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Abstract

An explicit numerical method to solve the unsteady incompressible flow equations consisting on N small time steps

Dt between each two much larger time steps ðDtÞ1 is considered. The stability and efficiency of the method is first

analyzed using the one-dimensional diffusion equation. It is shown that the use of a time step Dt slightly smaller than the

critical one (DtÞc given by numerical stability allows to periodically take a much larger time step (stride) that speeds-up

the advance in time in a numerical stable scheme. In particular, the stability analysis shows that for a given value of the

stride ðDtÞ1, there is an optimum value of the small time step for which the computational speed is the fastest (N is a

minimum), being this speed significantly larger than the corresponding one for an explicit method using ðDtÞc only. The

efficiency of the method is discussed for different time discretization schemes. The numerical method is then used to

solve a particular incompressible flow. It is shown that the method is significantly (about three times) faster than a

standard explicit scheme, and yields the same time evolution of the flow (within spatial accuracy). Further, it is shown

that a much more higher computational speed and efficiency is reached if one combines an implicit scheme for the

periodic strides with the explicit small time steps. With this combination one can speed-up the computations in more

than one order of magnitude with the same resolution.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Explicit numerical methods are sometimes preferred to implicit ones to solve the incompressible

Navier–Stokes equations owing to the high computational cost of an implicit method at each time step,

particularly for multi-dimensional flows at moderate and high Reynolds numbers. However, explicit
methods have severe stability constrains over the time step, which usually has to be several orders of

magnitude smaller than the time step one would like to use in accordance with the resolution of the

spatial grid. These constraints are particularly severe for low-Reynolds-numbers flows (see, for example

[1,2]).
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To overcome these difficulties, several techniques have been used, such as spectral-projection, semi-

implicit, and semi-Lagrangian methods (see, for example [3,4], and references given therein). In this

paper, we introduce and analyze a conceptually simple approach consisting on an explicit method in

which, along with the small time step Dt allowed by the numerical stability, a much longer time step

ðDtÞ1 is periodically taken to advance faster in time. These periodic strides, whose magnitude may be

selected, for example, in such a way that the temporal and spatial accuracies are of the same order of

magnitude, obviously introduce numerical instabilities in the explicit scheme. The method is then based

in taking a sufficiently high number N of small time steps between strides that makes the overall
method numerically stable in time. Of course, if the small time step Dt is equal to the maximum ðDtÞc
allowed by the numerical stability of the problem, any single time step ðDtÞ1 > Dt would make unstable

the method (N ! 1). However, we shall see that as Dt decreases slightly below ðDtÞc, the minimum

value of small time steps N that stabilizes the method for a given ðDtÞ1 decreases very fast, thus de-

creasing significantly the computation time to advance in physical time. For a given problem and a

given numerical algorithm, there exists an optimum value of Dt < ðDtÞc which makes the numerical

computations the fastest. As we shall see, the speed of the numerical computations can be increased

significantly.
To lay the foundations of the method, it is introduced in Section 2 using the one-dimensional diffusion

equation. The stability, accuracy, and efficiency of the method is analyzed and checked with numerical

stability results. In Section 3 the method is applied to an incompressible flow, the flow through a cylinder

with a small hole at its bottom wall. It is shown that both the characteristics of the method and the in-

creasing in the computational speed are similar to those found for the one-dimensional, and linear, case. In

addition, it is found that the computational speed and the efficiency of the method can be increased even

further by using an implicit scheme for the periodic strides.

2. Numerical method. Stability and efficiency

To introduce the method we use the one-dimensional diffusion equation for some magnitude uðx; tÞ,
where x is the spatial coordinate and t the time, which in dimensionless form can be written as

ou
ot

¼ o2u
ox2

; ð1Þ

subjected to the boundary and initial conditions

uð0; tÞ ¼ 0; uð1; tÞ ¼ 1; uðx; 0Þ ¼ 0: ð2Þ

This equation will be solved numerically using an explicit finite difference scheme. In particular, we use in

the next section a predictor–corrector scheme to advance in time (hereinafter referred to as PC), combined

with centered differences in x. The results are then compared with those obtained by using other different

discretization techniques.

2.1. Predictor–corrector scheme

Using a PC method with centered space differences, the discretized form of (1) becomes:

Predictor step

u�j � un

1
2
Dt

¼
unjþ1 � 2unj þ unj�1

ðDxÞ2
: ð3Þ
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Corrector step

unþ1
j � un

Dt
¼

u�jþ1 � 2u�j þ u�j�1

ðDxÞ2
: ð4Þ

As usual, the superscript indicates the time level, and the subscript the spatial grid point; thus, unþ1
j is the

discretized value of u at x ¼ jDx and t ¼ ðnþ 1ÞDt, while u�j is the intermediate approximation of u at the

same grid point and time level. As is well known, this method is second-order accurate both in space and

time (e.g. [5]).

