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Abstract

A method for generating a non-uniform Cartesian grid for irregular two-dimensional (2D) geometries such that all

the boundary points are regular mesh points is given. The resulting non-uniform grid is used to discretize the Navier–

Stokes equations for 2D incompressible viscous flows using finite-difference approximations. To that end, finite-

difference approximations of the derivatives on a non-uniform mesh are given. We test the method with two different

examples: the shallow water flow on a lake with irregular contour and the pressure driven flow through an irregular

array of circular cylinders.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The numerical simulation of flows with irregular geometries is a problem of increasing interest. In par-

ticular, much effort have been dedicated in recent years to the use of Cartesian grids which does not con-

form to the irregular boundaries [1–6]. In relation to the conventional structured-grid approach with

curvilinear grids that conforms to the boundaries, this approach has the main advantage of its simplicity,

both in the grid generation and in the governing equations. In addition, the transformation of the govern-

ing equations to a curvilinear coordinate system that conforms to very complicated boundaries is not an

easy task, and usually affects to the stability, convergence, and accuracy of the numerical solver.

In this paper we present a technique for Cartesian grid generation that conforms to irregular two-
dimensional (2D) boundaries. It has the advantage of working with a Cartesian mesh in which all the
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boundaries nodes are regular nodes of the grid, thus avoiding the usual complicated interpolations needed

for the Cartesian cells cut by immersed boundaries, or the use of artificial body forces, or other artifices

such as a distribution of vorticity sources, to impose the boundary conditions (see, for example [1–6]).

The price one has to pay is that the Cartesian grid is non-uniform. For this reason we develop second-order

accurate finite-difference approximations of the derivatives for non-equidistant grid points that substitutes
the usual finite-difference approximations for uniform grids (some of these expressions are already reported

in the literature; see, e.g. [7]). Thus, we are led to discrete equations with the same level of complexity than

the Cartesian equations discretized on a uniform grid, but conforming to an irregular geometry. One dis-

advantage in relation to the interpolation techniques given in some of the references cited above is that the

present method is not suited for moving interfaces. However, second-order interpolation techniques [4] are

not easily applied to Neumann boundary conditions.

The structure of the paper is the following. Section 2 introduces the grid generation technique on a gen-

eric, irregular 2D domain. The expression for the finite-difference approximations of the Cartesian deriva-
tives on non-uniform grids are given in Section 3. Sections 4 validates the method with two examples quite

different to each other: the 2D shallow water, wind-driven flow on a lake with irregular contour, and the 2D

incompressible, pressure-driven flow around an irregular array of circular cylinders. Some conclusions are

drawn in the last section.
2. Cartesian grid generation that conforms to an irregular 2D domain

Consider the 2D irregular domain of Fig. 1. Our objective is to generate a Cartesian grid where all the

boundary points are regular mesh points. This means that all the interior points have to be collocated in

relation to a set of selected boundary points, and that the resulting Cartesian grid will not be uniform.

In order to simplify the storage of the grid points location in matrix form, what we propose here is a

ray tracing technique. One starts at a given boundary point (marked with a circle in Fig. 1), and generates

a set of boundary points by �Cartesian reflections� of the ray (squares in Fig. 1). In order to avoid an infinite

regress, the process ends when the ray reaches a boundary perpendicular to it (i.e., when it reaches a section

of the boundary parallel to one of the Cartesian axis), or when a boundary node is generated very close to a
previous one (their separation is less than a given tolerance).

It is important to detect first the main boundary points or points of intersection between the several sec-

tions of the boundary (circles in Fig. 2). The first rays will start from these main points, dividing the do-

main, and the boundary, in a number sections. Each of these sections is then divided using a number of

points on each boundary section which depends on the desired precision. The resulting mesh (see Fig.

