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In this note we consider the analysis of the wave-front shaperesulting from the sudden
release of a finite volume of water over an inclined plane bed of arbitrary bottom slope.
To that end we use the one-dimensional turbulent shallow water equations with a constant
friction factor. We propose an asymptotic analytical solution for the height and velocity in
the wave tip region based on the velocity of the wetting frontand its temporal derivatives,
in a similar fashion as Whitham (1955). For large time, an analytical solution is obtained
for the advance of the wetting front. This proposal is compared and validated with a
numerical simulation computed with a second-order TVD-MinMod numerical scheme.
The divergence of the Hunt’s solution (Hunt 1982; Hunt 1984)for the advancing of the
wetting front as time increases is also established. Our solution for the tip region is tested
against the numerical one, and is also compared with that deduced by Hunt (1984) for
small slopes of the bottom - a really good agreement is found.

1 INTRODUCTION
As far as the author knows the first theoretical studies on theeffect of hydraulic resistance
on dam-break waves were performed by Dressler (1952) and Whitham (1955) - these in-
vestigations started with the analysis of horizontal beds.Later on more realistic problems
were analysed, for instance dam-break floods of a finite volume of water over plane in-
clined beds [i.e., Hunt (1982, 1984)]. Recently this topic have achieved new interest and
insight in its theoretical aspect [see, for instance, Hogg &Pritchard (2004)] as well as in
its experimental version (Lauber 1997).

However, the above theoretical works used the general expressions of Saint Venant,
often called the nonlinear shallow-water equations, validonly for small slopes of the
bottom. In this line we have considered the analysis of the release of a finite volume of
water over an inclined bed of arbitrary bottom slope, using the expressions provided by
Fernandez-Feria (2006) (but adding basal drag effects) to appropriately describe the fluid
movement over arbitrary but constant slopes.

The paper is organized as follows: we firstly formulate the problem (§ 2). We then
analyse the flow movement under the kinematic wave approximation and obtain the ve-
locity and height field as well as the wave-front location (§ 3.1). In § 3.2 we investigate
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Figure 1: (a) Characteristic curves in a space-time diagramunder the kinematic wave
approximation fore = 1. (b) Temporal evolution of the wave-front obtained numerically
compared with the asymptotic result by Hunt (1982,1984) andwith Equation (4); we have
selectedη0 = 1m, e = 1 andFreq ≡

√

8e/f = 2.

the wave shape in the tip region and provide the solution as anasymptotic expansion, in-
deed the explicit expressions for the whole coefficients arededuced. This solution is also
shown to be in close agreement with Hunt’s solution (Hunt 1984) for small slopes of the
bottom. We compare our theoretical predictions with numerical experiments in§ 3.1 and
§ 3.2. A summary and some concluding comments are given in§ 4.

2 FORMULATION OF THE PROBLEM
We consider here the one-dimensional flow over a constant slope bed. In the shallow-water
approximation the dimensionless equations for the mass conservation and momentum in
the direction of the flow can be written as

∂tη + ∂X(ηU) = 0 , ∂tU + U∂XU + cosθ∂Xη = sin θ − fU2/(8η) . (1)

The notation and initial conditions of the problem under consideration are exactly the
same as used in Fernandez-Feria (2006), therefore we do not repeat this information.
We have only added the effects of basal drag using the Darcy-Weisbach friction factor
f (considered constant in the present work) in the momentum balance equation. These
equations, are valid foranyslopeθ of theconstant-slopebed, not just for small channel
slope, provided that the ratio of the depthη to the streamwise extent is sufficiently low.

3 RESULTS
3.1 Kinematic wave solution
In this section we follow the same theoretical approach as Hunt (1982) but solving Equa-
tions in (1) valid for arbitrary bottom slope to obtain the forward wave (wetting front)
advancing over a dry bed.

In the kinematic wave approximation, one neglects the left hand side of the momentum
equation and obtains the relation that follows betweenη andU , U2 = (8η/f) sinθ. Taking
into account this relationship, mass conservation yields

∂η

∂τ
+

3

2

√
η

∂η

∂X
= 0 , τ ≡

(

8 sin θ

f

)1/2

t . (2)

The equation above can be readily integrated together with the initial condition forη
[see Fernandez-Feria-(2006) for its definition]. The wave profile should be defined in two
different regions: the first area (denoted byℜI) is enclosed by the two real characteristics
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Figure 2: Asymptotic solution (7) for the heightη(ζ) for a given instant of time for
several values ofN . The caseN = 1 corresponds to the analogous solution given by
Whitham (1955). Also included is the asymptotic solution byHunt (1984) and the numer-
ical one for the same conditions. We have selectedt = 4411, η0 = 1m, e = 0.0175 and
Fr = 2.5.

