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Batchelor’s vortex has been commonly used in the past as a model for aircraft trailing
vortices. Using a temporal stability analysis, new viscous unstable modes have been
found for the high swirl numbers of interest in actual large-aircraft vortices. We look
here for these unstable viscous modes occurring at large swirl numbers (q > 1.5), and
large Reynolds numbers (Re > 103), using a spatial stability analysis, thus character-
izing the frequencies at which these modes become convectively unstable for different
values of q , Re, and for different intensities of the uniform axial flow. We consider
both jet-like and wake-like Batchelor’s vortices, and are able to analyse the stability
for Re as high as 108. We also characterize the frequencies and the swirl numbers for
the onset of absolute instabilities of these unstable viscous modes for large q .

1. Introduction
We consider here the spatial stability of the so-called q-vortex, also called Batchelor’s

vortex, whose velocity field (U, V, W ), in cylindrical polar coordinates (r, θ, z), is given,
in dimensionless form (see § 2 for more details), by

U = 0, V =
q

r

(
1 − e−r2)

, W = W0 + e−r2

, (1.1)

where q is the swirl parameter, and W0 is a uniform axial flow, which can be positive
(jet-like vortex), negative (wake-like vortex), or zero. All the velocities are made
dimensionless with a characteristic axial velocity Wc that accounts for the exponential
part of the axial flow in (1.1). This model vortex is a parallel-flow approximation of
the original Batchelor’s (1964) vortex, and has been traditionally used as a simple
model for trailing vortices with axial flow (see, e.g. Lessen, Singh & Paillet; Mayer &
Powell 1992).

The temporal stability of the q-vortex (1.1) was first considered by Lessen and
colleagues, both from an inviscid point of view (Lessen et al. 1974), and taking
into account the effects of viscosity (Lessen & Paillet 1974). In these works, as in
all the temporal stability results of later works commented on below, the uniform
advection velocity W0 was set to zero without loss of generality, for this parameter
is not relevant in the temporal stability problem because of Galilean invariance.
These authors found that (1.1) was unstable to non-axisymmetric counter-rotating
perturbations (n< 0) in a wide range of the swirl number q and the Reynolds number
Re (see § 2 for its exact definition). In fact, Lessen et al. (1974) and Lessen & Paillet
(1974) only reported inertial instabilities, finding that the widest unstable range of
swirl numbers is 0 � q � qcrit � 1.5, corresponding to Re → ∞ for the azimuthal
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wavenumber n = −1. These results were later refined numerically by Duck & Foster
(1980), and generalized asymptotically for |n| � 1 by Leibovich & Stewartson (1983),
Stewartson & Capell (1985), and Stewartson & Leibovich (1987).

Purely viscous modes corresponding to azimuthal wavenumbers n = 0 and n = +1
were found by Khorrami (1991a) and by Duck & Khorrami (1992). These modes occur
for q < 1.3, and their growth rates are always several orders of magnitude smaller than
those of the corresponding inertial modes. A detailed characterization of the temporal
stability of the q-vortex in the (Re, q)-parameter plane, including all the inviscid and
viscous modes found previously and some new ones (particularly for n � 0), was
made by Mayer & Powell (1992) (see also the review by Ash & Khorrami 1995).

Viscous instabilities for large swirl numbers (q > 1.5) and large Reynolds numbers
(Re > 103) were found asymptotically by Stewartson & Brown (1985). Fabre & Jacquin
(2004) made a detailed characterization of these large swirl number viscous instabilities
by solving numerically the temporal stability problem. These instabilities were not
found previously, particularly in the detailed work of Mayer & Powell (1992), because
the unstable perturbations are centre modes which are concentrated along the vortex
axis, and they can only be found with a highly accurate spectral method such as that
used by Fabre & Jacquin. These authors were able to map the unstable region up to
Re ≈ 106 and q ≈ 7. These unstable modes are related to the family of viscous modes
found by Stewartson, Ng & Brown (1988) for a swirling pipe Poiseuille flow.

