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The behavior of a swirling jet issuing from a pipe and impinging on a flat smooth wall is analyzed
numerically by means of axisymmetric simulations. The axial velocity profile at the pipe outlet is
assumed flat while the azimuthal velocity profile is a Burger’s vortex characterized by two
dimensional parameters; a swirl number S and a vortex core length �. We concentrate on the effects
of these two parameters on the mechanical characteristics of the flow at moderate Reynolds
numbers. Our results for S=0 are in agreement with Phares et al. �J. Fluid Mech. 418, 351 �2000��,
who provide a theoretical determination of the wall shear stress under nonswirling impinging jets at
high Reynolds numbers. In addition, we show that the swirl number has an important effect on the
jet impact process. For a fixed nozzle-to-plate separation, we found that depending on the value of
� and the Reynolds number Re, there is a critical swirl number, S=S��� ,Re�, above which
recirculating vortex breakdown bubbles are observed in the near axis region. For S�S�, the
presence of these bubbles enhances the transition from a steady to a periodic regime. For S�S�, the
flow remains steady and the results show that the introduction of swirl reduces the maximum
pressure and radial skin-friction coefficients over the wall. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3063111�

I. INTRODUCTION

The impingement of a submerged jet on a smooth solid
surface is a problem of great importance in many engineer-
ing applications �cooling, heating, and drying processes,
sealing of materials, underwater cleaning, among others�.
The wall shear stress and heat transfer properties of sub-
merged jets are crucial to determine their efficiency and,
therefore, to predict their potential impact on the process.

Although turbulent jets are used in most of these appli-
cations, specially those related to the heat transfer phenom-
enon, valuable insight is obtained from the study of laminar
impinging jets. In particular, some authors have focused on
the mechanical behavior of laminar jets. Salient examples are
the characterization of the skin-friction coefficient,1,2 the
boundary layer separation at the wall,3,4 and the influence of
the velocity profiles on the flow pattern close to the impinge-
ment area.5,6 Particularly interesting is the work of Phares et
al.,1 providing a method for the theoretical determination of
the wall shear stress under diverse impinging jet setups.
Moreover, submerged jets emerging from a nozzle with an
axial uniform flow and impinging onto a flat plate have been
experimentally and numerically studied,4 and the nozzle-to-
plate separation �jet height� is rescaled to yield a collapse of
the data onto a single curve independent of the Reynolds
number. The attractiveness of impinging jets has increased
recently owing to such industrial applications, at moderate
Reynolds numbers, as portable computer cooling7 and
atherogenesis research by means of endothelial surface
tests.8–10

Despite the significant number of works dealing with jet

impingement on a plane, less attention is paid to the swirl
effect at moderate Reynolds number. Most research on im-
pinging swirling jets focuses on the heat transfer character-
istics of the flow. For example, some experimental works
with turbulent swirling flows11–13 show that swirling jets im-
prove heat transfer significantly in comparison to turbulent
jets without swirl.14,15 At high Reynolds numbers, helical
waves are always dominant in the shear layer of swirling jet
flows, either with or without vortex breakdown �VB�; this is
well documented in a series of experimental and computa-
tional works.16–20 Helicoidal waves were also observed in an
experimental setup with impinging turbulent swirling jet
flows.21 However, at moderate Reynolds number, the impor-
tance of helicoidal waves in the general structure of the flow
is much smaller, and in many instances the flow can be de-
scribed as strictly axisymmetric. An example is the work of
Sanmiguel-Rojas et al.22 where it was shown that the three-
dimensional swirling flow discharging in a sudden expansion
becomes basically axisymmetric when the swirl parameter
attains a threshold where VB takes place. Herrada and
Fernández-Feria23 studied the development of VB in a
straight pipe flow without wall friction. The transition to he-
lical breakdown modes was shown to issue from an upstream
axisymmetric recirculation region �bubble or vortex core�.
Therefore, a purely axisymmetric stability analysis can yield
significant insight into the vortex dynamics of jet and colum-
nar flows.