In the description of the periodic time stride method that we propose here, the details of the stability
analysis are important. To that end we use the von Neumann stability method (see, for example [6,7]): the

errors distributed along the grid points xj at a given time t are expanded as a finite Fourier series

Eðt; xjÞ ¼
X
m

bmðtÞeikmxj ; ð5Þ

where km is the wave number corresponding to the mth Fourier mode. Since the equation is linear, each

mode m satisfies Eqs. (3) and (4) separately. Thus, substituting each mode m of (5) into these equations, one

finds that

bmðt þ DtÞ ¼ bmðtÞ 1
�

� 4dsm þ 8d2s2m
�
; ð6Þ

where

d ¼ Dt

ðDxÞ2
; ð7Þ

and

sm ¼ sin2 kmDx
2

: ð8Þ

The numerical method is stable if jbmðt þ DtÞ=bmðtÞj6 1. Since both d and sm are non-negative, this con-
dition is satisfied if

1
�

� 4dsm þ 8d2s2m
�
6 1 ð9Þ

(note that the quantity in brackets is always positive). This requirement imposes a maximum time step

ðDtÞðmÞ for each mode m. The general numerical stability of the explicit method is assured if the time step is

less or equal than ðDtÞc ¼ maxm½ðDtÞðmÞ�. Since 06 sm 6 1, this maximum value corresponds to the mode

with sm ¼ 1, and is given by d ¼ dc ¼ 1=2, providing the well-known stability requirement [6]

Dt6 ðDtÞc ¼
1

2
ðDxÞ2: ð10Þ

In order to advance in time as faster as possible, given a spatial mesh size Dx, one usually selects a value

Dt as close as possible to the critical one ðDtÞc. Since the present scheme has second-order accuracy in time,

this means that the time accuracy is O½ðDtÞ2c � ¼ O½ðDxÞ4�, unnecessarily much less than the spatial accuracy,

which is O½ðDxÞ2�. Another possibility within the present explicit scheme, which is the one we analyze here,

is to choose a time step Dt smaller than ðDtÞc, in such a way that one has some margin of numerical stability

to periodically take a much larger time step ðDtÞ1 that speeds-up the advance in time. We shall see that, for a

given value of ðDtÞ1, there is an optimum value of Dt ¼ ðDtÞo < ðDtÞc for which the overall numerical ad-

vance in time is the fastest, and significantly faster than just using ðDtÞc.
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To that end we define the non-dimensional periodic stride

K ¼ ðDtÞ1
ðDtÞc

> 1: ð11Þ

The value of K can be selected, for instance, in such a way that the order of magnitude of the spatial and

temporal numerical accuracies coincide: ðDtÞ1 � Dx, or K ’ 2=Dx. But it can be smaller, or even larger, if

one is only interested in finding out the steady-state solution. In the present analysis we shall treat K as a

free, usually large, parameter. Between each two strides of magnitude ðDtÞ1, a number N of much smaller

time steps of magnitude Dt are taken (see Fig. 1). The number N has to be large enough for the method be
numerically stable. According to Eq. (6), the repetition of cycles comprising N small steps and one stride is

numerically stable if

ð1� 4dsm þ 8d2s2mÞ
N ð1� 2Ksm þ 2K2s2mÞ6 1 ð12Þ

for every mode m, where d, given by Eq. (7), is associated to the small time step. It is convenient to define

the non-dimensional variable g, related to the small time step Dt by

Dt
ðDtÞc

¼ 2d � 1� g ð06 g6 1Þ: ð13Þ

Thus, the minimum value N of small time steps of size g necessary to numerically stabilize a stride of

magnitude K is, for each mode m,

N ðmÞ ¼ � lnð1� 2Ksm þ 2K2s2mÞ
ln½1� 2ð1� gÞsm þ 2ð1� gÞ2s2m�

: ð14Þ

This value is plotted as a function of g for K ¼ 100 and several values of sm in Fig. 2. Since all modes are in

principle present in the truncating errors of the numerical computations, for each g and K the minimum
value of N for numerical stability corresponds to the maximum of N ðmÞ as sm is varied between zero and

unity. As expected, for small g, i.e., for time steps near the critical one ðDtÞc, N is controlled by the mode

corresponding to sm ¼ 1 (left continuous line in Fig. 2). However, the most unstable mode switches to

sm ¼ smo at g ¼ go, with both go and smo depending on K. This mode smo is easily obtained by maximizing

N ðmÞ for g near unity:

smo ¼
a
K
; ð15Þ

where constant a is the root of

4a2 � 2a
1� 2aþ 2a2

¼ lnð1� 2aþ 2a2Þ; a ’ 2:7142: ð16Þ

N ðmÞðgÞ corresponding to smo is also plotted as a continuous line in Fig. 2. The value go is then obtained by

the crossing of the curves N ðmÞðgÞ for sm ¼ 1 and smo

Fig. 1. Small and large time steps.