A spatial stability analysis of the q-vortex, characterizing the unstable regions and
the onset of absolute instabilities in the (Re, q)-parameter plane for all possible values
of W0, was undertaken by Olendraru & Sellier (2002). Although these authors also
found unstable modes for large q (up to q ≈ 3), they did not explore systematically
these viscous modes for large q . Therefore, the main objective of this work is to
perform such a systematic characterization of viscous unstable modes for large values
of the swirl parameter and for large Reynolds numbers from a spatial stability
analysis. Our numerical technique allows us to reach Reynolds numbers up to the
order of 108, with the corresponding swirl numbers up to the order of 100. We first
present the results for W0 = 0, and then for W0 �= 0. In the latter case, the onset of
absolute instabilities will also be characterized (no absolute instabilities are found for
viscous modes with q � 1.5 when W0 = 0).

2. Formulation of the problem and numerical method
2.1. General basic flow and spatial stability formulation

Although we shall consider only the spatial stability of the q-vortex (1.1), we formulate
here the problem for a general vortex with axial flow which, in cylindrical-polar
coordinates (r, θ, z), and in the parallel-flow approximation, has a velocity and pressure
fields given by

U = 0, V = V (r), W = W (r), P = P (r). (2.1)

All the magnitudes are dimensionless. The flow is characterized by two non-dimensionl
parameters: a Reynolds number

Re =
rcWc

ν
, (2.2)

where rc and Wc are a characteristic radius (the dispersion radius of vorticity) and a
characteristic axial velocity, respectively, and ν is the kinematic viscosity; and a swirl
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parameter,

Sw =
Vc

Wc

, (2.3)

where Vc is a characteristic azimuthal velocity. In the case of the Batchelor’s vortex
(1.1), Sw ≡ q .

To analyse the linear stability of the above basic flow, the velocity (u, v, w) and
pressure p fields, are decomposed, as usual, into their mean parts (2.1), and small
perturbations (u′, v′, w′, p′). These perturbations are decomposed in the standard
form:

s ≡ [u′, v′, w′, p′]T = S eaz+i(nθ−ωt), (2.4)

where the complex amplitude,

S(r) ≡

⎛
⎜⎜⎜⎝

F (r)

G(r)

H (r)

Π(r)

⎞
⎟⎟⎟⎠ , (2.5)

depends only on the radial coordinate in the parallel-flow approximation. The non-
dimensional order-of-unity complex radial wavenumber a is defined as

a ≡ γ + iα. (2.6)

The real part γ is the exponential growth rate, and the imaginary part α is the
axial wavenumber. A non-dimensional frequency ω has also been defined. Finally,
the azimuthal wavenumber n is equal to zero for axisymmetric perturbations, and
different from zero for non-axisymmetric perturbations.

Substituting (2.4)–(2.5) into the incompressible Navier–Stokes equations, and
neglecting second-order terms in the small perturbations, the following set of linear
stability equations results:

L · S = 0, (2.7)

L = L1 + aL2 +
1

Re
L3 +

a2

Re
L4, (2.8)

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

dr
+

1

r
i
n

r
0 0

i

(
nV

r
− ω

)
−2V

r
0

d

dr

dV

dr
+

V

r
i

(
nV

r
− ω

)
0 i

n

r

dW

dr
0 i

(
nV

r
− ω

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.9)

L2 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

W 0 0 0

0 W 0 0

0 0 W 1

⎞
⎟⎟⎟⎟⎠ , L4 =

⎛
⎜⎜⎜⎝

0 0 0 0

−1 0 0 0

0 −1 0 0

0 0 −1 0

⎞
⎟⎟⎟⎠ , (2.10)
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L3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

−D2
r +

n2 + 1

r2
i
2n

r2
0 0

−i
2n

r2
−D2

r +
n2 + 1

r2
0 0

0 0 −D2
r +

n2

r2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.11)

D2
r ≡ d2

dr2
+

1

r

d

dr
. (2.12)