Axisymmetric simulations have been used in the past to
describe the thermal aspects of impinging swirling jet flows
at moderate Reynolds numbers.24,25 Our main objective in
this work is to study the interaction between impinging �non-
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swirling and swirling� jets and a solid wall in a confined
domain at moderate Reynolds numbers; our attention will
focus on the dynamics of the flow, aiming at the description
of the swirl influence on the mechanics of impingement
�pressure, shear� and on the flow pattern �specifically, bubble
structure�. These are the dominant mechanical characteristics
of the impinging jet and, therefore, have an important influ-
ence on the effectiveness of its potential applications �com-
puter cooling, atherogenesis treatment�.

In particular, for a fixed geometrical configuration, we
identify the parametric region where recirculating bubbles
�with reverse axial flow� are to be expected in the flow. We
show that the occurrence of recirculating bubbles, hereafter
referred to as VB bubbles, is a key factor determining the
mechanical characteristics of the impinging jet. To that end,
axisymmetric calculations will be carried out to determine
the skin-friction and pressure coefficients at the wall. Fur-
thermore, we will analyze the mechanics of the flow as a
function of three main parameters: the Reynolds number, the
swirl parameter, and the vortex core radius.

This paper is organized as follows. First, a general prob-
lem formulation and a description of the numerical scheme
are included in Sec. II. The presentation of axisymmetric
numerical results, the comparison with a previous nonswirl-
ing jet study, are given in Sec. III. A summary of the main
results is presented in Sec. IV.

II. FORMULATION OF THE PROBLEM

Incompressible, axisymmetric and time-dependent di-
mensional Navier–Stokes equations describing the dynamics
of a �swirling or nonswirling� impinging jet are solved in
cylindrical coordinates �r ,� ,z�. The jet emerges from a pipe
of radius R and it impinges on a smooth wall located at a
given distance H. The flow configuration and the computa-
tional domain are depicted in Fig. 1. To render the governing
equations dimensionless, the pipe radius R and the maximum
jet exit axial velocity W are used. The convective time scale
is T=R /W, and the characteristic pressure is P=�W2, where
� is the constant density of the fluid. Using these character-
istic parameters, the dimensionless continuity and momen-
tum equations are written as

1

r

��ru�
�r

+
�w

�z
= 0, �1�

Du

Dt
= −

�p

�r
+

v2

r
+

1
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where �u ,v ,w� and p are the dimensionless velocity and
pressure fields. The mathematical operators D /Dt and �2 are
defined as

D

Dt
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The Reynolds number is defined in terms of �, the kinematic
viscosity of the fluid,

Re =
WR

�
. �7�

The above set of equations has been solved to describe the
behavior of a family of swirling impinging jets issuing from
a pipe outlet located at z=H /R. The dimensionless velocity
field �u ,v ,w� at the pipe outlet is assumed to be

u = 0, v =
S

r/�
	1 − exp��− �r/��2��
 ,

�8�
w = − 1 �0 � r � 1� ,

where �=�� /R is the characteristic dimensionless vortex
core radius and S is a swirl parameter defined as

S =
�

W��
, �9�

while � is the vortex circulation far from the axis �r	��.
The velocity profiles described in Eq. �8� combine a uniform
axial flow and a circumferential �Burger’s vortex� flow, with
no radial flow. This velocity field is in good agreement with
the inlet velocity of some experiments on VB in pipes,26 and
it has been extensively used in different theoretical and nu-
merical investigations of axisymmetric swirling flows in
pipes.27,28 Here, the velocity field �8� imposed at the outlet
pipe is used to study the effect of the swirl �S� and the size of
the core ��� on the behavior of the impinging jet.

At the solid boundaries �z=0 and z=H /R with r�1�,
nonslip boundary conditions are imposed,

w = v = u = 0. �10�

Finally, away from the jet impact region, at r=Ro /R
	1, outflow conditions are considered,

�w

�r
=

�v
�r

=
�u

�r
= 0. �11�
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FIG. 1. Basic flow geometry.
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Most of the axisymmetric numerical results reported are
obtained for a single jet height H /R=10. This is a typical
distance used in seabed excavations applications based on
impinging swirling jets.29 However, in order to compare with
previous results for nonswirling jets,1 some simulations have
been performed with a different jet height �H /R=16, see
Sec. III�. In addition to this, a sufficiently large outer radius
Ro has been selected to ensure that the outflow boundary
conditions �11� do not affect the results. Thus, Ro /R=60 in
all the simulations presented here.

