. We are interested here in solving this equation inside
a pipe with the form given ifigure 1 with a wall contraction and a central body located inside. The inner wall
ends at =0, and its non-dimensional radius is given by (8gare 1):

ni(e) = 1)
r2

ni(§)=0 for0<é§ <é&. (5)

Here we have used the pipe inlet radiyss the characteristic length, defining

= Rtanh(—a&) for — & <& <0, (4)

nE_’ EE_’ RE—, (6)

wherer, is the upstream radius of the central body, which axial length is characterized by the geometric factor
a (seefigure 1). The radius of the outer walt,(z), is defined in terms of; and the given interior sectioA(z)

of the pipe:
" A
1o(8) = ’"r(j) — J5@® 1 n2®). s =2%), @

Tr;

The particular forms of (&) used in the numerical computations will be specified below in Section 4.
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Figure 1. Pipe geometry forxr = 1 (continuous lines) and = 2 (dotted lines) fork = 0.85. Although the domain shown is3 < & < 2, in all the
numerical computations of Section 4 we usetD< & < 10 (i.e.&1 = &, = 10).

The functionsH (W) andC (V) are obtained from the velocity profiles at the pipe inkets —&;, R <n <1,
which are characterized by an axial velodifyand an angular velocitf2. These parameters are used to define
the non-dimensional velocity components as

EEE, FEL, WEE, (8)
U Qi’z U
and a swirl parameter
Ql"z
L=—-". 9
- (©)
We shall use three different inlet velocity profiles, denoted by (a), (b) and (c) in what follows:
@ wu=0 v=n w=1, (10)
2 2
_ ___ 1N —R _
b =0 =— =1, 11
(by w=0, 7 Ak " (11)
R*(1—n?)
=0, 1=——7—, w=1 12
(© uw=0, T A_r) =L (12)

wheren € [R, 1]. All of them correspond to a cylindricad (= 0) flow with an uniform axial velocity# = U).

In relation to the azimuthal velocity, the first profile corresponds to a rigid body rotation in between the two pipe
walls, both rotating with an angular velocify; the second one corresponds to a rotation of the outer wall, with
the inner wall at rest, and the third one to a rotation of the inner wall only. These three different inlet azimuthal
profiles are plotted ifigure 2 The corresponding pressure (given by the radial momentum balan€é; =

dp/ar) and vorticity @ = (y, ¢, x) = ((1/r)dw /30 —dv/dz, du/dz—dw/dr, (1/r)d(rv)/or — (1/r)du/00))
distributions at the pipe inlet are:

1
@ ﬁ=§n2+m 7=0, ¢=0 ¥=2 (13)
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Figure 2. Profiles of the inlet azimuthal velocity for the three cases Rrd0.85.
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— n” R — = = —_ "R
b 7=——55(=— =5 — 2Rl =0, =0, ¥=——, 14
b P 1 R2)2( 27 nn) +Po, 7V ¢ =1 r (14)

R* n” 1 _ 2R?
P=—7—55=%—5>5—2In Po, 7=0, =0, ¥x=—-———, 15
(© p= 1 R2)2< 207 n> +Po. ¥ R X=—1"gz (15)
where the non-dimensional pressure and vorticity have been defined as
_ P . w

= =—, 16
P=b@?  “Ta (16)

andpg is a reference value, different for each of the three cases (for instapeep(n = 0) for the case (a),
Po=p(n =1 for the case (c), angip depends orR for the case (b)).

In non-dimensional form, the B—H equation (2) may be written as

,dH _dC
Ve — _‘pn + Yy =4L ( dlﬁ C%), a7
where subscripts indicate differentiation and
Y — H — C
Veapur "Twr “Tag “e
H andC are obtained from (10)—(15):
@ HW)=v, CH)=v+R? (19)
o _ 1 Y 2 v
b HY)= 7(1_[(,2)2(1# R?’In(y + R?)), C(¥)= 1-_R2 (20)
— 4 — W
_ _ 2 _ p2 _
© HW) = (v~ +RY). T =8 (1= 205, (21)
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where an irrelevant additive constantAihhas been omitted. The B—H equation (17) can be written in a compact
form for the three inlet flow considered as