These equations have to be solved with the following boundary conditions:

r → ∞, F = G = H = 0; (2.13)

r = 0 (Batchelor & Gill 1962),

F = G = 0, dH/dr = 0, (n = 0), (2.14)

F ± iG = 0, dF/dr = 0, H = 0 (n = ±1), (2.15)

F = G = H = 0 (|n| > 1). (2.16)

In the spatial stability analysis that will be carried out here, for a given real
frequency ω, and given the parameters Re, Sw = q and n, the system (2.7)–(2.16)
constitutes a nonlinear eigenvalue problem for the complex eigenvalue a. The flow is
considered unstable when the disturbance grows with z; i.e. when the real part of the
eigenvalue, γ , is positive (provided that the group velocity is also positive; see below).

2.2. Numerical method

To solve (2.7)–(2.16) numerically, S is discretized using a staggered Chebyshev spectral
collocation technique developed by Khorrami (1991b), where the three velocity
components and the three momentum equations are discretized at the grid collocation
points, whereas the pressure and the continuity equation are enforced at the mid-grid
points. This method has the advantage of eliminating the need for two artificial
pressure boundary conditions at r = 0 and r → ∞, which are not included in (2.13)–
(2.16). To implement the spectral numerical method, (2.7) is discretized by expanding
S in terms of a truncated Chebyshev series. The boundary conditions at infinity are
applied at a truncated radial distance rmax , chosen large enough to ensure that the
results do not depend on that truncated distance. To map the interval 0 � r � rmax

into the Chebyshev polynomials domain −1 � s � 1, we use the transformation

r = c1

1 − s

c2 + s
with c2 = 1 +

2 c1

rmax

, (2.17)

where c1 is a constant such that approximately half of the nodes are concentrated in
the interval 0 � r � c1. This transformation allows large values of r to be taken into
account with relatively few basis functions. The domain is thus discretized in N points,
N being the number of Chebyshev polynomials in which S has been expanded. With
this discretization, (2.7)–(2.16) becomes an algebraic nonlinear eigenvalue problem
which is solved using the linear companion matrix method described by Bridges &
Morris (1984). The method consists in adding to (2.5) the eigenfunction aS, obtaining
thus a linear eigenvalue problem, but at the price of doubling the size of the original
nonlinear one. The resulting (complex) linear eigenvalue problem is solved with double
precision using an eigenvalue solver from the IMSL library (subroutine DGVCCG),
which provides the entire eigenvalue and eigenvector spectrum. Spurious eigenvalues
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N a = γ + iα k = kr + iki (OS)

40 0.222 + 0.365i
60 0.2229717 + 0.365176287i 0.367202058 − 0.220458484i
70 0.367202508 − 0.220457875i
80 0.222971712 + 0.3651762873i 0.367202981 − 0.220457371i

100 0.22297171238 + 0.365176287330i 0.367203916 − 0.220456594i
120 0.2229717123848892 + 0.3651762873306434i

Table 1. Convergence behaviour of a = γ + iα for the most unstable mode with n = −1 and
ω = −0.15 for Re = 667, q = 0.7, W0 = 0, as a function of the number N of Chebyshev
polynomials. c1 = 3, rmax = 100. Also shown are the results of Olendraru & Sellier (2002) for
the same case (OS).

were discarded by comparing the computed spectra for an increasing number N of
collocation points. A first selection of physical modes is made by discarding all the
eigenvalues corresponding to eigenfunctions that do not die conveniently as r → ∞;
that is, we consider only those eigenfunctions satisfying

N/10∑
i=1

|F (ri)|2

N∑
i=1

|F (ri)|2
< T, (2.18)

where the ri are the radial nodes and T is a given tolerance.

