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Transport of suspended sediment under the dam-break flow
on an inclined plane bed of arbitrary slope
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Abstract:

The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end
we use the shallow-water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect
of friction. The numerical technique and the frictional model are validated by comparison with available experimental data
and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of
suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values
of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the
formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations
are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load)
sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different
models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize
the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more
complex numerical models. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Dam-break hydraulics of natural rivers and its associated
erosion and transport of sediments is an important
practical problem in civil and environmental engineering.
The precise formulation of the equations that govern the
problem, with all the fluid mechanics and their transport
phenomena, is, even in its one-dimensional version and
for dilute sediments, a very complex task (e.g. Bellos and
Hrissanthou, 2003). This panorama becomes much more
complex when two- or three-dimensional debris (non-
Newtonian fluid) flows are considered (e.g. Zech and
Spinewine, 2002; Jakob and Hungr, 2005). In addition,
the numerical techniques needed to solve these equations,
which must, for instance, capture with precision the
advance of water fronts with their induced sediment
transport, is a formidable task.

For this reason, to gain some preliminary understand-
ing of these physical and numerical problems, much
effort has been dedicated in the recent past to model,
in simpler dam-break flows over a horizontal bed, some
of the basic ingredients, such as erosion and deposition of
sediment particles (Pritchard and Hogg, 2002; Cao et al.,
2004) and friction (Hogg and Pritchard, 2004), as well as
to the development of powerful and accurate numerical
techniques that are able to cope with these problems (e.g.
Toro, 2001; LeVeque, 2002; Zoppou and Roberts, 2003).
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In this line, we consider here the dam-break flow over
a plane inclined bed, which, in relation to its horizontal
bed counterpart, is more appropriate to model avalanches
after natural dam failures, mainly for two reasons: for
the obvious one that the rivers beds are not horizontal
and because it considers the movement of a finite mass
of water with its associated sediment transport. An
important advance was made recently in this direction
by Bouchut et al. (2003) and by Keller (2003), who
generalized the one-dimensional flow equations in the
shallow-water approximation for arbitrary slopes of the
bottom. This relaxes one of the main limitations of the
traditional shallow-water formulation (e.g. Stoker, 1957),
which is valid only for small slopes of the bed, and thus
inappropriate to model real river flows with large slopes
where these kinds of avalanche occur more frequently.
This generalization obviously makes the shallow-water
equations much more involved. However, for a constant,
but arbitrary, slope of the bed, the equations are quite
similar to the traditional shallow-water equations, as was
previously found by Savage and Hutter (1991). We use
these equations here to solve the dam-break problem
over an inclined bed of arbitrary but constant slope,
together with its associated transport of dilute sediments,
and taking into account the effect of friction. Thus, our
results will shed new light on the problem of transport
of sediment due to the release of a finite mass of
water after the rupture of a dam on an inclined bed of
arbitrary (large) slope. Although these results have the
limitations of one-dimensional flow, constant bed slope,
and dilute, non-cohesive sediment with depth-averaged
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concentration, they give general trends about the transport
of sediments as a function of the bed slope, and on
how the validity of the formulation and the predictions
are affected by the several parameters in the erosion,
deposition, and friction models. A similar problem was
recently considered by Pritchard (2005). However, the
asymptotic solutions given by Pritchard (2005) do not
predict, for instance, the formation of roll waves near the
advancing water front, which we find in our numerical
simulations. The effect of these waves on the transport of
sediments may be very significant. The results given here
will also be valuable to check future numerical codes to
solve more complex formulations where arbitrary slopes
and slope variations, together with non-dilute sediments
with vertical variation of concentration, are taken into
account. We also check the accuracy of the different
numerical techniques in capturing the advance of water
fronts over a dry bed.

Although this paper is mainly focused on the com-
putation of the suspended transport of dilute sediment
down an inclined bed after the rupture of a dam (as
the title runs), we shall also consider the bed-load trans-
port of sediments. In particular, we shall characterize the
relative importance of the bed-load transport to the sus-
pended transport for different bed slopes, and different
diameters of sediment particles, by using different condi-
tions for the initiation of sediment suspension from bed
load. This will complete the picture of transport of sed-
iments in the present dam-break problem on an inclined
bed and characterize the validity of the dilute suspension
approach.

The structure of the paper is as follows. The mathemat-
ical problem is formulated and the numerical method is
described briefly in the following section. The subsequent
section is devoted to checking the numerical method and
the friction model by comparison with known analytical
solutions and experimental data. In the fourth section we
present the results for the transport of suspended sedi-
ments after the breaking of the dam on an inclined bed,
which are complemented in the penultimate section with
bed-load sediment transport results. Some conclusions are
drawn in the final section.

FORMULATION OF THE PROBLEM AND
NUMERICAL METHOD

We consider here the one-dimensional flow over a
constant-slope bed. In the shallow-water approximation
(e.g. Stoker, 1957), the dimensionless equations for the
mass conservation and momentum in the direction of the
flow can be written as (see Figure 1)

∂�

∂t
C ∂�U

∂X
D 0 �1�

∂U

∂t
C U

∂U

∂X
C cos �

∂�

∂X
D sin � � sf

�
�2�

where � is the angle between the bed and the horizontal,
t is the time, X is the coordinate along the bed, � is

U
1

0

g
η−tan−1θ θ

Y

X

e = tan θ

Figure 1. Coordinates and sketch of the initial conditions for ��X�

the depth of the water measured along the coordinate
Y perpendicular to the bed, U is the depth-averaged
velocity component along X, and sf is a dimensionless
bed friction (see below). All the magnitudes in these
equations have been non-dimensionalized with respect
to a length scale �0, corresponding to some initial
depth (defined later), and a velocity scale U0 � p

g�0,
where g is the acceleration due to gravity. According
to Savage and Hutter (1991), Bouchut et al. (2003),
and Keller (2003), these equations, written in these
coordinates X and Y, are valid for any slope tan �
of the constant-slope bed, not just for small channel
slope, provided that the characteristic length scale of
the flow in the direction of the coordinate X is much
greater than the characteristic length scale in the Y
direction.