E. Sanmiguel-Rojas et al. / Journal of Computational Physics 186 (2003) 212–229 215



lnð1� 2K þ 2K2Þ
ln½1� 2ð1� goÞ þ 2ð1� goÞ

2�
¼ lnð1� 2aþ 2a2Þ

ln½1� 2ð1� goÞa=K þ 2ð1� goÞ
2ða=KÞ2�

: ð17Þ

For large K, go can be approximated by

go ’
2:3271

3:3271þ 2K
lnð2K2Þ

: ð18Þ

We see that, for each value of K, there exists an optimum value of the small time step given by g ¼ go for

which the number N of these small time steps needed to stabilize the long time step is a minimum. This

minimum value is given by

Nmin ¼
K lnð1� 2aþ 2a2Þ

2að1� goðKÞÞ
’ 0:4279

K
1� goðKÞ

: ð19Þ

These results have been checked numerically by solving (1) and (2) with the predictor–corrector scheme (3)

and (4) and Dx ¼ 2=K ¼ 0:02 (K ¼ 100 in Fig. 2). The minimum value of steps N for the method to be

numerically stable is then obtained as the size g of the small time step is varied between zero and unity. The

results are plotted as circles in Fig. 2, where it is observed that they coincide with the predicted ones by the

above theoretical stability analysis.
To evaluate the efficiency of the method we use the computational speed of each numerical cycle, V ,

defined as the physical time interval NDt þ ðDtÞ1 divided by the computational time. This speed is then

normalized with the computational speed Vo corresponding to the standard explicit method that uses only

the critical time step ðDtÞc to cover the same physical time interval

Fig. 2. Minimum value of the number of small time steps N for a predictor–corrector method with K ¼ 100 for several values of

sm (1, .9, .8, .7, .6, .5, .4, .3, .2, .1, .0271) as a function of g. The continuous lines correspond to sm ¼ 1 (left) and to sm ¼ a=K ’ 0:0271.

The circles correspond to the minimum values of N for each g obtained numerically with Dx ¼ 0:02.

216 E. Sanmiguel-Rojas et al. / Journal of Computational Physics 186 (2003) 212–229



V
Vo

¼ ð1� gÞ
N þ K

1�g

N þ 1

 !
’ 1� g þ K

N
; N � 1: ð20Þ

The first factor ð1� gÞ corresponds to the decreasing in the computational speed due to the smaller time

step Dt used in relation to ðDtÞc, while the second one (between large brackets) corresponds to the increasing

in the computational speed due to the periodic long stride. As observed in Fig. 3, where V =Vo is plotted as a

function of g for K ¼ 100, and for the values of NðgÞ given in Fig. 2 for sm ¼ 1 and sm ¼ smo ¼ a=K, the

overall effect is to speed-up the computation in relation to the single-step explicit method with ðDtÞc (i.e.,
V =Vo > 1), except for very small time steps (g ! 1). The function V ðgÞ=Vo corresponding to smo ¼ a=K is a

straight line given by

V
Vo

¼ 1

�
þ 2a

lnð1� 2aþ 2a2Þ

�
ð1� gÞ ’ 3:3271ð1� gÞ; ð21Þ

which is independent of K. For sm ¼ 1, V =Vo is, approximately, a parabola. We see in Fig. 3 that

the computational speed would have been increased more than seven times (for K ¼ 100) using

g ¼ 0:5 if the mode corresponding to sm ¼ 1 would have remain the most unstable for all values of

g. However, as we have seen, this is not the case for g > go (’ 0:104 for K ¼ 100), where

smoðK ¼ 100Þ ’ 0:0271 is the most unstable mode. Thus, the maximum computational speed for

K ¼ 100 is Vmax ’ 3Vo, corresponding to g ¼ go. For large K, goðKÞ can be easily obtained because it

is small, so that it can be approximated by the intersection of two straight lines, that given by (21)

(which does not depend on K), and the corresponding one for sm ¼ 1 near g ¼ 0. The result is given
in Eq. (18).