A. Computational method

To compute the time evolution, a mixed implicit-explicit
second order projection scheme based on backward differen-
tiation is used.30 The spatial discretization in the �z ,r� coor-
dinates �meridional plane� is carried out with nr and nz

Chebyshev spectral collocation points in the radial and axial
coordinates �r ,z�. This approximation allows us to use the
matrix diagonalization method,31 whose computational com-
plexity is of the order of nr
nz
min�nr ,nz�. The resulting
set of three Helmholtz-type �momentum� equations is solved,
along with the Poisson equation providing the pressure cor-
rections. The geometry is chosen to be Ro /R=60 and H /R
=10 �in addition, H /R=16 is explored in the case S=0�. We
have carried out the numerical simulations in a grid with
nr=200, nz=61 for the range of swirl parameters and the
moderate Reynolds numbers �7� considered in this work.
Several convergence tests have been run in finer grids �with
nr=301, nz=81�, suggesting that this resolution level pro-
vides accurate results. The time step employed in most of the
simulations was �t=0.01. No significant differences in the
temporal evolution of the flow were found using smaller time
steps, in particular, for those cases where a pure periodic
unsteady regime was found �see Sec. III�.

III. RESULTS

In order to quantify the mechanical effects of the im-
pinging jet on the wall, let us introduce the radial and azi-
muthal skin-friction coefficients defined as

cfr�r� =
�z�r�

� �z = 0,r�

�W2 =
1

Re
� �u

�z
+

�w

�r
�

z=0,r
=

1

Re

�u

�z
, �12�
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�z��

� �z = 0,r�

�W2 =
1

Re
� �v

�z
+

1

r

�w

��
�

z=0,r
=

1

Re

�v
�z

,

�13�

where �z�r�
� and �z��

� are the two-dimensional components of
the stress tensor tangent to the wall surface z=0.

The pressure coefficient over the wall is also defined as

cp�r� =
p��z = 0,r� − p��z = 0,r → 
�

�W2

= p�z = 0,r� − p�z = 0,Ro/R� , �14�

where “ � ” denotes dimensional variables. The discussion
that follows analyzes the above quantities and the general
structure of the flow for nonswirling �S=0� and swirling �S

�0� cases, respectively, for a range of Reynolds numbers,
50�Re�500.

A. Nonswirling jet „S=0…

First, the nonswirling jet impingement on a flat wall is
considered. The axisymmetric numerical simulations pre-
sented here show that, starting from rest, the flow reaches a
steady state. The streamlines for three Reynolds numbers and
H /R=10 are shown in Fig. 2 �Re=100 �a�, Re=300 �b�, and
Re=500 �c��. It can be observed that there is a large recircu-
lating area associated with the impinging process; the size of
this cell increases as the Reynolds number increases. Added
to this, the separation between streamlines near the wall de-
creases as the Reynolds number increases, indicating a
strong velocity gradient near the wall where a boundary layer
develops. This boundary layer that moves the wall apart de-
velops along the radial coordinate and separates from the
wall at a given radial position rsep. At a further radial posi-
tion, the flow is reattached to the wall. Dotted lines in Fig. 2
show streamlines within the separation region. Clearly, this
region becomes wider when the Reynolds number increases.
To determine the separation point rsep the condition
cfr�rsep�=0 is used. Figure 3 shows rsep as function of the
Reynolds number. In the range of Reynolds numbers ana-
lyzed, rsep grows as the Reynolds number increases. It is
known that rsep grows asymptotically to a constant value as
the Reynolds number is increased, since the position where
the boundary layer separation takes places should become
independent of the Reynolds numbers when the near-wall
boundary layer is fully developed. On the other hand, no
separation was found below Re�85.