To compute the friction term sf � ��b/�U2
0�, where �b

is the bed shear stress and � the fluid density, we shall use
the Darcy–Weisbach friction factor f (Streeter, 1951), so
that sf may be written as

sf D f

8
jUjU �3�

The factor f is a function of the local Reynolds number
(based on the velocity U and the hydraulic diameter of
the channel) and the relative height roughness of the
bed. In particular, we shall use the Colebrook–White
(Colebrook, 1939) expression to approximate f (see
Appendix A). To check the validity of this approximation
to model the friction in a dam-break flow, in the next
section we shall compare existing experimental data for
the dam-break problem on a horizontal bed with the
results obtained with this friction model.

The non-dimensional shallow-water equation for the
conservation of sediment transported as a dilute, well-
mixed suspension can be written as

∂c

∂t
C U

∂c

∂X
D E

qe � qd

�
�4�

where c is the dimensionless, depth-average mass con-
centration of suspended sediment and qe and qd are
the dimensionless mass erosion and mass deposition
fluxes respectively. The concentration of sediment is
made dimensionless with me/ws, where ws is the set-
tling velocity of the particles (see Equation (A.3)) and
me is a characteristic, constant mass flux per unit area
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that characterizes the erosion flux (e.g. Sanford and Maa,
2001). This flux me is used to non-dimensionalize both
the erosion and deposition fluxes. With this choice, the
dimensionless parameter

E � ws

U0
�5�

is the ratio between the settling velocity and the charac-
teristic fluid velocity, and qe and qd may be written as
(e.g. Dyer and Soulsby, 1988; Sanford and Maa, 2001;
Pritchard and Hogg, 2002)

qe D
{ (

U2

U2
e

� 1
)p

forjUj ½ Ue

0 forjUj < Ue

�6�

qd D c �7�

Ue is the non-dimensional velocity above which sed-
iment particles are eroded from the bed and suspended
into the flow, and the exponent p is a number often taken
to be unity (Sanford and Maa, 2001). According to Bag-
nold (1966), the threshold velocity Ue for suspension
is such that the turbulent friction velocity vŁ � p

�b/�
exceeds the settling velocity ws of the particles by a cer-
tain factor (a say). Relating the bed shear stress to the
Darcy–Weisbach friction coefficient, one may write the
following relation for Ue:

Ue D aE
√

8/f �8�

where a is a dimensionless constant of order unity to
be obtained experimentally. Its value is well defined for
small sediment particles, i.e. for ds/�0

<³ 10�3, where
ds is the diameter of the sediment particles and �0 is
a characteristic depth (e.g. Julien, 1995), but it is not
so well defined for larger values of ds/�0. In this case
of larger particles, the sediment transport does not pass
neatly from a bed-load mode to a suspended-load mode
as vŁ/ws becomes larger than a given constant a, but there
exists a mixed mode of sediment transport. Experimental
values of a range between 0Ð2 (for this value, incipient
erosion and suspension may occur for large particles) and
nearly 5 (for vŁ/ws > 5, all the sediment transport is by
suspension (e.g. Julien, 1995)). In the computations in
the ‘Results’ section we shall use a mean value a D 1Ð2
(Chanson, 2004), though several other values will be used
in the penultimate section for the comparison between
the bed load, and the suspended, sediment transport
mechanisms in the present problem.

Typical values of the remaining parameters p and E are
discussed in Appendix A, together with some comments
on the physical model that underlies the flux given by
Equation (6).

We are interested here in solving these equations for
the dam-break problem, i.e. for the flow whose initial
condition (t D 0) is given by (see Figure 1)

U�0, X� D 0 �9�

��0, X� D




0 for X < �1/e
eX C 1 for � 1/e � X � 0

�X/e C 1 for 0 < X � e
0 for X > e

�10�

c�0, X� D 0 �11�

where e � tan � is the slope of the bed. At t D 0,
the vertical wall that intersects the bed at X D e is
removed instantaneously, causing the fluid to move over
the slopping bed under the action of gravity. Note that
the characteristic length �0 is the dimensional depth at
X D 0, t D 0.

Equations (1)–(4) with the initial conditions in
Equations (9)–(11) are solved numerically on a uniform
grid with mesh size X D XiC�1/2� � Xi��1/2� using an
upwind total variation diminishing (TVD) method (e.g.
LeVeque, 2002), second-order accurate in both space
and time, with a semi-implicit and upwind treatment of
the source terms, as described by Burguete and Garcia-
Navarro (2001).

A flux limiter function has been used to solve the
hyperbolic equations (e.g. Sweby, 1984; LeVeque, 2002).
In particular, we use what Sweby (1984) termed ‘Min-
Mod’, which works better in the present problem, where
one has to capture numerically the advance of a water
front over a dry bed (see next section). To avoid numeri-
cal discontinuities at the critical points we have used here
the entropy correction technique described in Burguete
and Garcia-Navarro (2001) whenever they are detected
between any two grid points. Finally, the numerical sta-
bility condition, based on the Courant–Friedrichs–Lewy
number

CFL � t

x
j	maxj �12�

where t is the time step and j	maxj the maximum
absolute value of the eigenvalues of the Jacobian of the
transformation of the equations to its non-conservative
form at the grid points (LeVeque, 2002), can be written
as

CFL � 1

1 C 1
2 max�
�

with 
 being the flux limiter function.

Morphological changes in the bed elevation

In the above equations we have assumed that the
suspended sediment particles always remain very dilute,
so that we have neglected the effect of the concentration
of the particles on the fluid density � (we have also
neglected its effect in the fluid viscosity to compute the
friction factor f; see Appendix A). For this reason we
have also neglected any morphological change in the
bed elevation produced by the deposition and erosion of
sediments.