1 ¥ +c
Vee — ;Wn"“pnn:aZ(Clnz_w+C2+n2ﬁ>’ (22)
where the constants, andc;, i =1, 2, 3, 4, are given by
@ c1=1, cr = —R?, c3=0, ¢4=0, a=2L, (23)
2L
0 c1=0, =0, c3=1 «1=0, a=1"po (24)
2LR?
© c¢1=1 ¢=1—R? ¢3=0, ¢4=-1, a (25)

1- R?
Note that the resulting B—H equation is linear only for the inlet flow corresponding to the case (a); for the
cases (b) and (c) the equation is non-linear. This equations must be solved with boundary conditions on the
four boundaries. At the inlett(= —&1), the radial distributions ofy is given by the uniform axial velocity
profile considered in all three cases and fixiagn the inner wall equal to zera/(n = R) = 0). The wall of
the central body base and the axis of symmetry=(i;) are streamlines, and so is the wall of the outer wall
(n = n,). There, the streamfunction is constant and equal to its value at the inlet. Finally, the flow is considered
cylindrical at the pipe outleté(= &,). One may impose, for instance, that the radial velocity vanishes at the
pipe outlet (¢ = &) = 0). However, this condition is too restrictive, and we have used the weaker condition
that the axial gradient of the radial velocity vanishes= v:: = 0 até = &, (see Buntine and Saffman [5], for
a discussion of these and other possible boundary conditions at the pipe outlet). In summary, the four boundary
conditions are:

(. E=-&)=n"—R> R<n<l, (26)
Y(n=mn;,6)=0, =& <E<LE, (27)
Y(n=n,6)=1—R? —£<E<&, (28)
Vee =0, £=8&, 0<n<R,, (29)
where
Ry="", (30)

andrjz is the outlet radius of the pipe.

3. Downstream asymptotic solution and critical values of the swirl parameter

In this section we look for cylindrical solutions of (22) in the far downstream regjos (1), wheren; =0
andn, — R,, corresponding to the three inlet cylindrical flows (10), (11) and (12). We shall see that these
solutions provide critical values df above which the flow structure changes abruptly.

In order to linearize the equation for the cases (b) and (c), we further assumg, tigsmall. Thus, far
downstream, botl) andyr are small, and the non-linear term in the right-hand side of (22) can be linearized to

3y +ca can? c c
2;+R24= ;2 2W<R—32—R—i>+0('72¢2)- (31)
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Retaining terms up to @) (and, therefore, with errors @) = O(R3(1 — R?)); note that for a constant
fluid section,S = constant= 1 — R* = R, the errors are (R})), equation (22) becomes

1 n?
%5 - ;1//;7 + W1717 = a2 (Cln2 - lﬁ +co+ C4ﬁ) . (32)

It must be noted that this equation is exact for the case (a), whete, = 0. Defining

C.
Fev-c-n(a+ ). (33)
equation (32), and the boundary conditionsios n; =0 andn =n, — R,, (27)—(29) become

1
Fes — ~F, + F,, +d?F =0, (34)

n

C

F=—62—U2(61+R—42), n=0, —&<&< &, (35)
F=1—R2—62—U2(61+%), n=R,, & <§<é. (36)

Thus, in this limit of larges, the problem can be solved separating variakig$, n) = X (£§) Q(n). Substituting
into (34) with (35)—(36) one has a two-point boundary problemdan), which yields the following solution
as an eigenexpansion in Bessel functions of the first ardéirst kind) andY; (second kind):

o0

F =n[AoJ1(an) + BoY1(an)| + Z (Cpe™* + Dne_k”é)nJl(];’" n), (37)
n=1 p

wherej , is thenth zero ofJ; (see, e.g., Abramowitz and Stegun [8]), and the eigenvaly@se given by

)\'n _ Jl,n _ 612. (38)

ConstantsBg andAg are
1— R5— BoR,Y1(2LR))

Bo=—R?’L7, Ag= , 39
(@ Bo 4 0 R,:(2LR,) (39)
1—R?
() By=0, Ap=——7——, (40)
R,J1(aR))
(1— R®ma (1— R?®R, — R?BoY1(aR,)
Bo=-——"7"" Ag= 41
© Bo > Ao R2T:(aR,) (41)

All the constantsC,, in (37) should be zero, and the constafts cannot be determined within the present
asymptotic limit of larges; they are, however, irrelevant f§r>> 1, where only the first two terms in (37) are
important.