2.3. Convergence tests

To check the efficiency and accuracy of the numerical method, we present convergence
histories for two cases. The first one (table 1) is an inviscid mode already documented
in the spatial stability analysis by Olendraru & Sellier (2002, see their table 1),
corresponding to Re = 667 and q = 0.7, for the azimuthal wavenumber n = −1
and frequency ω = −0.15, obtained with the same numerical parameters (c1 = 3 and
rmax = 100) as those of Olendraru & Sellier (2002). It is observed that the eigenvalue
is obtained with 10 significant digits for N = 100 collocation points (for α), and with
12 significant digits for N = 120. In the notation of Olendraru & Sellier (2002), the
complex wavenumber k is related to our complex eigenvalue a through a = ik; i.e.
−ki = γ is the growth rate, and kr = α is the axial wavenumber. The convergence
of the numerical results Olendraru & Sellier (2002) is less good than in our results
(5 significant figures for N = 100), and only the two first significant digits coincide
with our results. This is probably due to the differences in the eigenvalue solvers and
in the machine precisions used. In any case, the coincidence in two significant figures
with Olendraru & Sellier (2002) and the excellent convergence history as N increases,
make us confident of our numerical results.

For the viscous modes with large q (� 1.5) and Re of interest here, more precision
is required because the eigenfunctions are more involved. In addition, they are centre
modes, concentrated near the vortex axis (see figure 1). For these reasons, we have
used in the computations N = 140 and c1 = 1, while maintaining rmax = 100. For
very high Reynolds numbers (Re � 107), we have concentrated the nodes near the
axis even more, using a factor c1 = 0.1 (see figure 1b). For the highest Reynolds
number considered, Re = 108, we have used N = 180, together with c1 = 0.1 and
rmax = 100. The second convergence history presented here (table 2) is for this last
Reynolds number, Re = 108, with q = 3, ω = −2.75, W0 = 0 and n = −1. Note that
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Figure 1. Real (Re) and imaginary (Im) parts of the eigenfuctions for (a) Re = 104, q = 3,
W0 = 0, n = −1, ω = −2.75 (N = 140, c1 = 1), and (b) Re = 108, q = 3, W0 = 0, n = −1,
ω = −2.75 (N = 180, c1 = 0.1).

N a = γ + iα

160 1.69 × 10−3 + 0.246667i
180 1.69658 × 10−3 + 0.246667i
200 1.6967876 × 10−3 + 0.24666715i

Table 2. Convergence behaviour of a = γ + iα of the most unstable mode with n = −1
and ω = −2.75 for Re = 108, q = 3, W0 = 0, as a function of the number N of Chebyshev
polynomials. c1 = 0.1, rmax = 100.

the eigenvalue is obtained with at least 6 significant digits when N = 180 is used.
Finally, to discard the spurious modes, a tolerance T = 10−11 in (2.18) was used in
all the reported cases.

3. Results
For real values of the frequency ω (spatial analysis), the governing stability equations

have the symmetry property a(ω; n; Re, q) 
→ a∗(−ω; −n; Re, q), where the asterisk
indicates the complex conjugate. Thus, if we allow for both positive and negative
values of the forcing frequency ω, only the cases with non-positive (or non-negative)
azimuthal wavenumber n have to be considered. It will be assumed that n � 0 in what
follows. A spatial mode with ω < 0, n< 0, and the eigenvalue a = γ +iα (for given val-
ues of Re and q), physically corresponds to a spatial mode with the positive frequency
−ω, the positive azimuthal wavenumber −n, the axial wavenumber −α, and the same
spatial growth rate γ . On the other hand, only positive values of the swirl parameter
q will be considered, for the spatial stability equations are invariant under the trans-
formation (n, q) → (−n, −q), (F, G, H, Π) → (F, −G, H, Π) (see, e.g. Olendraru &
Sellier 2002). Thus, the stability properties of a vortex with swirl parameter −q (q > 0),
for azimuthal number n (n � 0), and any frequency ω (positive or negative) are the
same as those for a vortex with q , −n and ω; i.e. the same as for q , n and −ω.