To justify this, we rewrite Equation (1) below by tak-
ing into account this effect. But first, the non-dimensional
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equation for the change of bed elevation due to deposition
and erosion of particles may be written as

dz

dt
D B�qd � qe� �13�

where z is the non-dimensional bed elevation in relation
to the initial inclined plane, and the non-dimensional
parameter B is defined as

B � me

�s�1 � P�U0
�14�

where �s is the particle density and P the bed porosity.
Then, the non-dimensional mass conservation equation
(Equation (1)) that takes into account the variation of
the bed elevation may be written, for dilute suspended
sediments, as

∂�

∂t
C ∂�u��

∂X
D B�qe � qd� �15�

Since me usually ranges between 5 ð 10�5 and 5 ð
10�3kg m�2s�1 (Sanford and Maa, 2001), and �sU0 is
always larger than 103kg m�2s�1 (for �0 of the order of
1 m, or larger), B is always very small, so that neglecting
the variation of the bed elevation for dilute suspensions is
justified, provided that jqe � qdj remains of order unity.

CHECK OF THE NUMERICAL METHOD AND
FRICTIONAL MODEL

To check the accuracy of the numerical technique,
as well as the validity of the frictional model, in
the following two subsections we apply the equations
to two different situations described in Jánosi et al.
(2004) and Pritchard and Hogg (2002) and compare our
numerical results with the experimental data and with
the analytical solution respectively given in them. In the
‘Comparison with an analytical solution for the sediment
transport in the dam-break problem on a horizontal bed
without friction’ section we also compare the results
obtained from different numerical schemes. Finally, in
the ‘Wetting front’ section we discuss the capturing of
the moving front shape and location by the numerical
method.

Comparison with experimental data for the dam-break
problem on a horizontal bed (with friction)

Jánosi et al. (2004) reported a series of experimental
results for the dam-break problem in a horizontal (� D 0)
glass channel of width b D 16 cm. We compare here
our numerical results obtained from different friction
models with their experimental data for the dam-break
flow of pure water over a dry bed. In particular, the flow
is produced when a gate initially at x D 0 is suddenly
removed, releasing the water filling a lock of length 38cm
and height �0 D h0 D 15 cm (see sketch in Figure 2). To
simulate numerically the vertical wall at the beginning of

xx0 = 38cm

h0 = 15cm

Figure 2. Sketch of the experimental setup of Jánosi et al. (2004)

the channel, x D �38 cm/15 cm ' �2Ð53, we consider
the numerical problem with a symmetry plane there.

In Figure 3 we plot the computed dimensionless height
� D h�x, t� for several instants of time. In these sim-
ulations we have used Darcy’s friction factor given
by Equation (A.1), with the hydraulic diameter DH D
4bhŁ/�2hŁ C b� (where hŁ is the dimensional height)
and a smooth surface (ks D 0). The computations are
performed using a second-order TVD–MinMod method
with a spatial mesh size X D �2/3� ð 10�6 and a time
step given by CFL D 0Ð45. They show that the numerical
method simulates correctly the advance of the water front
over the dry channel, as well as other qualitative features
of the dam-break wave, compared with the photographs
given in Jánosi et al. (2004: figure 2). To make a quanti-
tative comparison with the experimental data, we plot in
Figure 4 the temporal evolution of the water front X D xf

obtained from these simulations for a smooth surface,
together with the experimental data given in Jánosi et al.
(2004: figure 5). Also shown are the computed values
of xf using several, very small, values of the roughness
height ks. It is seen that the Colebrook–White friction
model reproduces very well the experimental results,
especially with ks D 5 ð 10�5mm (it corresponds to a
practically smooth surface). This fact justifies the use of
the Colebrook–White formula (Equation (A.1)) to com-
pute the friction term in the results given in the ‘Results’
and ‘Discussion’: suspended versus bed-load sediment
transport’ sections. As commented on in Appendix A,
we shall approximate the equivalent sand roughness with
twice the size of the sediment particles, ks D 2ds. For
comparison’s sake we also include in Figure 4 the asymp-
totic results of xf�t� given by the asymptotic solution in
Hogg and Pritchard (2004: section 4). The agreement
with our numerical solutions and with the experimental
data of Jánosi et al. (2004) is quite good for the initial
stages. However, beyond t D 5, approximately, the over-
all flow becomes affected by the rear vertical wall at
x D �x0 in the experiments (and in our numerical solu-
tion), and this effect is obviously not accounted for in the
asymptotic solution by Hogg and Pritchard (2004), valid
only near the wetting front.

Comparison with an analytical solution for the sediment
transport in the dam-break problem on a horizontal bed
without friction

The hydrodynamical part (�, U) of the dam-break
problem on a horizontal bed is described by the
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Figure 3. Dimensionless height as a function of x for several instants of time (as indicated) after the sudden release of the gate
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Figure 4. Temporal evolution of the water front obtained with Darcy–
Weisbach friction factor (Equation A.1) compared with the experimental
results from Jánosi et al. (2004), and the asymptotic solution by Hogg

and Pritchard (2004)

well-known Ritter (1892) solution:

��X, t� D



1 for X < �t
1
9

(
2 � X

t

)2
for � t � X � 2t

0 for X > 2t

�16�

U�X, t� D
{ 2

3

(
1 C X

t

)
for � t � X � 2t

0 otherwise
�17�

Introducing these expressions into the suspended sed-
iment transport equation (Equation (4)), Pritchard and
Hogg (2002) were also able to obtain an analytical solu-
tion for the sediment concentration c in the dam-break
problem over a horizontal bed. To this end, these authors
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Figure 5. Sediment charge as a function of xC for tC D 2 from different
numerical schemes, obtained with the same spatial and temporal reso-
lutions (xC D 10�3 and CFL D 0Ð45), compared with the analytical

solution given in Pritchard and Hogg (2002)

used Lagrangian coordinates, eliminating first constant
E from Equation (4) by redefining the non-dimensional
independent variables as