Fig. 3. Normalized computational speed for the same case of Fig. 2 with sm ¼ 1 (parabola) and sm ¼ a=K ’ 0:0271 (straight line). The

same results obtained numerically with Dx ¼ 0:02 are plotted as circles.
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2.2. Efficiency of the method

We have seen that, given a discretization scheme and a non-dimensional long time step K, there exists

an optimum value of the non-dimensional small time step go for which the computational advance in

time is the fastest; that is to say, the number N of small time steps to stabilize the long time step is a

minimum. Similar results can be found using other different discretization techniques. Fig. 4 shows these

values of goðKÞ and NminðKÞ for the PC scheme just described, and compare them with the corresponding

values obtained with a forward in time and centered in space differences scheme (FTCS for short), which

is only first-order accurate in time [5]. For large K, goðKÞ can be approximated by (18) for the PC

scheme, and by

go ’
2a1 � 1

2a1 þ 2K
lnð2KÞ

; a1 ’ 2:956; ð22Þ

for the FTCS scheme, while the minimum values of N are approximated by Nmin ’ 0:4297K=ð1� goÞ and
Nmin ’ 0:2785K=ð1� goÞ, respectively. Fig. 5 shows the corresponding normalized computational speeds. It

is observed that Vmax=Vo grows with K and reaches an asymptote as K ! 1 in both cases. Actually, as K
increases, V =Vo increases (and go decreases) along the straight lines corresponding to sm ¼ smo [Eq. (21) for

the PC scheme and V =Vo ’ 4:5911ð1� gÞ for the FTCS scheme], so that the highest computational speed is

given by the slope of these lines, which are, approximately, 3.3271 and 4.5911 for the PC and FTCS

schemes, respectively. Since the reference speed Vo of the FTCS scheme is twice Vo of the PC scheme, this

means that the highest computational speed for the FTCS method is almost three times the maximum value

for the PC method, i.e., about nine times faster than the standard explicit method.
However, in practice, this is not so because the value of K will usually be selected in such a way that the

temporal accuracy is of the same order of magnitude than the spatial one. Since the FTCS method is first-

order accurate in time and second-order in space, the corresponding value of K ¼ ðDxÞ2=ðDtÞc is always 2,

independently of the value of Dx. In the PC scheme discussed in Section 2.1, which is second-order in time,

Fig. 4. go vs. K (a) and Nmin vs. K (b), for the PC discretization scheme (continuous lines) and FTCS scheme (dashed lines).
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the corresponding value of K given by the spatial accuracy is K ¼ Dx=ðDtÞc ¼ 2=Dx, so that one can increase

K by decreasing Dx. Thus, for the same spatial and temporal resolutions, the use of the PC scheme can be
faster than the FTCS if one selects a sufficiently high value of K (small value of Dx).

Higher values of K for a given Dx yielding time accuracy in accordance with the spatial resolution may be

obtained using a numerical scheme of higher order for the long time steps. In Fig. 5 we have also included

the maximum of the computational speed of a predictor–corrector scheme for the small time steps com-

bined with a fourth-order Runge–Kutta method (e.g. [5]) for the strides (PC–RK scheme; Vo is approxi-

mately the same than in the PC case because it is mainly controlled by the numerical method used in the

small time steps, which is the same in both cases). Given K, the normalized computational speed is lower,

but the value of K that equates time and space accuracies is now 2=ðDxÞ3=2, which allows a larger value of K
for a given Dx. For instance, for Dx ¼ 0:02, the corresponding values for K are 2, 100, and 707 for FCTS,

PC, and PC–RK schemes, respectively. The corresponding speed-up factors are, approximately,

V =Vo ¼ 2:8; 3, and 2.5, respectively.

3. Application to an incompressible flow

With the diffusion equation considered in the previous section one may predict theoretically, and then
check numerically, the stability of the numerical method. However, where the method has important ad-

vantages is in solving unsteady two-dimensional (2D) and three-dimensional (3D) incompressible flows,

where the numerical stability severely constrains the size of the time step in explicit methods, and the re-

duction of CPU time may be essential for the numerical method to be of practical use. This circumstance is

particularly severe in flows with very different length scales, because the time step for numerical stability

may be extremely small, even using an implicit or semi-implicit method. For this reason, in this section we

Fig. 5. Maximum of the computational speed as a function of K for the PC discretization scheme (continuous line), FTCS scheme

(dashed line), and PC–RK scheme (circles).
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apply the stride-method to a confined axisymmetric sink flow in the cylindrical geometry shown in Fig. 6,

where the flow exits the cylindrical container through an orifice (sink) at the bottom wall of diameter d
much smaller that the radius R of the cylinder (see next section and Appendix A for the details of the flow).

For small values of d=R, the maximum value of the time step in an explicit (and even in an implicit or semi-

implicit) method is so small that the CPU time to reach a steady state becomes prohibitive. We shall see that

the dependence of the computational speed V =Vo upon the non-dimensional small time step has a similar

form to that shown in Fig. 3, so that, for each value of K, there exists an optimum value of g ¼ goðKÞ for

which the computational speed is a maximum. In complex flows like this, ðDtÞc and ðVmax=VoÞðgÞ have to be

obtained, in general, numerically. However, the maximum of the computational speed for each K is easily

obtained because, as we shall see, the function VmaxðgÞ=Vo can be approximated (as in Fig. 3) by two straight
lines.