C1 ≡ −1/e andC2(τ) ≡ 3τ/2, and this region exists for anyτ ; the second region (ℜII)
ranges between the characteristicC2(τ) andC3(τ) ≡ (16e2 + 9τ 2)/(8e), and it exists just
for τ ≤ 4e/3. After defining these two different areas the solution reads

η(X,τ) =

{

1 + (e/2)
(

eτ̂ 2 + 2X − τ̂
√

4 + e2τ̂ 2 + 4eX
)

if X ∈ ℜI

1− (2eX − τ̂ 2 − τ̂
√

4e2 + τ̂ 2 + 4eX)/(2e2) if X ∈ ℜII
, (3)

beingτ̂ ≡ 3τ/2. As in Hunt’s (1982) solution, a shock must be inserted in thesolution to
satisfy the mass conservation requirement. For simplicitywe provide the location of the
shockxs(τ) just for τ > 3xs/2. In closed-form it is given by

τ̂
(

4 + e2τ̂ 2 + 4exs

)3/2
= e3τ̂ 4 + 12xs + 6e2τ̂ 2xs + 6e

(

τ̂ 2 + x2

s − 1
)

. (4)

Figure 1a depicts both the regionℜI (dashed-dotted line) and the regionℜII (dotted
line) in the characteristic plane{X, τ̂} for e = 1. The border between these two regions
is established by the characteristic curveC2 (solid, squared line). One should note the
presence of the shockxs (solid, circled line), which establishes the validity of the solution
(3): on the right hand side of the shock the solution is no longer valid, and both the height
and the velocity field vanish. The other two characteristicsC1 (solid, crossed line) and
C3 (dashed line) are also shown in the same figure. To validate the front location (4),
Equations in (1) (with the corresponding initial conditions) have been solved numerically
on an uniform grid using an upwind TVD (total variation diminishing) method, second-
order accurate in both space and time, with semi-implicit and upwind treatment of the
source terms, as described by Burguete & Garcia-Navarro (2001). The boundary condition
used for the wetting front is a cut-off height (η/ηmax < 10−4), the Courant-Friedrich-Lewy
number isCFL = 0.45, and the number of nodes isnx = 104. Figure 1b shows a close
agreement between the numerical (solid line) and the analytical result (4) (dotted line).
We have also plotted the asymptotic result provided by Hunt (1982, 1984) considering the
shallow-water equations due to Saint Venant. The solutionsby this author becomes worse
as time goes on because the slopee is not small.

3.2 Wave-front shape
If we define the variableζ = xf (t) − X, wherexf is the position of the wetting front,
Equation (1) read (note thatU > 0)

∂tη + (x′

f −U)∂ζη − η∂ζU = 0 , (5)
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∂tU + (x′

f −U)∂ζU − cos θ∂ζη = sin θ − fU2/(8η) , (6)

where primes denote differentiation with respect tot. One can obtain a solution of the
resulting equations in powers ofζ using the same expansion as Whitham (1955), which
can be written as

η(ζ, t) =

N
∑

j=0

ηj(t)ζ
j+1

2 , U(ζ, t) =

N
∑

j=−1

Uj(t)ζ
j+1

2 . (7)

If the wave-front is taken to beX = xf (t), thenU−1 = x′

f at the wave-front. On the other
hand, the particle acceleration,∂tU + (x′

f − U)∂ζU , is expected to be finite while the
effect of resistance is to pile up the fluid near the wave-front, so that∂ζη becomes large.
Therefore, to first approximation,−η cosθ∂ζη = η sin θ − fU2/8. Taking into account
(7) and grouping terms of orderζ one obtainsη0 = x′

f/2(f/ cosθ)1/2. Now, substituting
the expansion (7) in the continuity equation (5) and grouping again terms of orderζ
one obtainsU0 = 0. Repeating this process for the next exponents inζ , firstly with the
momentum equation (6), and then with the mass balance (5), the coefficientsηi andUi

are obtained explicitly. For instance, grouping termsO(ζ1/2) in the mass balance provides
η1 = 2(x′′

f − sin θ)/(3 cosθ). All the coefficients can be obtained analytically:

UN =
1

η0





2

N + 2
η′N−1 −

N−1
∑

j=1

UjηN−j



 forN ≥ 1 , (8)

ηN =
2

N + 2

1

η0 cos θ



− cos θ

N−1
∑

j=1

N − j + 1

2
ηjηN−j − sinθηN−1 +

f

8

N−1
∑

j=−1

UjUN−j−2+

N−1
∑

j=0

ηjU
′

N−2−j +

N−1
∑

j=0

(

−ηj

N+1−j
∑

k=1

N − k − j + 1

2
UN−k−jUk−1

)



 forN ≥ 2 .

(9)

This asymptotic solution, which actually converges even for ζ > 1 (see Fig. 2), was
originally found by Whitham (1955), but this author only provided explicit expressions
for the first few coefficients, just up toN = 1. The first result we must point out is that
the velocity field depends onζ from the third term in the expansion, and therefore the
assumption performed by Whitham “thatU is nearly uniform in the tip region” (Whitham
1955) is valid only untilO(ζ). Second, the solution converges slowly asN is increased
if ζ is not too small, as it is shown in Figure 2, where the heightη has been plotted as a
function ofζ for a givent. To computex′

f and next derivatives we have used the previous
result (4) valid foranyslope of the bottom.

In that figure we also include the form of the wetting front given by the asymptotic
solution by Hunt (1984) showing a very good agreement with the asymptotic solution (7)-
(9) if N is sufficiently large. This is so because we have used a very small bottom slope
(note thate = 0.0175 implies θ = 1o), and thus the Saint Venant equations for a plane
bed approximates with precision (1), in order to check (7) with a known solution. But this
solution is actually valid for any constant slope. Our expansion is in agreement with the
inner solution (plotted in continuous line) forN ≥ 2. From the matching point (big star) to
the right hand side, the inner and the composed solution (dashed-dotted line) by Hunt are
almost identical, and we need quite a lot terms in the expansion (e.g.,N > 25) to obtain a
similar result. Furthermore, we have also computed the numerical solution with the same
technique described in§ 3.1 (CFL = 0.45 andnx = 104) and a very good agreement has
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been found with the theoretical ones (Fig. 2). Finally, although the slope of the bed is
small, the kinematic wave approximation is valid [one can verify xs ≫ 4(e + 1/e)], and
thus the source terms in Equation (1) dominate the fluid movement. Even in this case the
cut-off height method used to compute the advance of the wetting-front is good enough
for the problem under consideration.

4 CONCLUSIONS
In this study we have considered the effects of hydraulic resistance on the dam-break flood
over an inclined plane of arbitrary but constant slope.

For the kinematic wave regime the theoretical location of the wetting front has been
supplied together with the velocity and height field (§ 3.1). We have also solved the
shallow-water equations (with the appropriate initial conditions) using an upwind TVD
method, second-order accurate in both space and time, with semi-implicit and upwind
treatment of the source terms. We find that both solutions arein agreement. One of the
most noticeable effects of the results for large slopes of the bottom is the divergence of
the previous solution by Hunt (1982, 1984), who provided a similar asymptotic solution
using the traditional Saint Venant equations. This divergence arises mainly because the
whole gravityg moves the fluid when the Saint Venant equations are used, instead of its
projection along the perpendicular to the plane.

We have also considered the analysis of the shape of the flood in the tip region (§ 3.2).
The results are not only valid for a dam-break flood but also for any mass of fluidthat
spreads on a plane bed. The solution has been obtained as a full expansion in terms of the
streamwise coordinate located at the wetting front. Our results are directly comparable
to those obtained by Hunt (1984) for small slopes of the bottom. We find that the earlier
result exhibits a good agreement with our solution when we use enough terms in the
expansion, but Hunt’s solution is valid only for small slopes of the bottom. The accuracy
of the numerical solution has been also checked, and very good results are obtained by
just using a cut-off height as boundary condition for the wetting front.

Finally, we note that the solutions developed could be used to check, for instance, the
precision of other numerical schemes or boundary conditions.
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