xC � EX tC � Et �18�

Figure 5 compares the analytical solution of Pritchard
and Hogg with our numerical solution when p D 1 and
Ue D 1 in the erosion model (Equation (6)). In particu-
lar, this figure shows the sediment charge Z D c� as a
function of xC for tC D 2. It is observed that the agree-
ment between the analytical and the numerical solutions
is quite good. The errors are larger in the vicinity of
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Figure 6. Concentration c as a function of xC for tC D 2 from different
numerical methods, obtained with the same spatial and temporal reso-
lutions (xC D 10�3 and CFL D 0Ð45), compared with the analytical

solution of Pritchard and Hogg (2002)

the water front over the dry surface, xC D 2tC, where,
according to Equations (16) and (17), the water height
� vanishes and the velocity reaches its maximum value
U D 2. This is due to the fact that the concentration c
has a discontinuity at this point, falling abruptly from its
maximum value to zero (see Figure 6). This error may
be reduced by decreasing the mesh size. In Figure 5 we
have also compared the accuracy of different numeri-
cal techniques (Lax–Wendroff, first-order upwind, and
TVD–MinMod; e.g. LeVeque, 2002). It is seen that the
TVD–MinMod method reproduces better the analyti-
cal solution for all values of xC, particularly near the
right water front: the upwind method has the poorest
precision there, while the Lax–Wendroff method under-
goes marked oscillation near the water front, where the
concentration has a discontinuity. The results from the

TVD–MinMod method in Figure 5 are practically indis-
tinguishable from the analytical solution. This compari-
son between the performance of the different numerical
techniques is much better appreciated in Figure 6, where
we plot the distribution of the concentration c for the
same time tC D 2.

Wetting front

The capture of the moving wet–dry front and the
precise computation of its moving shape are the most
critical aspects of the numerical method for the problem
studied here. This subject has been considered in some
recent studies for the same family of numerical finite
volume methods used here (e.g. Toro, 2001; Brufau
et al., 2004). However, for the present flow down a
constant slope bed, we have checked that it suffices
to consider a cut-off height to capture the advance of
the wetting front correctly. In particular, to identify the
wetting front xf�t� we have used a criterion based on
the relative height �/�max�t� < 10�4, where �max�t� is
the maximum height for a given t, which decreases in
time as the flow spreads down the sloping bed. As we
have seen in the ‘Comparison with experimental data
for the dam-break problem on a horizontal bed (with
friction)’ section, this numerical condition works very
well for the dam-break flow in a horizontal plane (see
Figure 4). For the flow down a sloping bed, Figure 7
shows that our numerical solution for the advance of the
wetting front (with friction) also agrees very well with
the semi-empirical results by Lauber and Hager (1998)
and with the asymptotic solution for large time given by
Hunt (1982, 1984).

The numerical solution captures not only the position
of the wetting front, but also its precise shape. To
see this, we compare next our numerical results with
an asymptotic solution of the dam-break flow with
friction on an inclined bed valid near the wetting front
(an extension of that originally obtained by Whitham
(1955)), and with the asymptotic solution by Hunt (1984)
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Figure 7. Temporal evolution of the wetting front obtained numerically compared with (a) the semi-empirical results by Lauber and Hager (1998) and
with (b) the asymptotic results valid for large time by Hunt (1982, 1984). �0 D 1 m, � D 1°, Fr D 2Ð5. The computations are made with CFL D 0Ð45

and using nx D 50 000 nodes
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for large time. If we define the variable � D xf�t� �
X, where xf�t� is the position of the wetting front,
Equations (1)–(3) read (note that U > 0)

∂�

∂t
C �x0

f � U�
∂�

∂�
� �

∂U

∂�
D 0 �19�

�

[
∂U

∂t
C �x0

f � U�
∂U

∂�
� cos �

∂�

∂�

]
D � sin � � f

8
U2

�20�

where primes denote differentiation with respect to t.
Near the wetting front �� − 1� one can obtain a solution
in powers of � which can be written as

���, t� D
N∑

jD0

�j�t��
�jC1�/2 U��, t� D

N∑
jD�1

U j�t���jC1�/2

�21�
and the coefficients are readily obtained by substitution
into Equations (19) and (20):

UN D 1

�0


 2

N C 2
�0

N�1 �
N�1∑
jD1

U j�N�j


 for N ½ 1

�22�

�N D 2

N C 2

1

�0 cos �


� sin ��N�1 C f

8

N�1∑
jD�1

U jUN�j�2

� cos �
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jD0

(
�jU

0
N�2�j

��j

NC1�j∑
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N � k � j C 1
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UN�k�jUk�1

)]
for N ½ 2

�23�

with

U�1 D x0
f U0 D 0 �24�

�0 D x0
f

2

√
f

cos �
�1 D 2

3 cos �
�x00

f � sin �� �25�

This asymptotic solution, which actually converges
even for � > 1, was originally found by Whitham (1955),
but Whitham only provided explicit expressions for the
first few coefficients, just up to N D 1. As is shown in
Figure 8 for the height � as a function of � for a given
t, the solution converges slowly as N is increased if �
is not too small, and one needs more than a few terms
in the expansion (Equation (21)) to obtain an accurate
solution sufficiently far from the wetting front (more
precisely, for N

>³10 the solutions are not distinguishable
for any �). In Figure 8 we also include the form of the
wetting front given by the asymptotic solution obtained
by Hunt (1984), showing a very good agreement with the
asymptotic solution (Equation (21)) if N is sufficiently
large. To compute x0

f and the next derivatives we have
used this asymptotic solution by Hunt, whereas xf is
obtained from the numerical simulation (Figure 7).