3.1. Flow in a confined sink flow

We consider in this section the flow inside the cylindrical container sketched in Fig. 6. A flow rate Q of an

incompressible fluid of kinematic viscosity m enters the cylindrical tank through the circular ring of width e
between the upper endwall and the cylinder. The fluid exits through a small orifice (the sink) of diameter d
centred at the bottom endwall.

Cylindrical polar coordinates (r�; h; z�), with velocity field (u�; v�;w�), are used, where the asterisk su-

perscripts denote dimensional quantities. The corresponding dimensionless variables are

r ¼ r�

R
; z ¼ z�

H
; ð23Þ

Fig. 6. Sketch of the geometry of a confined sink flow.
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u ¼ u�2pRH
Q

; v ¼ v�2pRH
Q

; w ¼ w�2pR2

Q
; ð24Þ

where R is the radius of the cylinder and H is the height of the cylindrical cavity. To model the incom-

pressible and axisymmetric flow we use the stream function–vorticity–circulation formulation (see, for

instance [8]), where stream function W�, vorticity g�, and circulation (actually, angular momentum) C� are

defined, respectively, through

u� ¼ � 1

r�
oW�

oz�
; w� ¼ 1

r�
oW�

or�
; ð25Þ

g� ¼ ½r� ^ v��h ¼
ou�

oz�
� ow�

or�
; ð26Þ

C� ¼ r�v�: ð27Þ

With this formulation, the continuity equation is satisfied identically, and the three equations to be solved

are the azimuthal components of the momentum and the vorticity equations, together with the definition

(26) of g�. These equations, and the boundary conditions, are given in dimensionless form in Appendix A.

Fig. 7(a) shows the streamlines corresponding to the steady state for Re ¼ 250, which is the Reynolds

number selected here to compare the different numerical schemes [Re is defined in Eq. (A.4)]. In fact, we are

going to consider this steady state as the initial condition for the unsteady flow with circulation used here to

compare the different numerical schemes: After the steady state without rotation has been reached (t ¼ 0),

the upper wall starts rotating with an angular velocity X. Thus, for tP 0, the circulation C at the upper wall
[(C) and (D) in Fig. 6] and at the inlet (A) is not zero, but given by

C ¼ c
8

d2D
r2 at z ¼ 1; 06 r6 1� � and 16 z6 1þ z2; r ¼ 1� �; ð28Þ

(a) (b)

Fig. 7. Steady-state streamlines corresponding to a flow without rotation (a) and with rotation of the upper wall (b), for Re ¼ 250 and

c ¼ 0:1. 20 equally spaced streamlines between 0 and �1 are plotted with solid lines. Broken lines correspond to regions with flow

recirculation, with values of W outside the interval [�1; 0].
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and

C ¼ c
8

d2D

ð1� �Þ2

1� ð1� �Þ2
ð1� r2Þ at z ¼ 1þ z2; 1� �6 r6 1; ð29Þ

which substitute the boundary conditions (A.10), (A.12), and (A.6) for C, respectively. c is a dimensionless

number characterizing the azimuthal velocity of the upper disk,

c � XR
4Q=pd2

: ð30Þ

Fig. 7(b) shows the streamlines corresponding to the new steady state for Re ¼ 250 when c ¼ 0:1. Both

steady states plotted in Fig. 7, the initial condition of Fig. 7(a) and the final condition plotted in Fig. 7(b),

have been obtained using an explicit predictor–corrector method with 2070 nodes on a stretched grid that

concentrates them at the inflow and at the outflow regions, and a single time step given by its critical value

Dt ¼ ðDtÞc. The PC explicit scheme can be summarized as follows (see Appendix A):

C� ¼ Cn þ Dt
2
F ðWn;CnÞ; g� ¼ gn þ Dt

2
GðWn;Cn; gnÞ; r2W� ¼ �rg�; ð31Þ

Cnþ1 ¼ Cn þ Dt F ðW�;C�Þ; gnþ1 ¼ gn þ DtGðW�;C�; g�Þ; r2Wnþ1 ¼ �rgnþ1; ð32Þ

where second-order spatial discretizations for the spatial derivatives in F and G are used. Thus, the method

is second-order accurate both in space and time [8]. In the computational plane (06 x6 1; 06 y6 1),

the 2070 nodes are uniformly distributed with Dx ¼ 0:0125 and Dy ¼ 0:0196, so that the spatial errors are

of the order ðDxÞ2 þ ðDyÞ2 � 6� 10�4. It should be noted here that the steady-state streamlines plotted in

Fig. 7 are undistinguishable from those obtained using the significantly faster stride-method described

in the next sections.