For q � 1.5 and given values of the parameters, we shall look for the least stable,
or the most unstable, spatial modes propagating towards increasing z. That is, for
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Figure 2. (a) γ (ω), and (b) α(ω) for the less stable viscous modes for q = 3, W0 = 0, n = −1,
and different values of Re, as indicated.

each q � 1.5, Re > 0, n � 0, and a given positive, negative or zero value of ω, we
search for the largest value of γ corresponding to a mode with a positive real part of
the group velocity, which in its dimensionless form is given by

cg ≡ ∂ω

∂α
. (3.1)

If γ < 0 (γ > 0), the amplitude of the wave packet corresponding to the selected
forcing frequency ω, which moves downstream at the real group velocity cg > 0, will
decrease (increase) with z, and the flow will be spatially stable (unstable). Thus, a
spatial growth rate γ > 0 with cg > 0 corresponds to a convectively unstable flow,
since the growing perturbation is advected downstream of the source with the forcing
frequency ω, leaving the flow in its undisturbed state when the forcing ceases (see,
e.g. Huerre & Monkewitz 1990).

Here, we characterize the viscous unstable modes previously found by Fabre &
Jacquin (2004) for W0 = 0 (for large q and large Re), but using the present spatial
stability formulation instead of a temporal one, and for different values of W0, which
is now a relevant parameter in the spatial stability analysis. In particular, we shall
consider only swirl numbers q � 1.5, so that all unstable modes (if any) are necessarily
viscous modes (Lessen et al. 1974). In fact, we find that at most only one viscous
mode may become unstable in all the cases considered for q > 1.5.

3.1. Viscous modes for W0 = 0 (convective instabilities)

We start with the case W0 = 0. Thus, for instance, figure 2 shows the dispersion
relations, γ (ω) and α(ω), for the unstable viscous modes with azimuthal wavenumber
n = −1, corresponding to q = 3 and different Reynolds numbers. They become
unstable at Rec � 8200 for ωc � −2.75, and remain unstable for R > Rec, though
they become neutrally stable as Re → ∞ because they are viscous modes (note that
the growth rate γ first increases with Re, reaches a maximum at about Re ≈ 105, and
then decreases very slowly as Re → ∞). The functions α(ω) are always almost linear
functions, so that the phase speeds c = ω/α practically coincide with their group



34 L. Parras and R. Fernandez-Feria

1.5 1.6 1.7 1.8 1.9

–4

–3

–2

–1

ω

(a)

n = –1

–2

–3

1.5 2.0 2.5 3.0 3.5
–6

–4

–2

0(b)

n = –1 

–2

–3

2 3 4 5 6 7

–12

–8

–4

0

ω

(c)

n = –1

–2

–3

2 4 6 8 10 12 14
–30

–20

–10

0(d)

n = –1

–2

–3

10 20 30
–60

–40

–20

0

q

ω

n = –1

–2

–3

(e)

20 40 60
–120

–80

–40

0

n = –1 

–2
–3

( f )

Figure 3. Regions of instability in the (ω, q)-plane for the most unstable mode with n= −1,
n= −2 and n= −3 for different values of Re: (a) 103, (b) 104, (c) 105, (d) 106, (e) 107,
(f ) 108. The outermost continuous lines correspond to γ = 0 (neutral curves), within which
we have plotted contour lines for γ > 0 (the increment in γ is 0.005 in all the cases plotted).
The dashed lines correspond to the asymptotic approximation for large Re of the upper and
lower neutral curves given by Le Dizès & Fabre (2007).

speeds cg = ∂ω/∂α, being both obviously positive (we look only for eigenvalues with
cg � 0). These features are common for all the values of q � 1.5 (viscous modes).
Thus, no absolutely unstable modes are found, for cg never vanishes for these viscous
modes in all the cases considered here with W0 = 0.