Let us now focus our attention on the dynamics of the jet
in the impingement region. Figures 4�a� and 4�b� represent
cfr and cp as a function of r for the three cases considered in
Fig. 2. Figure 4�a� shows that cfr increases from zero �at the
axis, r=0� to a maximum value cfr

max, and then its value de-
cays as r increases. An opposite trend is shown in Fig. 4�b�,

FIG. 2. Streamlines of a nonswirling jet �S=0� for different Reynolds num-
bers: Re=100 �a�, Re=300 �b�, and Re=500 �c�. Dotted lines represent the
separation region.
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where cp decays monotonically with r and achieves a maxi-
mum value cp

max at r=0. As expected, cp
max tends to a constant

value, while cfr
max decays, when Re increases. On the other

hand, the skin-friction coefficient can be rescaled to be inde-
pendent of the Reynolds number. In fact, Phares et al.1 pre-
dicted that, for high Reynolds numbers, Re	1, the wall
shear stress ��= ��z�r�

� �z=0� in a laminar boundary layer �axi-
symmetric case� can be scaled according to the law

��2 Re�H/2R�2

�W2 = f�Rr/H,H/R� , �15�

where function f is an analytical expression which only de-
pends on the variable Rr /H and the jet height H /R. To vali-
date our results, we have plotted in Fig. 5 the rescaled func-
tion �P=��2 Re�H /2R�2 / ��W2� as a function of Rr /H for
three different Reynolds numbers and two different jet
heights. For H /R=10, Fig. 5�a� shows that the radial depen-
dency of �P tends asymptotically to a unified curve as Re
increases and its maximum value is reached at rR /H�0.16.
This radial coordinate is consistent with the theoretical pre-
diction reported: 0.10 �H /R=8� and 0.2 �H /R=12�, although
no data are available for the case H /R=10.1 Nevertheless, to
guarantee the axisymmetric numerical results presented in
this work, �P is represented again as a function of rR /H in
Fig. 5�b� for a different jet height, H /R=16. This H /R value
is located close to the asymptotic threshold where the wall
shear stress starts to be self-similar.1 For this jet height, good
agreement between the numerical axisymmetric results and
the theoretical predictions is found: �P tends asymptotically

to the analytical curve1 as the Reynolds number Re is in-
creased; and the maximum wall shear stress is reached at
rR /H=0.09, confirming the results previously known.

B. Swirling jet „S>0…

The effect of swirl on the behavior of the impinging jet
has been analyzed for a fixed jet height, H /R=10. In Sec.
III A the results for a fixed value of the vortex core radius �
are described in detail. In Sec. III B, we will explore the
effect of changing � to illustrate the importance of this pa-
rameter on the structure and stability of the flow.

1. Results for �=0.5

Let us start by analyzing the structure of the flow for a
fixed value of the vortex core radius, �=0.5. For S=0.3 the
numerical axisymmetric results show that the axial flow does
not differ much from the nonswirling flow. Figure 6 shows
streamlines for the steady state solution for Re=100 �a�,
Re=300 �b�, and Re=500 �c�. It can be seen that the stream-
lines are similar to the streamlines in Fig. 2 for the case
without swirl �S=0�. Of course, S�0 implies that there is an
azimuthal motion superimposed on the axial flow. The circu-
lation contours, �=vr, for these cases are shown in Figs.
6�d�–6�f�. Note that the circulation is first convected by the
jet from the pipe toward the wall, and then it is spread radi-
ally away from the axis owing to the strong radial flow cre-
ated by the boundary layer in vicinity of the wall. Clearly,
the convection of circulation becomes more effective as the
Reynolds number increases, since it leads to a decrease in the
relative importance of the viscous dissipation term.