2(b)) concentrates the nodes with the desired precision at the different sections of the boundary. Programing

this technique is relatively easy and the storing in matrix form of the resulting grid points locations is also

straightforward.
The technique is a little more complicated in domains with concave boundary sections like that depicted

in Fig. 3. We have traced three rays starting from the three circled points. These rays generate a series of

mesh points, both on the boundary and inside the domain, before stoping at a boundary parallel to the

x-axis. The last three nodes on that boundary have no corresponding ones on the lower boundary. Thus,

in order to facilitate the storage of the nodes in matrix form, i.e., in order to have an structured grid, it is

convenient to continue these rays till the lowest boundary (dashed lines in Fig. 3(a)). Though we store all

the nodes, we can disregard the three triangled nodes in Fig. 3(b), being the effective node to the right of

node j that labelled with j + 4. Once the grid is generated, one may create an indirect access with a new
index, say jj, such that jj + 1 corresponds to j + 4. Thus, the final non-structured grid is stored within a

structured grid form of n · m nodes (Fig. 3(c)). The indirect access through the indexes (ii, jj) tell us whether

a node of the structured grid is an actual node of the computational non-structured grid.



(a)

(b)

Fig. 1. Generic 2D domain (a) and illustration of grid generation by ray tracing (b).
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In very irregular domains it may happen that this ray tracing method may generate very small cells near

some boundaries, or even inside the domain. To avoid this we use a lower limit for the cell size, in such a

way that nodes that generate cells with size less than this limit are discarded, in a similar way to what is
done in concave boundaries, as described above.
3. Finite-difference approximation on non-uniform meshes

In order to discretize the flow equations in the non-uniform grid developed in the above section, one has

to use finite-difference approximations on a non-uniform mesh. In this section we develop these finite-

difference expressions for all the spatial derivatives appearing in the Navier–Stokes equations. Some of them
have been previously reported by Turkel [7]. In particular, Turkel provides the first derivative, and the cen-

tered form of the second derivative with first-order truncation error. All the expressions we give below (some

of them are given in Appendix A) are second-order accurate, and we include forward and backwards expres-

sions for the second-order derivatives, which are needed at the boundaries. It has been shown [8,9] that

second-order accuracy can be obtained (on non-uniform grids) even though local truncation



Fig. 2. Main points (circles), and resulting non-uniform grid (b).
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errors are of lower order. However, this is valid only for non-uniform grids in which the variation of the
mesh size is very small and for linear equations. Since we want to apply the finite-differences method to arbi-

trary non-uniform meshes, and to the non-linear Navier–Stokes equations, we need second-order truncation

errors to reach second-order accuracy. This is important in problems with a long time evolution, such as the

examples given below, where second-order accuracy is needed at both inner and boundary nodes.

Consider a 1D non-uniform grid with nx + 1 discrete points (0 6 i 6 nx) located arbitrarily on the unit

length (Fig. 4). If the value of a generic function f(x) and its derivatives are known at the point ith, xi = iDx,
Dx = 1/nx, the values of f at the points i ± 1 and i ± 2 can be approximated using Taylor expansions. Indi-

cating with a subscript the grid point, and with primes the derivatives with respect to x, the unknown values
fi ± 1 and fi ± 2 can be written as
fiþ1 ¼ fi þ hiþ1f 0
i þ

h2iþ1

2
f 00
i þ

h3iþ1

6
f 000
i þOðh4iþ1Þ; ð1Þ

fi�1 ¼ fi þ hi�1f 0
i þ

h2i�1

2
f 00
i þ h3i�1

6
f 000
i þOðh4i�1Þ; ð2Þ



(a)

(b)

(c)

Fig. 3. (a) and (b) Fictitious grid points in a domain with concave boundary sections. (c) Final non-structured grid (squares).

Fig. 4. Nonuniform grid with nx + 1 grid points distributed arbitrarily.
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fiþ2 ¼ fi þ hiþ2f 0
i þ

h2iþ2

2
f 00
i þ h3iþ2

6
f 000
i þOðh4iþ2Þ; ð3Þ

fi�2 ¼ fi þ hi�2f 0
i þ

h2i�2

2
f 00
i þ h3i�2

6
f 000
i þOðh4i�2Þ; ð4Þ
where the last terms in these expressions indicate the order of the truncation error of the approximation,

and
hiþ1 ¼ xiþ1 � xi;

hi�1 ¼ xi�1 � xi;

hiþ2 ¼ xiþ2 � xi;

hi�2 ¼ xi�2 � xi:

ð5Þ
These expansions can be used to approximate the nth derivative of f at the point i up to any order of the

truncation error, provided that they are conveniently combined. With second-order accuracy, the finite-
difference approximation in the centered form for the first and second derivatives of f at the point i are