The comparison of this asymptotic solution (with
N D 50) with our numerical solution for two different
instants of time is shown in Figure 9. The agreement
is excellent near the wetting front, showing that our
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Figure 8. Asymptotic solution (Equation (21)) for the height ���� for
a given instant of time for different values of N. The case N D 1
corresponds to the solution given by Whitham (1955). Also included
is the asymptotic solution by Hunt (1984) for the same conditions. We

have selected t D 4411 from Figure 7
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Figure 9. Comparison between the numerical solution (circles) and the asymptotic solution (Equation (21)) near the wetting front with N D 50 (lines)
for two different instants of time, t D 4411 in (a) and t D 8966 in (b), for the same flow and conditions considered in Figure 7
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numerical technique captures the shape of the wetting
front with good precision. For the instant of time plotted
in Figure 9b, the numerical solution shows some undula-
tions (roll waves), which are discussed in the next section.
It is observed that this wavy behaviour is independent
of the boundary condition at the wetting front, since
the agreement between the asymptotic and the numerical
solutions remains excellent close to the front.

RESULTS

In this section we present the numerical results for
the suspended sediment transport after the rupture of
a dam on an inclined bed of constant, arbitrary slope.
All the results are obtained with the second-order
TVD–MinMod method, CFL D 0Ð45 and 5000 nodes dis-
tributed along the spatial coordinate X.

First, we present some detailed results for a given bed
slope, corresponding to a bed angle � D 20°. Figures 10
and 11 show some results for the hydrodynamics part of
the problem (physical height �, velocity U, and flow rate
Q � U�) for some instants of time just after the rupture
of the dam. To compute Darcy’s friction factor, we have
used a characteristic length �0 D 10 m and ks D 1 mm
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Figure 10. Height � for several instants of time (as indicated) just after
the rupture of the dam for a bed with inclination � D 20°

(see Appendix A). In Figure 10, it is observed that the
left (‘drying’) front remains stationary for the instants
of time considered, while the right (‘wetting’) front
advances quickly in time. At the position of this wetting
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Figure 11. (a) Velocity U, (b) flow rate Q D U� and (c) Froude number Fr D U/
p

� cos � as functions of X for the same instants of time indicated
in Figure 10 (� D 20°)
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Figure 12. Position of the right (‘wetting’) front as a function of time,
L1�t�, for � D 20° (�0 D 10 m, ks D 1 mm)

front, where the water height vanishes, the velocity
(Figure 11a) has a fictitious discontinuity due to the fact
that there is no water downstream of the front. This
discontinuity becomes just a high slope for the flow rate,
since we multiply U by � (Figure 11b). Also included
as Figure 11c is the distribution of the Froude number

Fr � U/
p

� cos �, which becomes singular at the wetting
front.

The position of the wetting front as a function of
time, L1�t�, is plotted in Figure 12 up to t ³ 90. For
large t one observes some undulations. They are due
to the oscillatory behaviour of the flow field near the
wetting front at large time, as observed in Figures 13
and 14. This behaviour is not numerical, as corroborated
by the fact that the same results are obtained with finer
numerical resolution, and by the strongly unstable nature
of the flow (as proved in Bohorquez and Fernandez-Feria
(2006)). It corresponds to the formation of roll waves
(e.g. Brock, 1969; Whitham, 1974) near the wetting
front, since the Froude number is significantly larger
than 2 there (see Figure 11c). As shown by Zanuttigh
and Lamberti (2002), the shallow-water model, with an
accurate numerical method similar to that used in the
present work, correctly describes the development of roll
waves in rectangular channels and reproduces Brock’s
(1969) experiments on roll waves. These waves have
not been observed previously, to our knowledge, in
dam-break flows, but our previous numerical simulations
and stability analysis (Bohorquez and Fernandez-Feria,
2006) show that the wavelength obtained numerically at
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Figure 13. (a) Velocity and (b) height as functions of X for several instants of time, as indicated in (a) (� D 20°)
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Figure 14. Details of (a) the velocity and (b) water height profiles near the wetting front at t D 67Ð836 895
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the initial stages of their development agree with those
given by the stability analysis. On the other hand, no
undulations are observed in the numerical simulations if
Fr < 2.

The corresponding sediment concentration profiles
c�X� and sediment charge profiles Z�X� � c� are plot-
ted in Figure 15 for the same instants of time considered
in Figure 13. They are obtained using p D 1Ð5 in the ero-
sion model (Equation (6)) and a particle size ds D ks/2 D
0Ð5 mm. As happens with the velocity, the concentra-
tion shows a fictitious discontinuity at the wetting front
due to the fact that there is no water downstream of it.
The sediment charge presents marked local maxima near
this front, due to the formation of roll waves, which the
present numerical method recovers accurately, as shown
by the inset in Figure 15b.

Although the non-dimensional mass concentration c
reaches high values near the wetting front for intermedi-
ate times, its physical dimensional value depends on the
quantity me/ws that is used to non-dimensionalize the
sediment concentration. To check the diluted sediment
hypothesis, we may compute the maximum value of the
sediment volume fraction, given by

� D cme

ws�s
�26�

Using a typical value for the characteristic erosion
mass flux, me D 5 ð 10�5kg m�2s�1 (Sanford and Maa,
2001), �s/� D 2Ð65 (quartz/water), and the corresponding
value of the settling velocity ws for the present sediment
size (see Equation (A.3)), the maximum value of the sed-
iment volume fraction in the flow is � D 8Ð88 ð 10�4,
reached at the wetting front for t D 23Ð58. Therefore,
the diluted sediment hypothesis is well satisfied in the
present case.

As time goes on, both the sediment concentration and
the sediment charge increase inside the flow, and then
decrease (note that c and Z are much smaller for the
first instant of time considered in Figure 15). To gain an
idea of the total amount of sediment inside the flow for a

given time, it is convenient to define the total suspended
sediment load :

Qs�t� �
∫ L1�t�

L2�t�
Z�X, t�dX �27�

where L1 and L2 are the right and left water fronts
respectively. Figure 16 shows Qs�t� for the present case.
Initially it has a rapid growth in time, reaches a maximum
Qs,max, and then decreases, first as quickly as it increased,
and then more slowly, with the oscillatory behaviour
at large time. At the end, all the eroded particles may
become deposited if friction can slow down the flow
below the critical value for erosion. This last process
may be very slow owing to the oscillatory behaviour
of the wetting front. This long time behaviour of the
suspended sediment load is not accounted for by the
recent asymptotic solutions by Pritchard (2005), which
tend monotonically to zero in the absence of roll waves.