It is interesting to compare the three different near-aig(1) behaviors of this solution for the three inlet
flows considered:
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case (a):
B
¥ =225y + An?+ O(n*Inn), (42)
B
w:%a(zlnn+l)+A+O(n2|nn), (43)
R?> B
v=7+70an|nn+An+O(n3|nn), (44)
1 2m R*
P="Po+ —5|(2Inn(4An*R? + aBo2R*m Inn) — i +O(n%In?n); (45)
472 n?
case (b):
¥ = An® + O(n*), (46)
wW=A+0(n?), (47)
_ An 3
v:l_R2+O(7} )s (48)
A2n2
=70 0(n°); 49
1Z P0+2(1_R2)2+ (n°) (49)
case (c):
B
¥ ="y + An?+ O(n*In), (50)
B 1
w:%“(lnn+5>+A+o(n2|nn), (51)
1 1 Boa
_ 2 (0] 3
U=R [;—l_RZ(Tnlnn—{—An)}—{—O(n Inn), (52)
4 27.[2(1_ R2)2
- — 2 2 2
+0(n?In?p). (53)
In the above expressionsis given by
ca aAg aBg a
A= —+—+—(2y —1+2In= ), 54
C1+R2+2+27r<y + 2) (54)

and y is Euler's constant. The radial velocity component has not been given explicitly because it becomes
exponentially small ag — oo. Note that only for the case (b), corresponding to an inlet flow with zero
azimuthal velocity at) = o (the inner wall of the pipe does not rotate), all the flow properties are regular at
the axis. For the cases (a) and (c), the azimuthal velocity becomes singular at the axis owing to the rotation of
the inner body and the conservation of the circulation along streamlines for an inviscid flow and, consequently,
all the remaining flow properties are also singular at the axis.

The above asymptotic solution provides a criterion for the breakdown of the inlet flow: in order for the
downstream flow to decay exponentially to a cylindrical flow independe#t afl the eigenvalue&, should
be real; otherwise, if any of the, are imaginary, the downstream flow oscillates periodically alpnghus,
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the conditionk, = O provides a maximum value of the swirl parameles: L ;, above which a cylindrical flow
downstream is no longer possible for the given inlet flow. Using (38) and the different definitions of parameter
for the three inlet flows considered, one obtains the following three critical swirl parameters for breakdown:

L@ = it 55
=3, (55)
i11(1— R?) R?
Lo - 2= kY o(—”> 56
4 2R, O &) (56)
11(1— R?) R}
L@ = 1R o ge o<—”>. 57
f 2R1,R2 + ( p) + R4 ( )
The subsequent conditiong =0, n =2,3, ..., provide other critical values = L, > L above which the

inviscid flow structure changes again, but they are not so physically relevant, as L ; because the flow

has no longer cylindrical symmetry downstream fox- L ;. Note that for a straight pipe without central body
(R=0, R, =1), the critical values for the cases (a) and (b) collapse inte= j; 1/2, which coincides with

the critical value given by Batchelor [9], for a flow rotating as a rigid body inside a straight pipe. Also, this
value coincides with that obtained by Chow [10], for a different pipe geometry in the limit of infinite length. In
the case (c)L ; — oo for a straight pipe withR = 0 because the inlet fluid rotation disappears with the inner
body (see (10)—(12)).

Another characteristic of the downstream swirling flow is that a near-wall region of flow reversal may be
formed above a certain threshold value of the swirl paraneterL,. To obtain it from the above asymptotic
solution one takes into account that the functibrincreases (positive slope) betwegn< n < n, if no flow
reversal exists near the outer wall. The onset of near-wall flow reversal requires that the sjopeust be
zero first, and then negative near the wall. Therefore, the Vglumay be obtained from the condition

Iy

—~— =0 at n=R,. 58
o at n=R, (58)
Using the solution (37) fof > 1,
0
% =-2n Kcl + %) +aAoJo(an) +aBoYolan)|, (59)

so that the condition (58) yields, for the case (a),
2LOR?=—-2L® (R% — 1) Jo(2L®R,) + 2R, J1(2LPR,). (60)

Since equation (34) contains no approximation in this case, the resilthffom this algebraic equations is
exact, valid for anyR,,. For R, small, the values oL, in the three cases considered are

J2(1—R) 1/R—1

@ _ 3

L= R, | 2yai- mrt ORy) o

. _ p2

LY = JQl(leR) +O(R2(1- R?)), (62)
p
_ p2

Lﬁc) — \/Q(;'TI%R) + O(Rlz, (1 _ Rz)) + O(Ri), (63)
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Figure 3. Critical swirl parameterd. ; (continuous lines) and., (dashed lines) for the three inlet flows considered as function&,of /1 — R2.
The valueR, = 0.52678 used in the numerical computations is marked by a vertical dotted line.