The instability regions in the (ω, q)-plane for the viscous modes with n = −1,
−2 and −3 are summarized in figure 3 for different (high) values of the Reynolds
number. For the present case with W0 = 0, these viscous modes with q > 1.5 were not
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Figure 4. Critical swirl number above which no unstable viscous modes exist as a function
of Re for several values of n. The thin continuous lines correspond to the asymptotic results
(Fabre & Le Dizès 2007): qc/Re1/3 � 0.1408 for n = −1, 0.1142 for n = −2 and 0.0858 for
n = −3.

reported in the spatial stability analysis of Olendraru & Sellier (2002). They are the
spatial counterparts of the temporal viscous modes found by Fabre & Jacquin (2004),
though these authors mapped the unstable region up to Re ≈ 106, and we report
here results up to Re = 108. For each Reynolds number and n, there exists a critical
swirl number, qn

c (Re), above which the flow is stable. For instance, for Re = 104, we
find that qn=−1

c � 3.233, that practically coincides with the value 3.235 reported by
Fabre & Jacquin (2004). This critical swirl number is plotted as a function of the
Reynolds number in figure 4 for n = −1, −2 and −3.

It is worth noting in figure 3 that the instability regions narrow as the Reynolds
number increases, contracting to a very slender region around the straight line ω = nq

for Re → ∞, in accordance with the lowest order of the asymptotic results for large
Reynolds numbers given by Le Dizès & Fabre (2007). These asymptotic results
were a useful initial guide to finding out the frequency regions in which the present
viscous modes were unstable for each q . We have include in figure 3 the asymptotic
approximation to the upper and lower branches of the neutral curves. For the present
q-vortex (1.1), and up to the order of Re−1/2, the upper and lower parts of the neutral
curve (for q � 1.5 and n � 0) are given by (Le Dizès & Fabre 2007)

ω ∼ nq + α(1 + W0) − Re−1/2

2

√
3n(2/q − q), (3.2)

with

α ∼ −n/q, (3.3)

for the upper branch of the neutral curve, and

α ∼ 0, (3.4)

for the lower branch. The dashed lines in figure 3 are given by (3.2) with W0 = 0.
Though these asymptotic expressions are obtained by Le Dizès & Fabre (2007) from a
temporal stability analysis, the present neutral curve of the spatial stability analysis is
easily found by setting to zero the imaginary part of the frequency (the growth rate),
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Figure 5. Frequencies corresponding to the critical swirl numbers plotted in figure 4.

yielding the axial wavenumber (3.3) or (3.4), and the corresponding real frequency
(3.2). The agreement between asymptotic and numerical results obviously improves
as Re increases. Thus, it is very good for Re � 105, approximately, but it is poor for
Re = 103, especially for the lowest branch of the neutral curve.

As mentioned above, figure 4 depicts the critical (maximum) swirl numbers as
functions of the Reynolds number. These values practically coincide with those
plotted in figure 3 of Fabre & Jacquin (2004) (up to Re = 105). The corresponding
frequencies are plotted in figure 5. For each Re, the largest critical swirl number
corresponds always to the helical mode with n = −1. It is observed that both qc and
|ωc| scale as Re1/3 for large Re, as predicted by the asymptotic analysis. We have
included in figure 4 these asymptotic results for qc (Fabre & Le Dizès 2007).

Finally, to close this section, it is important to mention that no unstable
axisymmetric (n = 0) viscous modes were found for q � 1.5.

3.2. Viscous modes and the onset of absolute instabilities for W0 �= 0

We consider now the viscous unstable modes when an uniform axial flow is present
in the vortex, W0 �= 0. Particularly, we pay special attention to wake-like vortices with
W0 < 0, for which, as we shall see, absolute instabilities may be present in the flow
(as previously found by Delbende, Chomaz & Huerre 1998 for inviscid modes with
q < 1.5, and hinted for viscous modes for Re = 104 by Olendraru & Sellier 2002). We
also consider the cases with W0 > 0, but they never become absolutely unstable.

Figure 6 shows the instability regions in the (ω, q)-plane for the viscous modes
(q > 1.5) with n = −1, Re = 103, and different values of W0 ranging between −1.25
and +0.25. It is observed that the critical (maximum) swirl number coincides for all
the values of W0, qn=−1

c (Re = 103) � 1.788. This is because the temporal stability
analysis, contrary to the present spatial analysis, does not depend on W0, so that the
stability boundary in the parameter plane (q, Re) (depicted in figure 4) is common
for all the values of W0, for given values of n.