In the explicit computations starting from the initial condition of Fig. 7(a) to reach the new steady state
of Fig. 7(b), the critical value of Dt given by numerical stability is ðDtÞc ’ 2:3� 10�6, which is almost four

orders of magnitude smaller than the spatial grid size. The CPU time to reach the steady-state conditions of

Fig. 7(b) was about 57 min in a Silicon Origin 2000. (Note that we have selected a relatively low value of the

Reynolds number to reach the steady state in a reasonable CPU time. If, for instance, we had used

Re ¼ 2000, the number of nodes to reach a similar spatial resolution would have increased to about 10 000,

ðDtÞc would be around 10�7, and the CPU time to reach the steady state would rise to more than seven days,

making very costly the comparison between the different numerical computations given below.) To have an

idea of the azimuthal motion corresponding to the steady state given by the streamlines of Fig. 7(b), we
have plotted in Fig. 8 several radial profiles of the azimuthal velocity v at different z-levels inside the cyl-

inder. It is observed that the swirl is concentrated at the sink exit. In particular, the maximum value of v is

reached at the point z ¼ 0 and r ’ 0:025. Since the temporal and spatial gradients are consequently the

largest at this point, we have chosen the temporal evolution of v there to compare the performance of the

different numerical schemes given below.

3.2. Explicit scheme for the long time steps

The stride-method discussed in Section 2 has been used to solve this problem for the same Re and spatial

grid of Fig. 7, and for several values of K [the PC explicit numerical scheme (31) and (32) is used].

For each value of K, the functions NðgÞ and ðV =VoÞðgÞ are very similar to those plotted in Figs. 2 and 3.

Fig. 9 shows ðV =VoÞðgÞ for K ¼ 1000, which is the value that approximately yields the same temporal
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accuracy than the spatial one. It has a maximum at go ’ 0:025. Like in the much simpler example of Section

2, this maximum can approximately be obtained by the crossing of two straight lines, one for small g
passing through ðV =VoÞðg ¼ 0Þ ¼ 1, and the other one coming from ðV =VoÞðg ¼ 1Þ ¼ 0 (remarkably, this

Fig. 9. Normalized values of the computational speed as a function of g for the flow in a confined sink flow using a PC scheme with

K ¼ 1000. This function is approximated by two straight lines, the crossing of which yields the maximum computational speed.

Fig. 8. Radial velocity profiles at different values of z corresponding to the steady state of Fig. 9(b).
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last one is exactly a straight line in Fig. 9, as in the linear problem of Section 2). Therefore, the optimum

value of the small time step for each K, goðKÞ, can be easily obtained from the computation of just a few

points of these two straight lines for each K. It is observed that, for the value of K considered, the com-
putation using go is a bit more than three times faster than with the standard explicit scheme.

The time evolution of the azimuthal velocity v at the point (r ¼ 0:025; z ¼ 0) (remember that at this point

the time and spatial gradients of v are the largest, see Fig. 8), obtained with K ¼ 1000 and the corre-

sponding optimum time step go, is shown in Fig. 10(a) together with the results obtained with a single-time

step explicit method with ðDtÞc. It is observed that both time evolutions practically coincide. Actually, the

difference between both curves, shown in Fig. 10(b), is always smaller than 10�3, and therefore within the

order of magnitude of the second-order spatial errors. The only difference is that with the single-step explicit

method the steady state (which is assumed at t ¼ 0:2) is reached after 57 min of CPU time, while with the
stride-method the same conditions are reached just after 19 min of CPU time.

3.3. Implicit scheme for the long time steps

In nonlinear problems such as those governed by the incompressible Navier–Stokes equations, implicit

methods are not always unconditionally stable like in the linear diffusion equation (e.g. [1]). Thus, the

computational cost of an implicit method is even higher, making prohibitive its use in unsteady complex

flows for moderate and high Reynolds numbers. For example, in the present example of a confined sink

flow, we find that the maximum time step for Re ¼ 250 using an implicit Crank–Nicolson scheme with two

iterations (see Appendix A) is 1:453� ðDtÞc, where ðDtÞc is the maximum time step of the PC explicit

method (31) and (32) for the same Re. Since the CPU time for each Dt is about 10 times larger, the semi-

implicit method is about seven times slower than the explicit one.
However, since the implicit scheme is more stable numerically, the use of an implicit method for the long

time steps may have some advantages over the explicit one because the smaller number N of small explicit

Fig. 10. (a) Time evolution of the azimuthal velocity at ðr ¼ 0:025; z ¼ 0Þ for K ¼ 1000. The circles correspond to last points just

before the strides. The dashed line is obtained using a single-time step explicit method with ðDtÞc. (b) Difference between the two

numerical solutions.
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time steps needed to stabilize the method may compensate the larger computational cost of each implicit

periodic stride, making the overall computational time smaller. We show in this section that this is the case.

Actually, we shall see that the computational speed using a combination of explicit small time steps with

implicit long time steps may be about one order of magnitude larger than the computational speed with the

single-step explicit method.