The main effect of increasing the circulation advection,
for a fixed value of the Reynolds number, is to produce a
significant drop of the maximum values of the pressure and
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FIG. 3. rsep as a function of Re.
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Re=100 �solid lines�, Re=300 �dashed lines�, and Re=500 �dotted lines�.
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radial skin-friction coefficients at the wall. This is shown in
Fig. 7, where we plot the skin-friction and pressure coeffi-
cients for the steady state solution under three different swirl
parameters �S=0.2, 0.3, and 0.4� and a fixed value of the
Reynolds number, Re=300. Note that cfr

max and cp
max decrease

as S grows. Added to this, the maximum value of the azi-
muthal skin-friction coefficient at the wall �cf�

max� increases
with S. It is worth noting that the locus of cp

max moves from
the axis to a radial position r�0, which is r�1.3 for S
=0.4. The figure also shows that for S=0.4 there is a small
region near the axis where the radial skin-friction coefficient
becomes negative. These two facts can be explained owing
to the presence of a small recirculating bubble near the axis
with reverse flow �positive velocity at the axis�. These VB
bubbles are similar to the bubbles observed experimentally
and computed numerically in a completely filled, enclosed,
circular cylinder driven by a constant angular velocity in the
end wall.32,33 Our case shares with the above references the
basic flow pattern, a swirling jet impinging on a wall. Nev-
ertheless, the confined cylinder problem32,33 is characterized
by a nonrotating wall: as a result, the axial and azimuthal
motions are not independent.

Other similarities with the flow in an enclosed cylinder
are analyzed. The VB bubbles can spread over all the near-
axis region when the swirl intensity is sufficiently high. For
instance, Fig. 8 depicts instantaneous streamlines for S=0.6
and Re=100 �a�, Re=150 �b�, and Re=200 �c�. While in the
two first cases ��a� and �b�� the flow has reached a steady
solution, in the last one �c� the flow has evolved into a purely

periodic unsteady regime. Note that the VB bubble �dashed
lines� changes its shape when the Reynolds number in-
creases, reaching a nearly conical shape for Re=200. The
maximum axial velocity of the solution in the domain is
defined as

wmax = max�w�r,z��0�r�Ro,0�z�H, �16�

the time periodic character of the flow for Re=200 can be
seen in Fig. 9, where wmax is plotted as a function of time.
Note that for the remaining intensive swirl instances consid-
ered, w reaches its maximum value at some point within the
VB bubbles. The initial condition used in the simulation is
the steady solution obtained for Re=150; the oscillation fre-
quency � is about 0.2.

2. The effect of changing � on the structure
of the flow

The above results clearly show that the presence of re-
verse flow in the axial region has an important effect on both
the structure and the stability of the flow. In particular, we
find that the presence of the VB bubbles leads to negative
radial skin friction at the wall, close to the axis. In addition,
the maximum pressure coefficient cp

max is not located at the
axis, r=0. Therefore, it is interesting to determine the thresh-
old curve for which no VB bubbles are present. To that end,
for a given Re we have found the maximum value of the
swirl parameter, critical value S�, for which no reverse flow
occurs at any point of the axis. The result of this process in
the �Re,S�-plane is shown in Fig. 10, where the neutral curve

FIG. 6. Streamlines for a swirling jet with S=0.3, �=0.5, and Re=100 �a�,
Re=300 �b�, and Re=500 �c�. Dotted lines represent the separation region.
Circulation isocontours � �Re=100 �d�, Re=300 �e�, and Re=500 �f��.
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FIG. 8. Streamlines for a swirling jet with S=0.6, �=0.5, and Re=100 �a�,
Re=150 �b�, and Re=200 �c�. Dotted lines represent the VB bubble.
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FIG. 9. Time evolution of the maximum value of the axial velocity for S
=0.6, �=0.5, and Re=200.
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S� as a function of Re is depicted for four different vortex
core radii. When the vortex core radius is reduced, the swirl
intensity required to achieve the axisymmetric VB bubble
near the axis decreases, as shown in Fig. 10. Below the neu-
tral curve, a steady flow with no VB bubbles is ensured for
the Reynolds number range considered in this work. Above
the neutral curve, VB bubbles exist and their time-dependent
structures are strongly affected by the values of the swirl
parameter and the Reynolds number. For instance, to illus-
trate the pattern diversity, we first show a steady VB bubble
solution for Re=200, �=0.25, and S=0.3 �see Fig. 11�. This
steady solution becomes time periodic when the Reynolds
number increases. Figure 12 shows the time evolution of
wmax when the Reynolds number is suddenly increased from
an initially steady flow with Re=202 to Re=204. Figure 12
shows that the oscillation frequency is 0.069 and that wmax

does not follow a pure oscillation �it has two local minimum
and maximum values in each oscillation period�. This time-
dependent behavior is explained because in addition to the
near-axis VB bubble, an additional, small recirculating
bubble appears close to the wall but away from the axis.
Both bubbles show up and disappear sequentially, and the
interaction between their pulses produces the final modulated
wave �see Fig. 12�.