Inside the instability regions depicted in figure 6, flows with W0 �= 0 may
become absolutely unstable below some critical swirl number. To find these absolute
instabilities, we look for saddle points in the dispersion relation, with a cusp point in
the spatial growth rate γ (ω) > 0 (e.g. Fernandez-Feria & del Pino 2002), and apply
the Briggs–Bers criterion (see, e.g. Huerre & Monkewitz 1990). To that end, we look
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Figure 6. Regions of instability (neutral curves, γ = 0) in the (ω, q)-plane for the most
unstable mode with n = −1 for Re = 103, and for different values of W0, as indicated.
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Figure 7. Saddle point in the dispersion relation for the case Re = 103, n = −1, W0 = −1,
which corresponds to an absolute instability for q = qca � 1.775 and ω = ω0 � −1.6151.

for the dispersion relation functions [γ (ω), α(ω)] for diminishing values of q , starting
from q = qc. For the cases depicted in figure 6, we have found absolute instabilities
for W0 = −0.75 and for W0 = −1.0. For instance, for W0 = −1, the saddle point in
the dispersion relation is shown in figure 7, which corresponds to an absolute critical
swirl qca � 1.775, and an absolute frequency ω0 � −1.6151. These critical values
are marked with an asterisk inside the convective instability regions in figure 8 for
W0 = −0.75 and W0 = −1. For qca < q < qc, the flow is just convectively unstable
(in the frequency range inside the curves depicted in figure 8), whereas for q <qca ,
the flow may be absolutely unstable in a frequency range which obviously lies inside
the convectively unstable range. We have plotted in figure 8 only the neutral curve
for convective instability and the line with the maximum growth rate until it ends at
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Figure 9. As in figure 8, but for Re = 104.

the asterisk marking the onset of absolute instability, corresponding to qca and the
absolute frequency ω0.

The analysis has been carried out for other values of Re and n. For instance,
figure 9 shows the convective instability regions, and the values of qca and ω0, for
n = −1, Re = 104 and a couple of values of W0. It is seen that qca approaches
qc as the Reynolds number increases for W0 = −1. All the values of qca and ω0

are plotted in figure 10 as functions of W0 for n = −1 and several values of Re

up to 106. Figure 10(a) marks, in fact, the absolutely unstable regions in the plane
(q, W0) for several values of Re. It is observed that these regions increase appreciably
in size, reaching higher values of the swirl number, as Re increases. For Re = 104

practically coincides with the region depicted in figure 24 of Olendraru & Sellier
(2002), with a maximum value of the swirl number qca,max(Re = 104, n = −1) � 3.23.
This maximum value of the critical swirl for absolute instability is always reached for
W0 � −1, independently of Re (W0 = −1 marks the boundary between co-flowing and
counter-flowing wakes). Thus, Batchelor’s vortex wakes with W0 = −1 are the globally
most unstable members of the family of vortices. This is easy to understand since, in
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this case, the vortex centre is a stagnant region, and the instabilities considered here
are localized in this region.

Figures 11 and 12 show the critical values for absolute instabilities for modes with
azimuthal wavenumbers n = −2 and n = −3 as functions of W0. The maximum values
of qca for each Re are also reached at W0 � −1, as in the n = −1 case, except for the
lower Reynolds number considered (Re = 103) in the case n = −3 (see figure 12). All
the maximum values of qca as functions of Re are plotted in figure 13 for n = −1, −2
and −3. As in the case of convective instabilities, helical waves with n = −1 are those
with the largest region of absolute instability for Batchelor’s vortices. It is observed
that, for large Re, qca,max scales as Re1/3. In fact, as seen in figure 8 for Re = 104, qc

and qca almost coincide for large Re when W0 = −1, so that this asymptote coincides
with that shown in figure 4, and with the asymptotic results of Fabre & Le Dizès
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Figure 13. qca,max as a function of Re for the three values of n considered. For large Re,
these curves behave as qca,max � cnRe1/3 (dashed lines), with the constants cn for each −n
approximately equal to those given in the caption of figure 4.