For each value of the non-dimensional stride K, the functions NðgÞ and ðV =VoÞðgÞ, using the implicit

scheme (A.15) and (A.16) for the strides, and the explicit scheme (31) and (32) for the small time steps, are
qualitatively similar to those plotted in Figs. 3 and 9, existing an optimum value of the small time step

g ¼ go for which V =Vo is a maximum for each K. This can be observed in Fig. 11 for K ¼ 1000 and

Re ¼ 250. As before, this maximum can be approximately obtained by the crossing of two straight lines, so

that the optimum value of the small time step for each K, goðKÞ, can be easily determined from the

computation of just a few points of these two straight lines. Note that the normalization factor Vo is the

same used in the preceding section, i.e., the computational speed of an explicit method with a single time

step given by ðDtÞc. However, to obtain the computational speed [see Eq. (20)] in the present case, we have

taken into account that the computational time of an implicit stride is a ’ 10 times larger than the CPU
time of the small explicit step:

V
Vo

¼ ð1� gÞ
N þ K

1�g

N þ a

 !
: ð33Þ

Comparing Figs. 9 and 11 it is seen that now go (’0.0375 for K ¼ 1000) is a little larger (ðDtÞo is smaller).

But, what is more important, the computational speed of the present scheme is about three times larger
than that of the preceding section, and almost 10 times faster than the single-step explicit scheme (re-

member that this is so even after taking into account the correction a for the slower implicit strides). This is

due to the much less number of small time steps N needed to stabilize the long time steps when an implicit

Fig. 11. Normalized values of the computational speed as a function of g for the flow in a confined sink flow using an explicit PC

scheme for the small time steps and an implicit Crank–Nicolson scheme for the strides, for K ¼ 1000. This function is approximated by

two straight lines, the crossing of which yields the maximum speed at g ¼ goðKÞ.
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Fig. 12. Comparison between the details of the time evolution of v at the same point of Fig. 10 using the implicit scheme for the strides

(a) and the explicit one (b), both with K ¼ 1000. The circles correspond to the small time steps and the continuous lines to the strides.

The dashed lines show the time evolution obtained using a single-time step explicit method with Dt ¼ ðDtÞc.

Fig. 13. (a) Time evolution of the azimuthal velocity at ðr ¼ 0:025; z ¼ 0Þ for K ¼ 1000 using a Crank–Nicolson method for the strides.

The circles correspond to last points just before the strides. The dashed line is obtained using a single-time step explicit method with

ðDtÞc. (b) Difference between the two numerical solutions.
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scheme is used for the strides, which more than compensates the larger computational time of the implicit

stride. Fig. 12 illustrates this effect for K ¼ 1000. It is seen that at least N ¼ 490 small (explicit) time steps

are needed to numerically stabilize the explicit stride for this value of K (Fig. 12(b)), while just N ¼ 110

small (explicit) time steps are enough to stabilize the implicit stride for the same value of K (Fig. 12(a)).

Fig. 13(a) shows the complete time evolution of the azimuthal velocity v using the Crank–Nicolson

scheme for the strides, at the same point and conditions of Fig. 10, and compares it with that obtained with

the single-step explicit method. Again, both time evolutions practically coincide, but while that obtained

with the explicit method takes 57 min of CPU time to reach the steady state (i.e., t ¼ 0:2), the one computed
with the stride method takes just 6 min of CPU time. Actually, the difference between both computed time

evolutions, plotted in Fig. 13(b), is even smaller than that obtained with an explicit scheme for the strides

(Fig. 10(b)), and it is within the spatial accuracy of the scheme.

4. Conclusions

With the aim of speeding-up explicit schemes for solving the incompressible Navier–Sokes equations, we
present in this paper a method that advances in time with long time steps (strides) intercalated in much

smaller time steps. The magnitude of the strides may be selected in accordance with the spatial resolution to

match temporal and spatial accuracies. The method is based in the fact that the use of a Dt just slightly

smaller than the one allowed by the numerical stability in an explicit scheme, ðDtÞc, yields enough stability

margin to periodically take a much larger time step that speeds-up the computations in a numerically stable

scheme. Furthermore, for each value of the relative magnitude of the stride, there is an optimum value of

the small time step ðDtÞo for which the computational speed is a maximum, which is always significantly

larger than the computational speed without strides. These properties have been shown theoretically, and
then checked numerically, using a linear diffusion problem. The application of the method to an incom-

pressible flow has shown that the stability properties, and the speeding-up of the numerical method, for the

nonlinear Navier–Stokes equations are very similar to those found theoretically for the linear equation. In

particular, we give a simple procedure to obtain the optimum value of Dt for which the CPU time is a

minimum, given the magnitude of the stride. Finally, we have shown that the use of an implicit scheme for

the periodic strides between the explicit small time steps may speed-up the computations by a factor of

order 10. In all these cases, the temporal evolutions obtained numerically are practically the same.