(for higher derivatives, or higher order for the desired truncation error, more points than those considered

in (1)–(4) are needed):
f 0
i ¼ mifi�1 þ sifi þ nifiþ1 þ Ei;

mi ¼ �hiþ1

�hiþ1hi�1þh2i�1

;

ni ¼ �hi�1

�hiþ1hi�1þh2iþ1

;

si ¼ �ðmi þ niÞ;
Ei ¼ 1

6
hiþ1hi�1f 000

i ;

8>>>>><
>>>>>:

ð6Þ

f 00
i ¼ mifi�1 þ sifi þ nifiþ1 þ pifiþ2 þ Ei;

mi ¼ �2ðhiþ1þhiþ2Þ
ðhiþ1hiþ2�hi�1hiþ1þh2i�1

�hi�1hiþ2Þhi�1
;

ni ¼ �2ðhi�1þhiþ2Þ
ð�hiþ1hi�1þhi�1hiþ2þh2iþ1

�hiþ1hiþ2Þhiþ1
;

pi ¼ 2ðhiþ1þhi�1Þ
ðhiþ1hiþ2�hi�1hiþ1�h2iþ2

þhi�1hiþ2Þhiþ2
;

si ¼ �ðmi þ ni þ piÞ;
Ei ¼ �1

12
mih

4
i�1 þ nih

4
iþ1 þ pih

4
iþ2

� �
f iv
i ;

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

f 00
i ¼ pifi�2 þ mifi�1 þ sifi þ nifiþ1 þ Ei;

mi ¼ �2ðhiþ1þhi�2Þ
ðhiþ1hi�2�hi�1hiþ1þh2i�1

�hi�1hi�2Þhi�1
;

ni ¼ �2ðhi�1þhi�2Þ
ð�hiþ1hi�1þhi�1hi�2þh2iþ1

�hiþ1hi�2Þhiþ1
;

pi ¼ 2ðhiþ1þhi�1Þ
ðhiþ1hi�2�hi�1hiþ1�h2i�2

þhi�1hi�2Þhi�2
;

si ¼ �ðmi þ ni þ piÞ;
Ei ¼ �1

12
pih

4
i�2 þ mih

4
i�1 þ nih

4
iþ1

� �
f iv
i ;

8>>>>>>>>><
>>>>>>>>>:

ð8Þ
where Ei is the truncation error of each approximation. This truncation error is a function of the separation
between the local points around i. Thus, in a non-uniform grid, expressions (6)–(8) will be more accurate as

the grid points becomes closer. Note that two different expressions for the second derivative are given, (7)

and (8), neither of them fully centered on the point i. This is because one needs four grid points to have a

second-order truncation error in the second derivative, so that two different expressions result depending on

whether we use the point i + 2, or the point i � 2.
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If the grid were uniform, h ” hi+1, hi� 1 = �h, hi+2 = 2h, hi� 2 = �2h, expressions (6)–(8) are, obviously,

the standard centered second-order finite-difference approximation for the first and second derivatives:
f 0
i ¼ mifi�1 þ sifi þ nifiþ1 þ Ei;

mi ¼ �1
2h ;

ni ¼ 1
2h ;

si ¼ 0;

Ei ¼ �1
6
h2f 000

i ;

8>>><
>>>:

ð9Þ

f 00
i ¼ mifi�1 þ sifi þ nifiþ1 þ pifi�2 þ Ei;

mi ¼ 1

h2
;

ni ¼ 1
h2
;

pi ¼ 0;

si ¼ �2

h2
:

Ei ¼ �1
12
h2f iv

i ;

8>>>>>>><
>>>>>>>:

ð10Þ
Now the grid points i ± 2 do not appear in the approximation to the second derivative because pi = 0.

From (1)–(4) one can obtain not only centered approximations, but also forward or backward ones.

These expressions, which are needed at the boundaries, are given in Appendix A with second-order accu-

racy. We also give there finite-difference expressions needed to apply Neumann boundary conditions with

second-order accuracy on a non-uniform grid.
4. Results

4.1. Wind-driven flow in a lake

One of the main intended applications of the present technique is the simulations of 2D environmen-

tal flows, such as the flows in shallow lakes and reservoirs, which usually have very irregular geome-
tries. For this reason, as a first example of a 2D flow in a complex domain we consider the wind-

driven flow in Lake Belau (Northern Germany), for which Podsetchine and Schernewski [10] reported

numerical and experimental results which can be used to compare with. The bathymetry of the lake is

given in Fig. 5.