Figure 13 shows instantaneous streamlines for the case
Re=204, �=0.25, and S=0.3 at four different times: �a� t
=5000, �b� t=5030, �c� t=5060, and �d� t=5090, to illustrate
this example. To our knowledge, no experimental data are
available showing this axisymmetric oscillating �double
bubble� flow structure. We have found double bubbles only
in impinging jets with sufficiently small values of �. For
example, Fig. 14 shows the time behavior of wmax for a flow
with Re=200, �=0.125, and S=0.3. In this case again, an
imperfectly periodic regime is reached once the swirl param-
eter is changed from S=0.25 �where a steady flow exists� to
S=0.3. Instantaneous streamlines for this case �see Fig. 15�
show again the presence of near-wall bubbles. This bubble
pattern is peculiar and has not been described elsewhere, to
our knowledge. They are intermittent �they show up and van-
ish periodically�, while a permanent near-axis �VB� bubble is
observed in the simulation domain. However, near-wall

FIG. 11. Streamlines for a swirling jet with S=0.3, �=0.25, and Re=200.
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FIG. 12. �a� Time evolution of the maximum value of the axial velocity for
S=0.3, �=0.25, and Re=204. �b� Detail of the evolution for 5000� t
�5300.

FIG. 13. Instantaneous streamlines for a time-dependent case with S=0.3,
�=0.25, and Re=204 at different times �a� t=5000, �b� t=5030, �c� t
=5060, and �d� t=5090.
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FIG. 10. Critical swirl parameter as function of Re for four different vortex
core radii.
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FIG. 14. �a� Time evolution of the maximum value of the axial velocity for
S=0.3, �=0.125, and Re=200. �b� Detail of the evolution for 5000� t
�6000.
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bubbles are not present when the vortex core radius is large
enough. For example, Fig. 16 depicts instantaneous stream-
lines for S=1.4, �=1, and Re=100 �a�, Re=200 �b�, and
Re=250 �c�. While in the first two cases ��a� and �b�� the
flow has reached a steady solution, in the last one �c� the
flow has developed a pure periodic unsteady regime �see Fig.
17�. Observe that, like for the case �=0.5, for �=1 a big VB
bubble exists if the swirl parameter is large enough. Another
similarity is that the steady flow with the VB bubble be-
comes time periodic �with a pure period� when the Reynolds
number is increased. As previously shown, the situation is
different for smaller values of � ��=0.5 and �=0.25�, where
the growth of either the swirl parameter or the Reynolds
number can yield an unsteady imperfect periodic flow if the
steady flow has initially a VB bubble.

On the other hand, the effect of S and � on the impinging
properties of the flow is studied. Keeping Re and � constant,
we find that the maximum values of the radial skin-friction
and pressure coefficients decrease as the swirl parameter S
increases. This can be seen in Fig. 18 where the skin-friction
and pressure coefficients are plotted for the steady state so-
lution, assuming Re=200, �=0.25, and three different swirl
parameters. Furthermore, the figure shows that the maximum
value of the azimuthal skin factor increases as S increases.
Keeping Re and S fixed, it is also possible to reduce the
maximum value of the radial skin-factor and pressure coef-
ficients by decreasing �. In effect, Fig. 19 shows the skin-
friction and pressure coefficients as a function of r for the
steady state solution corresponding to Re=200, S=0.3, and
three different vortex core radii. Note than in this case, the
maximum value of the azimuthal skin-factor coefficient in-
creases as � decreases.