where jo 1 is the first zero of the Bessel functioly. Figure 3showsL ; and L, as functions ofR,, in the three

cases considered when the fluid section of the pipe is constanR@l= RIZ,). For the case (a), these functions

are valid for any value oR,, (equations (55) and (60)), while in the other two cases they are valid only for small
R, with errors ranging from 0?12,) to O(Rﬁ) (see (56)—(57) and (62)—(63)). Itis interesting to note that for the
case (c)L. > Ly whenR, is small, so that the region of flow reversal near the outer wall appears for a swirl
number larger that the critical value for breakdown, after which the present downstream cylindrical solution is
no longer valid.

4. Numerical results

To perform the numerical integration of (22)—(29) we shall use a constant value for the interior s&€tion
in (7):

S(E)=1—R?*=S,. (64)
It is convenient to transform the fluid domain onto a rectangular one using the new radial co-ordinate
o = ni(§) —n ’ (65)
i (§) — 10(§)
so that the computational domain becomes
£ <E<& and O<o <1l (66)

With this transformation, the B—H equation (22) and the boundary conditions (27)—(29) can be written as
2dH _dC

Vee + fivveo + foVoo + f3¥o =4AL? | {0 (01— 10) + 10} v C@ , (67)
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V(o & =—&)=[o(n—no)+n0)° — R%, 0<o <1, (68)
Y(=0§8=0 —§<&E<E, (69)
W(U =1’ g) =1_ RZ’ _$1<$ <$2, (70)
Vee =0, £=&, 0<o <1 (71)
In (67) the different functiond;(¢,0),i =1, 2, 3, are given by:
/ / / 20
Ji=2n; — [ =] : (72)
Ni —No Ni — No
1 7

= 4+ 73
f2 (i —ne)?> 4 (73)

n! 2ln, —n,In;  20[n; —n,1?  oln! —nl 1
= - = — — l =+ {lomi —no) +n.)(mi —mo)} ~. (74
fs ni—no (M —no)? (i — 10)? ni — Mo Hor (i =mo) o] Ori = 10)} (74)

To solve the problem (67)—(71) we discretize the derivatives using finite differences in a nesbaiidistant
points along the -direction, andV points in thet -direction, resulting a system d# x A/ non-linear algebraic
equations for the unknowng, on each nodé = (m,n), 1<m < M, 1<n <N. This system can be written
formally as

F(y;2) =0, (75)

where represents the different parameters of the problem Arnsl the matrix operator resulting from the
discretization. Equation (75) can be solved iteratively using Newton’s method. One iteration of this method
consists of solving the linear system of equations

Fy (s 0)89 = —F ("5 1), (76)
yt =y + 5y, (77

whereF,, is the Jacobian matrix (thg, k) element of this matrix isF,,,j.k =0F; /oy forl<j<MxN, 1<
k< M x N). If a good initial guess)° is used, the successive application of this iteration will result in the
converging ofy’ to the final solutiony . In all the three cases we used the inlet flow as the initial guess, which
makes fastest the convergence of the method. Typically a solution can be found in a few iterations since the
convergence of the method is quadratic (in the case (a) the system is linear and only one iteration is heeded to
reach the final solution). The valuésandé, have to be chosen large enough for the inner and outer walls of
the pipe be parallel to the axis of symmetry at the inlet and outlet regions. As shdignnm 1, these values
have to be increased (particulagly) ase decreases. To be sure that the pipe wall is straight both at the inlet
and at the outlet for a variety of values @f we have useg; = 10 andé, = 10 in all the computations. Also,
we fixedR = 0.85 andR, = +/1— R?=0.526783 (sedigure 3for the corresponding asymptotic valueslof
andL ; in the three cases). With this geometry, a grid of 30R00 points was enough to reach a precision of
at least four digits in all the reported results. To illustrate the convergence of the method, weiglaterthe
radial profile of the streamfunction just after the central body base, where the radial gradient is the largest, for
3 different grids. Only the profile for the grid 260200 is slightly different in a thin region near the maximum
of ¥ (see the detail ifigure 4(b), while for the other two grids the profiles practically collapse.