Since the lake is not very deep, one may use the vertically integrated equations of continuity and momen-

tum on the horizontal plane (x,y), or shallow water approximation (see, for example, [11]):
of
ot

þr � v ¼ 0; ð11Þ

ov

ot
þr � vv

H

� �
þ gHrf� m r2v� 2rf � r v

H

� �
� v

H

� �
r2f

h i
� f ^ v� kW j W j þ gv j v j

C2H 2
¼ 0: ð12Þ
In these equations, v = [u(x,y, t),v(x,y, t)] is the depth-averaged horizontal velocity,
v �
Z f

�h
vh dz; ð13Þ
with vh(x,y,z, t) the local horizontal velocity, H(x,y, t) ” h(x,y) + f(x,y, t) is the total water depth, with h

the depth below the horizontal reference plane (z = 0) and f the water surface elevation above z = 0,

$ = o/ox + o/oy, g . 9.81 m/s2 is the acceleration due to gravity, f = fez, with f . 1.176 · 10�4 s�1 is

the Coriolis parameter, m is the averaged, horizontal eddy viscosity, and C is the Chezy coefficient.



Fig. 5. Digital contour and bathymetry (in meters) of Lake Belau such as they are used in the computations (taken from Fig. 2 in [10]).
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The flow will be driven by a wind of velocity W = (Wx,Wy), through the term kWjWj, where k = qaCW/q,
with q and qa the densities of water and air, respectively, and CW the wind drag coefficient. The numer-

ical values of the parameters that will be used to solve these equations are the following [10]: m = 0.01 m2/

s, C = 40 m1/2/s, CW = 0.002, q = 103 kg/m3, qa = 1.275 kg/m3, and a spatially uniform south-westerly
wind (a heading of 220�) with a speed jWj of 6 m/s. The boundary conditions at the contour of the lake

are u = v = 0.

A mesh of 7517 grid points has been generated using the technique of Section 2 (see Fig. 6). The equa-

tions have been discretized in this non-uniform grid using the finite-difference approximations given in Sec-

tion 3. In particular, we have used Arakawa�s grid of the type C [12], where the water elevation f is

evaluated at the grid points, while the averaged velocity components are evaluated at the mid points of their

respective cell sides (see Fig. 7).

An explicit, two-step, second-order accurate, predictor–corrector scheme has been used to advance in
time. If one writes Eqs. (11) and (12) schematically as of/ot = A(v), ov/ot = B(f,v), these two steps are given

by
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Fig. 6. Two details of the discretized geometry of the lake showing some of the grid points.

Fig. 7. Arakawa�s scheme used in the computations, where f is evaluated at the grid points (triangles), u is evaluated at the squares,

and v at the circles.
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predictor step:
v� ¼ vn þ Dt
2
Bðfn; vnÞ;

f� ¼ fn þ Dt
2
Aðv�Þ;

ð14Þ
corrector step:
vnþ1 ¼ vn þ DtBðf�; v�Þ;
fnþ1 ¼ fn þ DtAðvnþ1Þ;

ð15Þ
where the superscripts denote the instant of time, and Dt is the time step. The numerical computations are
started at t = 0 with the fluid at rest and f = 0. We use Dt = 1 s. The results for the velocity field at t = 3 h

are plotted in Fig. 8. These results compares very well with those given in Fig. 4(a) of Podsetchine and

Schernewski [10], who used a finite-element method on a triangular mesh created with a commercial
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Fig. 8. Averaged velocity field at t = 3 h.
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software package to solve the shallow water equations. These authors also checked their numerical results

with experimental measurements.

4.2. Pressure-driven flow through an array of circular cylinders

As a second example we have selected the 2D incompressible flow around an irregular array of three

circular cylinders inside a channel (see Fig. 9). In particular we have considered the pressure driven flow

[13] originated by a given pressure difference set between the inlet and the outlet.