For the present slope (� D 20°), we have performed
the same computations for other values of the physical
parameters. According to the discussion in Appendix A,
these parameters are basically reduced to three: �0, ds
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Figure 16. Total suspended sediment charge as a function of time for the
same case considered in Figure 15
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Figure 15. (a) Sediment concentration profiles and (b) sediment charge profiles as functions of X for the same instants of time considered in Figure 13.
The inset in (b) shows a detail of the largest value of Z�X�. � D 20°, �0 D 10 m, p D 1Ð5, ds D ks/2 D 0Ð5 mm
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and p. The computations are summarized in Figure 17,
where the time evolution of the total suspended sediment
charge Qs�t� is plotted for characteristic (limiting) values
of these parameters. The computations are followed in
time until Qs is about 10% of Qs,max. It is observed that
Qs,max can be very high (note the logarithmic vertical
scale). For this reason, and in order to check the validity
of the diluted suspended sediment hypothesis all along
the flow, we also give in Figure 17 the highest value of
the sediment volume fraction � reached along each flow.
This maximum value of the volume fraction is reached at
the wetting front for some instant close to the time where
Qs reaches its maximum. Obviously, � increases with �0

(since more water is put into motion), with decreasing
particle size (erosion is enhanced, and deposition reduced,
as ds decreases), and, more markedly, with increasing
erosion power p (erosion is much more effective as p
increases). All the cases plotted in Figure 17 satisfy the
hypothesis � − 1 (only for the case with p D 3Ð5, �0 D
10 m, and ds D 1 mm is � not so small). The case with
p D 3Ð5, �0 D 10 m, and ds D 0Ð5 mm is not plotted
because � is of order unity. For p D 1Ð5, the dilute
sediment approach is always valid, even for particle sizes
smaller than those considered in Figure 17.

The computations have been repeated for other values
of the angle of the bed � up to the maximum value
given by the angle of repose 
s, which for sand particles
with ds < 10 mm is between 30° and 35° (van Rijn,
1993). To characterize the downhill global transport of
sediments after the break of the dam as a function
of the bed angle � we have selected two quantities:
the maximum value of the total sediment load Qs,max

and the time at which this maximum is reached tmax.
The first quantity gives an idea of the total amount
of sediment moved by the flow and the second tells
us about the distance at which this sediment load is
transported downhill the dam (provided one knows the
advance of the wetting front). In order that these two
dimensionless quantities are always evaluated for the
same volume of water (same area in the initial triangle
depicted in Figure 1), independently of the bed angle
�, for a given characteristic length �0, we normalize
them by defining QŁ

s,max D Qs,max sin � cos � and tŁ
max D

tmax/�sin � cos ��1/4. These two quantities are plotted in
Figures 18 and 19 as functions of the bed angle � for
some values of ds, for �0 D 10 m and 1 m, and for
p D 1Ð5. Both QŁ

s,max and tŁ
max increase with decreasing

ds (obviously, as the size of the sediment particles
decreases, more sediment load is put into motion, and it is
transported further downstream). Clearly, tŁ

max decreases
with �, whereas QŁ

s,max increases with �. On the other
hand, QŁ

s,max ! 0 and tŁ
max ! 1 as � ! 0 due to the

volume normalization (the volume of the water tends to
infinity as � ! 0).

DISCUSSION: SUSPENDED VERSUS BED-LOAD
SEDIMENT TRANSPORT

The above results are for suspended sediment trans-
port. As discussed in the second section, sediment
particles become eroded from the bed, and get sus-
pended into the flow, when the fluctuation velocity near
the bed vŁ becomes larger than a times the settling
velocity of the particles ws, where a is an empirical
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Figure 17. Total suspended sediment load as a function of time for � D 20° and several values of �0 (m), ds (mm) and p. Also shown is the
maximum value reached by the sediment volume fraction � inside each flow
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Figure 18. Normalized maximum of the suspended sediment load as a function of � for different values of ds (as indicated), p D 1Ð5, and for
(a) �0 D 1 m and (b) �0 D 10 m

constant that we have taken equal to 1Ð2 in the above
computations. This criterion can be written in terms of
a critical velocity Ue, given by Equation (8), in such
a way that erosion, and suspended sediment transport,
occurs when U > Ue. However, another type of sedi-
ment transport takes place along the bed even for veloc-
ities smaller than Ue. This bed-load sediment trans-
port occurs when the shear stress at the bed becomes

larger than a critical value. Thus, in order to asses
what fraction of the total sediment is transported by
suspension (the above results), one also has to charac-
terize the bed-load transport. In this section we com-
pute the bed-load to suspended-load sediment transport
fraction in the present dam-break problem for different
sizes of sediment particles and for different angles of
the bed.
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Sediment motion along the bed occurs when the so-
called Shields parameter, defined as (e.g. Chanson, 2004)

�Ł � �b

��s � 1�gds
D fU2

0U2

8�s � 1�gds
s � �s

�
�28�

is larger than a critical value (where �s is the density of
the sediment particles) that depends only (for horizontal

beds) on the shear Reynolds number

ReŁ � �Łds



D

√
f/8U0Uds



�29�

where 
 is the kinematic viscosity of the fluid.
We have taken s D 2Ð65 in the computations, see

Appendix A. For inclined beds, this criterion has to be
modified to take into account the bed angle �. According
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to Damgaard et al. (1997), if one defines the modified
critical Shields parameter

��
c � sin�
s � ��

sin 
s
�c �30�

where 
s is the angle of repose, sediment bed-load motion
occurs when �Ł > ��

c , where �c is the critical Shields
parameter for � D 0, given by (see also Julien (1995)
and Chanson (2004))