(2007). This could have been anticipated because whenever the flow is unstable, there
is one reference frame, which in this problem corresponds to one value of W0 (= −1
in this case), in which the instability is absolute. Finally, figure 14 shows qca as a
function of Re for the three values of n considered and for W0 = −1.125, and −0.75
(the case W0 = −1 is not included because it coincides with figure 13, except for the
point corresponding to Re = 103 for n = −3). In the case W0 = −1.125, no curve for
n = −3 is given because the flow is not absolutely unstable for this W0 for any value
of Re (see figure 12). For large Re, qca scales as Re1/3, similarly to the case W0 = −1,
with proportionality constants given in the figure caption. This type of asymptotic
behaviour for large Re is also found for the case W0 = −0.75, but only for n = −1.
For n = −2 and n = −3, the values of qca are now low and so close to the viscous
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and (b) W0 = −1.125. With dashed lines, we show the asymptotic behaviours for large Re,
qca � cnRe1/3, if that is the case: c1 � 0.0965 for W0 = −0.75; c1 � 0.1333 and c2 � 0.0906
for W0 = −1.125.

instability boundary q ≈ 1.5 that the asymptotic behaviour for the viscous centre
modes discussed by Le Dizès & Fabre (2007) is no longer valid.

4. Summary and conclusions
We have characterized the viscous instabilities of Batchelor’s vortex for high swirl

numbers. In particular, we have considered q > 1.5, a range of the swirl parameter in
which Batchelor’s vortex does not present inertial instabilities (Mayer & Powell 1992).
These viscous instabilities, which are centre modes concentrated near the axis of the
vortex, were found by Fabre & Jacquin (2004) using a temporal stability analysis.
Here, we use a spatial stability analysis which, although it is numerically more
involved, since one has to tackle a nonlinear eigenvalue problem, has the advantage
of directly providing relevant physical information such as the frequency ranges of
the unstable modes in terms of the other parameters of the flow, namely the Reynolds
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number and the swirl parameter, and in terms of the azimuthal wavenumber of the
perturbations. It also provides the onset of absolute instability in a straightforward
way.

We have fully characterized the convective viscous instabilities from Re = 103, which
is approximately the lowest Reynolds number for which the viscous instabilities for
large q (> 1.5) do appear, up to the remarkably high value Re = 108. For these very
high Reynolds numbers we find excellent agreement with the asymptotic analysis of
Le Dizès & Fabre (2007). We find that the most unstable modes are helical ones
with azimuthal wavenumber n = −1. The critical, or maximum, swirl number for
convective instability scales as Re1/3 for large Re, as predicted by the asymptotic
analysis (Le Dizès & Fabre 2007). No axisymmetric (n = 0) unstable viscous modes
are found.

We also characterize the absolute/convective instability boundary for these viscous
modes. Again, helical modes with n = −1 are the first to become absolutely unstable
as q decreases, for each Re. Absolute instabilities are present only when the uniform
axial velocity superimposed to the vortex, W0, is negative, i.e. for wakes. In particular,
the case W0 = −1, which corresponds to the axial velocity that marks the boundary
between co-flowing and counter-flowing wakes, is always the most absolutely unstable
one for every Re and n, as could have been anticipated because, in this case, the
vortex centre, where the present instabilities are localized, is a stagnant region. For
large Re, the maximum swirl number for absolute instability (occurring for W0 = −1)
also scales as Re1/3. Actually, we show that, for this case W0 = −1, the critical swirls
for convective and absolute instabilities practically coincide.

This work is part of the project ‘FAR-Wake’, supported by the European
Commission under Grant AST4-CT-2005-012238. We thank Stéphane Le Dizès and
David Fabre for their comments and for providing us with their asymptotic results.
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