The dimensionless equations are
r � v ¼ 0; ð16Þ

ov

ot
þ v � rv ¼ �rp þ 1

Re
r2v; ð17Þ
where v = (u,v) and p are the dimensionless velocity and pressure, respectively. To non-dimensionalize these

equations we have used the diameter D of the cylinders as the length scale, and a characteristic velocity

based on the the pressure difference Dpc between the inlet and the outlet, V c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpc=q

p
, where q is the fluid

density; the Reynolds number is based on this velocity [13]
Re ¼ V cD
m

¼

ffiffiffiffiffiffiffiffi
Dpc
q

s
D
m
; ð18Þ
where m is the kinematic viscosity of the fluid.
The motion of the fluid is set by the boundary conditions
pðx ¼ 0; y ¼ 10; tÞ ¼ 1; pðx ¼ 20; y ¼ 10; tÞ ¼ 0: ð19Þ

The remaining boundary conditions are v = 0 on the cylinders, and at the channel walls, y = 0 and y = 10.

The equations are solved numerically with the second-order (both in space and time) projection method

described in [13], using a finite-difference scheme on a non-uniform grid generated with the method
0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

x

y

Fig. 9. Geometry of the channel flow through three circular cylinders.
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described above. In particular we have used a grid of 438 · 298 mesh points, and Dt = 2.5 · 10�5. A detail

of the grid near two of the cylinders is depicted in Fig. 10. To solve numerically the Poisson equation for the

pressure we use an ADI based technique, and standard solvers for band matrices with LU factorization

from Blas and Lapack packages. The fact that we have now, in general, a non-structured grid does not

affect to the efficiency of these Poisson solvers because what is supplied to them are the actual computa-
tional nodes and their corresponding discretized equations through the indirect access mentioned in

Section 2.

Results for Re = 50 are plotted in Figs. 11 and 12. The flow evolves in time from rest until it reaches a

quasi-periodic state. This is shown in Fig. 11, where we plot as a function of time the Reynolds number

based on the flow rate at the exit of the channel (x = L = 20),
Req �
q
H
Re; qðtÞ ¼

Z H

0

uðx ¼ L; y; tÞdy; ð20Þ
where H = 10 is the width of the channel. Finally, streamlines and isobars at t = 106 are plotted in

Fig. 12.
Fig. 12. Streamlines (a), and isobars (b), at t = 106.
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Fig. 13. Flow inside a channel with a single circular cylinder for Req = 10. (a) Streamlines (all the lengths are scaled with the diameter

of the cylinder). (b) Detail of the wake behind the cylinder.
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The above results show that the current method has no difficulty in resolving the complex flow pattern

and recirculation regions behind the cylinders. However, since no previous results are reported for this par-

ticular flow, we consider next the case of a single cylinder inside a channel (see Fig. 13). This flow, with the

dimensions given in Fig. 13(a), has been studied experimentally and numerically [14]. It has been reported

that the length l of the axisymmetric wake behind the cylinder for moderately small Reynolds number var-

ies linearly with Req. Thus, for instance, for Req = 10 (which in our simulation corresponds to Re . 17), the

length of the wake behind the cylinder reported is l . 0.285 (times de diameter of the cylinder) [14]. Fig.
13(b) shows a detail of the streamlines behind the cylinder obtained numerically by our numerical code,

showing that l. 0.281, in close agreement with the previous result.
5. Conclusions

We have presented here a finite-difference method in a non-uniform Cartesian grid which allows us to

solve 2D unsteady viscous flows in irregular geometries. It has all the advantages of solving numerically
the flow equations in a Cartesian mesh (simplicity, accuracy, stability), and has the important peculiarity

that all the boundaries are fitted to the regular points of the mesh, so that complicated interpolations at

the boundaries are avoided. We have developed a simple method for generating such a non-uniform
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Cartesian mesh in complex geometries, and provided second-order finite-difference approximations in

non-uniform meshes, which allow us to solve the flow equations with second-order accuracy in all the flow

domain, including the boundaries.

To check the validity of the method in flows with both irregular external boundaries and complex

immersed boundaries, we have selected two typical examples where we think this method will be of most
interest: the 2D (shallow water) flow in a lake with a very complicated external boundary, and a viscous

flow with a complex internal boundary such as the flow through an irregular array of cylinders between

parallel plates. These flows are solved with second-order time accuracy using two different numerical

schemes, and the results show that the non-uniform Cartesian mesh is able to accurately simulate these

flows with easy.
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Appendix A.