�c D




0Ð5 tan 
s for dŁ < 0Ð3
0Ð25d�0Ð6

Ł tan 
s for 0Ð3 < dŁ < 19
0Ð013d0Ð4

Ł tan 
s for 19 < dŁ < 50
0Ð06 tan 
s for 50 < dŁ

�31�

In this expression, the dimensionless particle diameter

dŁ � ds
3

√
�s � 1�g


2
D 3

√
Re2Ł
�Ł

�32�

is used instead of the shear Reynolds number
(Equation (29)). The critical Shields parameter for the
threshold of sediment bed-load motion is plotted in
Figure 20 for different values of the bed angle �, and for

s D 34°, appropriate for sand particles (e.g. Chanson,
2004). Also plotted in Figure 20 is the threshold for sus-
pension according to Bagnold’s criterion (Equation (8))
�Ł D aws, with a D 1Ð2, expressed in the notation �c D
�c�ReŁ� (note that �Ł D �2

Ł/[�s � 1�gds] and ws is given
by Equation (A.3)). It is observed that this criterion pre-
dicts, for small ReŁ, that suspension may occur for a
lower shear stress (a lower flow velocity) than bed-
load motion, which cannot be physically correct. As

commented on in the ‘Formulation of the problem and
numerical method’ section, what happens is that, for
larger particles, this suspension criterion is not correct
because no sharp boundary between bed-load motion
and suspended transport exists; that is, the suspension
process is not characterized by a single constant a in
Equation (8) (Julien, 1995). For this reason, we also
include curves corresponding to different probabilities P
of suspension in Figure 20 (Cheng and Chiew, 1999).
For a given P, these curves yield the threshold Shields
parameter above which the probability of suspension is
P, as functions of ReŁ.P D 0Ð2 is equivalent to Bagnold’s
criterion with a D 1Ð2 for large ReŁ, P D 0Ð34 is equiv-
alent to a D 2Ð5, and P D 0Ð42 is equivalent to a D 5
(Cheng and Chiew, 1999). This means that above the
curve for P D 0Ð42 all the sediment transport is by sus-
pended load (Julien, 1995), whereas one has mixed trans-
port in between this curve and the Shields curves. We
have included some straight lines (in the logarithmic plot)
corresponding to several values of the particle diameter
(note that dŁ D constant means that �Ł ³ Re2

Ł) in order
to have an idea of the behaviour of sediment particles of
different sizes as ReŁ increases.

Taking into account all these considerations, we have
evaluated the inception of bed-load and suspended-load
sediment transport in the present problem. Figure 21
compares (for �0 D 10 m, ds D 0Ð2 mm, and for two
values of the bed angle �) the right wetting front
L1�t� with the front Lb�t� at which bed-load transport
begins, and with the different fronts Ls,a�t� at which
suspended load is initiated for different values of constant
a in Bagnold’s criterion. This comparison gives us a
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Figure 20. Modified critical Shields parameters �c for inception of bed-load sediment transport and suspended sediment transport as functions of the
shear Reynolds number; 
s D 34°
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Figure 22. As Figure 21, but for ds D 1 mm

first idea of the relative importance of both kinds of
sediment transport. Figures 22 and 23 contain the same
information for ds D 1 mm and ds D 5 mm. It is observed
that Lb first becomes very small and then increases,
meaning that the bed motion begins just after the break
of the dam and it is present at almost every point
of the flow motion since the start of the flow. Small
sediment particles (e.g. ds D 0Ð2 mm, Figure 21) become
suspended a little downstream of the initiation of the
bed motion. Therefore, sediment transport is dominated
by suspension in this case (note that the curve Ls,5�t�,
above which all the particles are in suspension, is much
closer to Lb�t� than to L1�t��, the more so the larger the
bed slope. For ds D 1 mm (Figure 22) the situation is
qualitatively similar, but the ratio of suspended transport
to bed-load transport is not so large, especially for small
bed slopes. Note that although Ls,5 is closer to L1 than to
Lb (Ls,5 does not even exist at some intervals of time
for small �), Ls,1Ð2 is always closer to Lb, so that an
important fraction of the transported sediment particles
is in suspension at every instant. However, the situation

is inverted for larger particles (Figure 23 for ds D 5 mm).
In this case, the dominant transport mechanism is bed-
load motion for small angles of the bed, though the
relative suspended load increases with �, and for � > 20°

suspended load becomes more important than bed load.
Note that, in this case, the curve Ls,5�t� does not exist
for any bed angle. Finally, it is worth commenting that
the discontinuities observed in some of these curves
are due to the formation of roll waves, which produce
intermittencies in the sediment suspension.

Although the above figures give us a qualitative idea
of the different sediment transport processes taking place
in the flow as time goes on for different values of ds

and �, to give a more quantitative idea of the relative
importance of both sediment transport processes we have
computed the quantities

OEb D Eb

Eb C Es
and OEs D 1 � OEb �33�

where Eb and Es are the total energies per unit time
used for bed-load motion and for suspended transport
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Figure 23. As Figure 21, but for ds D 5 mm

respectively (e.g. Yalin and da Silva, 2001):

Eb D εb

Nb∑
iD1

∫ xII
bi

xI
bi

[�Ł � ��c�b]
Ł dx �34�

Es D εs

Ns∑
iD1

∫ xII
si

xI
si

[�Ł � ��c�s]
Ł dx �35�

In these expressions, N is the number of intervals
[xI, xII] where a specific erosion process (bed load or
suspension, as the subscript indicates) takes place and ε
is the corresponding efficiency of the process (we have
used εb D εs in Equation (33)). OEb and OEs with P D 0Ð2,
corresponding to a D 1Ð2 for large ReŁ, are plotted in
Figures 24–26 for the same cases as in Figures 21–23.
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Figure 24. OEs (continuous lines) and OEb (dots) as functions of time for �0 D 10 m, ds D 0Ð2 mm, and different bed angles (as indicated). a D 1Ð2
(P D 0Ð2) has been used for the computation of the suspension threshold
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Figure 25. As Figure 24, but for ds D 1 mm
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Figure 26. As Figure 24, but for ds D 5 mm

It is observed that only for large particles (ds D 5 mm)
and small slopes of the bed (� < 20°) is OEb > OEs,
i.e. bed-load sediment transport is more important than
suspended load transport. For ds D 1 mm, OEb − OEs for
all � almost from t D 0, whereas OEb is always negligible
for ds D 0Ð2 mm.