First of all we consider the case in which the geometric parameigiunity. Figure 5shows, for the three
inlet flows (a), (b) and (c), the streamlines obtained numerically for a valdesshaller thanZ,. Note that a
near-axis region of flow reversal is formed in the case (c). This flow configuration occurs even for negligible
swirl (L — 0). For L larger thanL, < L ¢, a region of flow reversal is formed near the outer wall, as is seen
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Figure 4. Streamfunction radial profileg () for the case (a) and = 3 just after the central body basg £ 0.05025) for the three different grids
indicated. In (a) it is plotted the whole profile forQn < R, while in (b) it is shown a detail near the maximunmbf

in figure 6 (except for the case (c), whelg > L and the solution is not shown here). Finally, wheris

larger thanL ¢, the flow structure changes dramatically, appearing a periodic flow with many bubbles with flow
recirculation, as it is seen ifigure 7for the case (a) (for the other two inlet flows the iterative method does

not converge wher. > L ). Clearly, the flow has no longer a cylindrical structure downstream, as already
predicted by the asymptotic analysis of the previous section. New changes in the flow pattern are observed
whenL increases above the successive critical valligs given approximately by the asymptotic solution of

the last section (see Chow [10] for qualitatively similar results in a different pipe geometry).

Figures 8to 10 compare the asymptotic solution given in the previous section with the numerical results. In
particular,figure 8shows the radial variation of the stream function at the pipe outlet, = 10) forL < L,,
figure 9for L > L, (only the cases (a) and (b)), afigure 10for L > L (only the case (a)). As expected, the
agreement is excellent near the axis (smallbut becomes poorer as the outer wall is reached (note that the
selected valuk, = 0.526783 for the outlet radius of the pipe is not so small).

In order to better appreciate the transformations in the downstream flow structUrmma®asesfigure 11
shows the axial velocity at the pipe outlet obtained numerically for different valueg aorresponding to an
inlet flow (a). It is observed that without rotatioh,= O, the axial velocity is uniform across the outlet section
(its value is unity from continuity). When a rotation is introduced into the flow, the axial velocity becomes
singular at the axis, even for very small valued.ofThe effect of increasing until L = L ; is to accelerate the
flow near the axis of symmetry, and decelerate it at the outer wall, being zero therd.whén, and becoming
negative forL, < L < L.
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Figure 5. Streamlines wheil. < L, for the three inlet flows considered. (&)= 1, (b) L = 0.25, and (c)L = 0.8. Dashed lines correspond o< 0.

We have seen that, for the third type of inlet flow considered (c), a zone of flow reversal is always present near
the axis forL > 0, with the streamling/ = 0 starting at some point in the central body wall (§gare 5(c).
It would be of interest to know whether this axial ‘bubble’ with flow recirculation can be separated form the
inner wall by changing the pipe geometry, for instance by introducing a pipe expansion in the downstream flow
section just after the central body base. To that end we have considered a different interiorSsgotiointhe
pipe with a contraction-expansion region between two given axial locatijoasdé,:

S(E)=8=1—R* for —& <& <&, (78)
1 ~ Sa

SE)=5+ E%(CO 2 ; —;) — 1) for&, <& <&, (79)

SE)=8 forg, <& <é&. (80)
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(b)

Figure 6. Streamlines whetl., < L < L ¢ for the cases (a). = 2 and (b)L = 0.8. Dotted lines correspond i > (1 — R?).

The pipe interior has thus a minimum sectigyt+ «. located at,, = (&, + £,)/2. We have tried different values

of &,, & anda., and found that for a contraction—expansion centereg), at 0 (e.g.£, = —2 and§, = +2),

there exists for each a contraction factow* (L) above which the) = 0 streamline becomes detached from
the inner body. Fow. > (L) a stagnation point is thus formed at some location in the axis, and a open bubble
of flow reversal is formed after it (sdigure 19.

Finally, we have also considered the influence of the axial characteristic length of the.dgure 13
shows the streamlines correspondingrte: 2 for an inlet flow of type (a) with three different valuesbf It is
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Figure 7. Streamlines for the case (a) whén=4.1 > Lgf"). Dashed lines correspond o< 0 and dotted lines t¢ > (1— R?).
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Figure 8. Streamfunction/ () at the pipe outleté = 10) obtained numerically (continuous lines) and asymptotically (circles) for the three inlet flows
considered withL < L,: (a) L =1, (b) L = 0.25, and (c)L = 0.8.

observed that, in relation to the pipe with= 1, only minor changes are produced in the flow near the region
where the central body ends. Far downstream the flow is, as predicted by the asymptotic analysis, independent
of o (seefigure 14 where the outlety = &,) axial velocity profiles forx = 1 anda = 2 are compared).
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Figure 10. As figure 8 but L = 3.7 > L ¢ and only for an inlet flow of type (a). Note that in this cage< 0 and its absolute value is much larger than
the previous cases owing to the bubble structure of the downstream flow.