Finally, we apply the scaling law �15� to cases where VB
bubbles are not present. For a given �, we shall select a swirl
parameter S such that S�S��Re→
 ,��. The choice is made
in order to have limited swirl so that the flow remains steady
when sufficiently high Reynolds numbers are selected. This
analysis allows us to study the effect of swirl on the rescaled
radial shear stress �P. Figure 20�a� shows �P as a function of
rR /H for �=1 and S=0.3 and three different Reynolds num-

FIG. 16. Instantaneous streamlines for a swirling jet with S=1.4, �=1, and
Re=100 �a�, Re=200 �b�, and Re=250 �c�.
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FIG. 17. Time evolution of the maximum value of the axial velocity for S
=1.4, �=1, and Re=250.
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FIG. 19. �a� cfr, �b� cf�, and �c� cp as a function of r for Re=200, S=0.3, and
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FIG. 15. Instantaneous streamlines for a time-dependent case with S=0.3,
�=0.125, and Re=200 at different times �a� t=5400, �b� t=5455, �c� t
=5510, and �d� t=5565.
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bers, while Fig. 20�b� corresponds to a different swirl param-
eter, S=0.6. As expected, in both cases, �P tends asymptoti-
cally to an unique curve as Re increases. Interesting enough
is the fact that in both asymptotic curves, the maximum
value of the radial shear stress �P

max is reached at the same
radial position, r /H
0.16, as in the nonswirling case. The
main difference between the asymptotical curves �S=0, S
=0.3, and S=0.6� is the following: in the region rR /H
�0.16, �P and �P

max decrease as S increases. The same be-
havior is observed when a different value of � is selected;
�P

max is reached at rR /H
0.16 for high Reynolds numbers
and its value decreases with S.

Although no experimental data are available for the
swirling jet impingement at moderate Reynolds numbers, our
results qualitatively agree with the numerical data obtained
by Owsenek et al.24 for a different flow configuration. In that
work, it was shown that axial jets similar to the jets consid-
ered in our work have a pressure coefficient and a local
Nusselt number �directly related to the skin-factor coeffi-
cient� at the wall which decrease as the swirl increases.

IV. SUMMARY AND CONCLUSIONS

The axisymmetric flow structure of swirling impinging
jets that emerge from a pipe that is aligned at a fixed distance
normal to the wall has been analyzed numerically. The fun-
damental mechanisms to know the influence of the jet im-
pingement onto the wall are quantified by means of the skin-
friction and pressure coefficients defined along the wall.

The results for nonswirling flows �S=0� are in agree-
ment with a theoretical model providing a scaling law for the
shear wall stress at the wall at high Reynolds numbers, Re
	1.

The effect of swirl intensity �S� and vortex core radius
��� on the behavior of the impinging jet has been analyzed
for a constant jet height, H /R=10. The results show that the
presence of reverse flow in the axis region associated with
the swirl has an important effect on both the structure and the

stability of the flow. The maximum swirl intensity compat-
ible with no reverse flow anywhere at the axis, S��� ,Re�, has
been computed for several values of � in the range of
Reynolds numbers considered in this work, showing that the
larger the value of �, the larger the swirl intensity required to
get VB bubbles in the near-axis region.

For S�S� the flow remains steady and the effect of swirl
on the scaling law modeling the radial shear stress has been
studied. The results show that the rescaled wall shear stress
reaches its maximum value, �P

max, at the same location for
both swirling and nonswirling jets. Additionally, �P

max de-
creases as S increases. In general, the introduction of swirl
reduces shear stress at the wall, while smoothing away the
pressure peak at the axis. Both effects are important for sur-
face cleansing or cooling technological applications.

For S�S�, a recirculating VB bubble is observed at the
symmetry axis: this reduces drastically the maximum value
of the skin-friction and pressure coefficients at the wall.
Flows with VB bubbles which are initially steady become
unsteady when the swirl intensity or the Reynolds number is
increased. The transition from steady to unsteady flow is
different depending on the value of �; if the vortex core
radius is large enough the flow becomes purely periodic,
while low values of � are associated with an imperfectly
periodic flow.
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