CONCLUSIONS

We have formulated in this study the problem of transport
of dilute suspended sediments after the rupture of a
dam on an inclined bed of arbitrary constant slope.
The frictional model has been validated against existing
experimental data. Several numerical techniques have
been tested with available analytical solutions for the
transport of sediment in the dam-break problem on a
horizontal bed. The capture of the moving wet–dry front
by the numerical method has been checked with existing
experimental data and asymptotic analytical solutions.

We have characterized the transport of suspended sed-
iments as a function of the slope of the bed for different
values of the parameters characterizing the sediments. To
that end we have used the maximum value of the nor-
malized sediment load QŁ

s,max and the normalized time at
which this maximum is reached after the rupture of the
dam tŁ

max. Some details on the water height, flow veloc-
ity, and sediment concentration profiles are also given.
We have observed the formation of roll waves near the
advancing water front for large times. They produce spa-
tial oscillations in the sediment concentration near the
wetting front, but they do not affect to QŁ

s,max since
they are produced for t × tmax. However, these oscil-
lations are very relevant in the sediment transport near
the wetting front as the dam-break flow evolves downhill
because they produce pronounced local maxima of the
sediment concentrations, which cannot be predicted from
asymptotic solutions of the problem (Pritchard, 2005).
We have also characterized the validity of the dilute sed-
iment approach as a function of the bed slope and of
the sediment properties. Finally, we have also computed

the bed-load transport and discussed its relative impor-
tance to the suspended sediment transport in the present
problem as a function of the size of the sediment parti-
cles and the inclination of the bed. It is concluded that
bed-load motion is more important than suspended trans-
port for large sediment particles (ds ³ 5 mm), especially
for small bed angles. For small particles (ds D 1 mm or
smaller), the sediment transport is dominated by suspen-
sion, the more so the larger of the bed slope. Of course,
all these results have the limitations of a depth-averaged
model. For instance, the settling flux is computed with the
depth-averaged concentration c and, clearly, basal con-
centration will be in excess of c, enhancing the bed-load
transport. For very small sediment particles this effect
is negligible because the sediment concentration profile
tends to be uniform, but the concentration of sediment
particles becomes increasingly larger near the bed as
the sediment size increases (Julien, 1995). However, a
quantitative analysis of how the vertical distribution of
sediment in suspension affects the predictions from the
depth-averaged model is beyond the scope of this paper.

Apart from their interest in hydraulic and environmen-
tal engineering, the present numerical solutions for the
sediment transport on non-horizontal beds may be used
to check the numerical results from future, more com-
plex formulations where arbitrary forms of the channel
and arbitrary slopes and slope variations are taken into
account.
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APPENDIX A: FRICTION AND SEDIMENT
MODELS

For the Darcy–Weisbach friction factor f (sometimes
also called Darcy, or Fanning, friction factor in the tur-
bulent pipe literature) appearing in Equations (3) and (8),
we shall use the Colebrook–White expression (Cole-
brook, 1939)

1√
f

D �2Ð0 log10

(
ks

3Ð71DH
C 2Ð51

Re
√

f

)
�A.1�

where ks is the average roughness height of the bed
(Nikuradse’s equivalent sand roughness; e.g. Schlichting,
1987), and

Re D U
p

g�0DH



�A.2�

is the local Reynolds number, where DH is the hydraulic
diameter (note that, for one-dimensional flow, b × �0,
where b is the channel width, DH D 4�0�). In the
computations reported in the ‘Results’ and ‘Discussion:
suspended versus bed-load sediment transport’ sections
we use 
 D 10�6m2s�1 and values of �0 between 1 and
10 m. For the roughness height ks, several experiments
have obtained values between one and ten times the
sediment particles’ mean diameter ds (e.g. van Rijn,
1984). We shall use a mean value ks D 2ds (Chanson,
2004).

The depositional model (Equation (7)), in which all
the particles fall at the same settling velocity ws, is
appropriate for fine suspended, non-cohesive sediment,
e.g. like sand (Pritchard and Hogg, 2003). There are
also more complex expressions that take into account
the formation and break-up of aggregates, or a different
near-bed concentration to the average one that controls
the deposition of particles (e.g. Cao, 1999). However, we
will restrict ourselves to the simple model (Equation (7))
in this work. To be coherent with this non-cohesive
sediment deposition model, the power p in the erosion
model (Equation (6)) must lie in the range 3/2 � p �
7/2 (Dyer and Soulsby, 1988). Nonetheless, we have
also used the value p D 1 in the computations in the
‘Comparison with an analytical solution for the sediment
transport in the dam-break problem on a horizontal
bed without friction’ section to compare with previous
analytical dam-break results.

For sediment particles with mean diameter in the
wide range ds < 60 mm, one may use the following
experimental expression for the settling velocity (Brown
and Lawler, 2003):

ws D 3
√

g
�s � 1�

[(
18

d2
Ł

)0Ð898�0Ð936dŁC1�/�dŁC1�

C
(

0Ð317

dŁ

)0Ð449
]�1Ð114

�A.3�

Taking s D �s/� D 2Ð65 for quartz particles in water, the
settling velocities predicted by this formula lie in the

interval 0Ð003 < ws < 0Ð114 m s�1. Thus, for a reference
depth �0 between 1 and 10 m, the non-dimensional
parameter E D ws/

p
g�0 (Equation (5)) will lie in the

range 3 ð 10�4 < E < 0Ð036, approximately.
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