We think that where this method will be particularly useful is in the numerical simulation of three-di-
mensional incompressible flows at moderate and high Reynolds numbers and complex geometries, where

the CPU time restrictions are more severe. Actually, in the example given in the preceding section, but for

Re ¼ 2000, we have been able to reduce the CPU time from more than a week to less than 15 h in a Silicon

Origin 2000. It should be noted that the method is compatible with the parallelization of the code, so that

the computational speed should be multiplied by the same factor related to the number of processors than

in a standard explicit method.
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Appendix A

The non-dimensional equations governing the flow considered in Section 3 are the following:
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where

Re ¼ 4Q
pmd

ðA:4Þ

is the Reynolds number based on the flow properties at the sink exit and

D ¼ H
R
; d ¼ d

R
ðA:5Þ

are the aspect ratio of the cylinder and the dimensionless radius of the sink, respectively. Note that W, g,
and C are made dimensionless with Q=2p, Q=2pRH 2, and Q=2pH , respectively. The characteristic time used

in the above adimensionalization is 2pHR2=Q.

These equations are solved with the following boundary conditions (see Fig. 6 for the geometry): at the
entrance ((A) in Fig. 6), we assume a Poiseuille axial velocity profile together with u ¼ v ¼ 0:

W ¼ � 1

A
2½r2



� ð1� �Þ2� � ½r4 � ð1� �Þ4� � 2K½r2 ln r � ð1� �Þ2 lnð1� �Þ� þ K½r2 � ð1� �Þ2�
�
;

g ¼ � 4D2

A
2r
�

þ K
r

�
; C ¼ 0 at z ¼ 1þ z2; 1� �6 r6 1; ðA:6Þ

where

� ¼ e
R
; z2 ¼

h2

H
; A ¼ 1� ð1� �Þ4 þ ½1� ð1� �Þ2�2

lnð1� �Þ ; K ¼ 1� ð1� �Þ2

lnð1� �Þ : ðA:7Þ

At the sink exit ((B) in Fig. 6), the velocity profiles are assumed to be independent of z:

o2W
oz2

¼ 0; g ¼ �D2 1

r
o2W
or2

�
� 1

r2
oW
or

�
;

oC
oz

¼ 0 at z ¼ �z1 � � h1

H
; 06 r6 d=2: ðA:8Þ

At the axis of symmetry ((E) in Fig. 6), we have

W ¼ g ¼ C ¼ 0 at � z1 6 z6 1; r ¼ 0: ðA:9Þ

Finally, at the solid walls ((C), (D), (F)–(H) in Fig. 6) the velocity vanishes. Thus,

W ¼ 0; g ¼ � 1

r
o2W
oz2

; C ¼ 0 at z ¼ 1; 06 r6 1� �; ðA:10Þ

W ¼ �1; g ¼ � 1

r
o2W
oz2

; C ¼ 0 at z ¼ 0; d=26 r6 1; ðA:11Þ
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W ¼ 0; g ¼ �D2 1

r
o2W
or2

; C ¼ 0 at 16 z6 1þ z2; r ¼ 1� �; ðA:12Þ

W ¼ �1; g ¼ �D2 1

r
o2W
or2

; C ¼ 0 at 06 z6 1þ z2; r ¼ 1; ðA:13Þ

W ¼ �1; g ¼ �D2 1

r
o2W
or2

; C ¼ 0 at � z1 6 z6 0; r ¼ d=2: ðA:14Þ

In the computations given in the main text we have selected D ¼ 0:25, d ¼ 0:1, � ¼ 0:05, z1 ¼ 2, and

z2 ¼ 0:4.
The implicit Crank–Nicolson scheme with two iterations used in Section 3.3 for the long time steps may

be sketched as follows:

C� ¼ Cn � Dt
2

AðWn;CnÞ
�

þ AðWn;C�Þ � 1

Re
ðr2Cn þr2C�Þ

�
;
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2

AðWn;Cn; gnÞ
�

þ AðWn;C�; g�Þ � 1

Re
ðr2gn þr2g�Þ

�
; r2W� ¼ �rg�; ðA:15Þ

Cnþ1 ¼ Cn � Dt
2

AðWn;CnÞ
�

þ AðW�;Cnþ1Þ � 1

Re
ðr2Cn þr2Cnþ1Þ

�
;

gnþ1 ¼ gn � Dt
2

AðW�;Cn; gnÞ
�

þ AðWn;Cnþ1; gnþ1Þ � 1

Re
ðr2gn þr2gnþ1Þ

�
; r2Wnþ1 ¼ �rgnþ1;

ðA:16Þ

where A represents the convective terms.
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