In this appendixwe give some additional expressions for finite-difference approximations on a non-uniform

grid that we have used in our computations. For example, to apply Dirichlet boundary conditions we need

forward or backward expressions for the first and second derivatives. With second-order accuracy, these

one sided approximations are:
f 0
i ¼ sifi þ mifi�1 þ pifi�2 þ Ei;

mi ¼ �hi�2

hi�1ðhi�1�hi�2Þ
;

pi ¼ hi�1

hi�2ðhi�1�hi�2Þ ;

si ¼ �ðmi þ piÞ;
Ei ¼ 1

6
hi�1hi�2f 000

i ;

8>>>><
>>>>:

ðA:1Þ

f 0
i ¼ sifi þ nifiþ1 þ pifiþ2 þ Ei;

ni ¼ �hiþ2

hiþ1ðhiþ1�hiþ2Þ
;

pi ¼ hiþ1

hiþ2ðhiþ1�hiþ2Þ
;

si ¼ �ðni þ piÞ;
Ei ¼ 1

6
hiþ1hiþ2f 000

i ;

8>>>><
>>>>:

ðA:2Þ
for the first derivative, and
f 00
i ¼ sifi þ mifi�1 þ pifi�2 þ qifi�3 þ Ei;

mi ¼ �2ðhi�2þhi�3Þ
ð�hi�2hi�1þhi�2hi�3þh2i�1

�hi�3hi�1Þhi�1
;

pi ¼ 2ðhi�1þhi�3Þ
ð�hi�3hi�1þhi�2hi�1�h2i�2

þhi�2hi�3Þhi�2
;

qi ¼
�2ðhi�1þhi�2Þ

ð�hi�3hi�1þhi�2hi�1þh2i�3
�hi�2hi�3Þhi�3

;

si ¼ �ðmi þ pi þ qiÞ;
E ¼ �1 m h4 þ p h4 þ q h4

� �
f iv

8>>>>>>>>><
>>>>>>>>>:

ðA:3Þ
i 12 i i�1 i i�2 i i�3 i
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f 00
i ¼ sifi þ nifiþ1 þ pifiþ2 þ qifiþ3 þ Ei;

ni ¼ �2ðhiþ2þhiþ3Þ
ð�hiþ2hiþ1þhiþ2hiþ3þh2iþ1

�hiþ3hiþ1Þhiþ1
;

pi ¼ 2ðhiþ1þhiþ3Þ
ð�hiþ3hiþ1þhiþ2hiþ1�h2iþ2

þhiþ2hiþ3Þhiþ2
;

qi ¼
�2ðhiþ1þhiþ2Þ

ð�hiþ3hiþ1þhiþ2hiþ1þh2iþ3
�hiþ2hiþ3Þhiþ3

;

si ¼ �ðni þ pi þ qiÞ;
Ei ¼ �1

12
nih

4
iþ1 þ pih

4
iþ2 þ qih

4
iþ3

� �
f iv
i ;

8>>>>>>>>><
>>>>>>>>>:

ðA:4Þ
for the second derivative (hi±3 = xi±3�xi).

To apply Neumann boundary conditions we need the second-order derivative in terms of the the first-
order one. With second-order accuracy, these expressions (forward and backward) are:
f 00
i ¼ rif 0

i þ sifi þ nifiþ1 þ pifiþ2 þ Ei;

ri ¼ �2ðhiþ1þhiþ2Þ
hiþ1hiþ2

;

si ¼
�2ðh2iþ1

þhiþ1hiþ2þh2iþ2
Þ

h2iþ1
þh2iþ2

;

ni ¼ �2hiþ2

ðhiþ1�hiþ2Þh2iþ1

;

pi ¼ 2hiþ1

ðhiþ1�hiþ2Þh2iþ2

;

Ei ¼ �1
12
hiþ1hiþ2f iv

i

8>>>>>>>>>><
>>>>>>>>>>:

ðA:5Þ

f 00
i ¼ rif 0

i þ sifi þ nifi�1 þ pifi�2 þ Ei;

ri ¼ �2ðhi�1þhi�2Þ
hi�1hi�2

;

si ¼
�2ðh2i�1

þhi�1hi�2þh2i�2
Þ

h2i�1
þh2i�2

;

ni ¼ �2hi�2

ðhi�1�hi�2Þh2i�1

;

pi ¼ 2hi�1

ðhi�1�hi�2Þh2i�2

;

Ei ¼ �1
12
hi�1hi�2f iv

i :

8>>>>>>>>><
>>>>>>>>>:

ðA:6Þ
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