5. Conclusions and discussion

We have analyzed the influence of the inlet flow on the inviscid evolution of an incompressible swirling flow
in a pipe with a central body inside, an element present in most swirl generators, which usually concentrates
the swirl at the axis of the pipe. Three different inlet flows have been considered far upstream. These inlet flows
yield genuine inviscid velocity profiles at the entrance of the straight section of the pipe just after the central
body base. Two of these entrance flows are singular at the axis of symmetry, corresponding to a rotation of
the central body, with and without rotation of the outer wall upstream (cases (a) and (c)), and the other one
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Figure 11. Axial velocity profiles at the pipe outlét = 10) for (i) L =0, (i) L =1< L,, (ii) L =L, ~1.1246, and (iv)L =2 > L,, in the case of
an inlet flow of type (a).
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Figure 12. Streamlines for the same case plottedigure 5(c)but with a contraction—expansion region in the pipe centerég, at 0, with &, = —2,
&, = 2, anda, = 0.25. Dashed lines correspondo< 0.

is regular at the axis, corresponding to a rotation of the outer wall with the central body at rest (case (b)).
Asymptotic and numerical solutions to the Bragg—Hawthorne equation governing the inviscid evolution of
the axisymmetric swirling flow show that the structure of the downstream flow changes when the inlet swirl
parametetl passes two different threshold values, which depend on the pipe geometry and on the inlet flow.
It is shown that dependence on the inlet velocity profile is not just quantitative, but qualitative. In particular,
the valueL ; above which the far downstream flow has no longer cylindrical symmetry (vortex breakdown)
depends strongly on the inlet flow considered. The inlet flow corresponding to a central body rotation with the
outer pipe wall at rest (case (c)) is of particular interest because the inviscid evolution of the flow predicts that a
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Figure 13. Streamlines for an inlet flow of type (a) with=2. (a) L = 1, as infigure 5(a) (b) L = 2, as infigure 6(a) and (c)L = 4.1, as infigure 7.
Dashed lines correspond #o < 0 and dotted lines t¢ > (1 — R?).

near-axis region with flow reversal is always present downstream, even for vanishing inlet swirl. Also, for this
case, the value aof, above which a zone of flow reversal near the outer wall is formed downstream is larger
thanL ;, so that, contrary to the other two cases, this flow configuration is never reached. In the other two cases
consideredL, < L, so that, ad. increases, a region of flow reversal near the outer wall is always formed
before the axial swirling flows breaks down. All these results show that one has to be cautious before drawing
conclusions about the behavior (particularly breakdown) of swirling flows in pipes from the inviscid equations
alone.

Finally, it must be stressed here that we have only considered the effect of three different circumferential
velocity profiles at the pipe inlet on the downstream evolution of the inviscid flow according to the B—H
equations. Although these profiles correspond to three realistic combinations of upstream pipe rotation, we
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Figure 14. Comparison between the outlet axial velocity profi{¢s= 10) for an inlet flow of type (a) whew =1 (lines) andx = 2 (circles), for the
same values aof of figure 11

have not considered the effect of viscosity on the inlet axial velocity profiles (thin boundary layers on the pipe
walls), to be consistent with a purely inviscid analysis. The evolution of these boundary layer may modify in a
significant way the downstream flows found here, especially when separation occurs at the pipe wall or at the
axis. In fact, although we have found that separation may occur even when no boundary layers are taken into
account, the inviscid flow inside the regions of recirculating flowfos L, or L > L, (near the wall or at

the axis) are not uniquely specified within the present analysis because the furittaorsC are not defined

when the streamlines are not connected to the inlet. In addition, viscosity is essential to describe the flow near
the separating streamlines, connecting separated regions to the main flow in a realistic way. However, these
viscous analyses are out of the scope of this paper. What we show here is that swirling flows in pipes are very
sensitive to the way in which the swirl originates upstream even when viscosity is wholly neglected.
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