On the wave-front shape and the advancing of the wetting
front of a dam-break flood over an inclined plane of arbitrary
bottom slope
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In this note we consider the analysis of the wave-front shiapalting from the sudden
release of a finite volume of water over an inclined plane Heattuitrary bottom slope.
To that end we use the one-dimensional turbulent shallowmegiuations with a constant
friction factor. We propose an asymptotic analytical solufor the height and velocity in
the wave tip region based on the velocity of the wetting fieomd its temporal derivatives,
in a similar fashion as Whitham (1955). For large time, andital solution is obtained
for the advance of the wetting front. This proposal is coredaand validated with a
numerical simulation computed with a second-order TVD-Mad numerical scheme.
The divergence of the Hunt’s solution (Hunt 1982; Hunt 19%@4)the advancing of the
wetting front as time increases is also established. Outisalfor the tip region is tested
against the numerical one, and is also compared with thataedby Hunt (1984) for
small slopes of the bottom - a really good agreement is found.

1 INTRODUCTION

As far as the author knows the first theoretical studies oeffieet of hydraulic resistance
on dam-break waves were performed by Dressler (1952) anth@éri(1955) - these in-
vestigations started with the analysis of horizontal bedger on more realistic problems
were analysed, for instance dam-break floods of a finite velofrwater over plane in-
clined beds [i.e., Hunt (1982, 1984)]. Recently this topawér achieved new interest and
insight in its theoretical aspect [see, for instance, Hoggr&chard (2004)] as well as in
its experimental version (Lauber 1997).

However, the above theoretical works used the general ssjores of Saint Venant,
often called the nonlinear shallow-water equations, valdy for small slopes of the
bottom. In this line we have considered the analysis of thease of a finite volume of
water over an inclined bed of arbitrary bottom slope, ushgexpressions provided by
Fernandez-Feria (2006) (but adding basal drag effectgpooariately describe the fluid
movement over arbitrary but constant slopes.

The paper is organized as follows: we firstly formulate thebpem ¢ 2). We then
analyse the flow movement under the kinematic wave apprdiomand obtain the ve-
locity and height field as well as the wave-front locatigr8(1). In§ 3.2 we investigate
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Figure 1: (a) Characteristic curves in a space-time diaguader the kinematic wave
approximation for = 1. (b) Temporal evolution of the wave-front obtained numahic
compared with the asymptotic result by Hunt (1982,1984)vaitidl Equation (4); we have
selectedyy = 1m, e =1andFr., = /8e/f = 2.

the wave shape in the tip region and provide the solution asgmptotic expansion, in-
deed the explicit expressions for the whole coefficientdadriced. This solution is also
shown to be in close agreement with Hunt's solution (Hunt4)98r small slopes of the

bottom. We compare our theoretical predictions with nuoamexperiments if§ 3.1 and

§ 3.2. A summary and some concluding comments are givértin

2 FORMULATION OF THE PROBLEM

We consider here the one-dimensional flow over a constam $led. In the shallow-water
approximation the dimensionless equations for the masseceation and momentum in
the direction of the flow can be written as

Om+0x(nU) =0, OU+UdxU + cosf0xn =sinh — fU*/(8n). (1)

The notation and initial conditions of the problem under sidaration are exactly the
same as used in Fernandez-Feria (2006), therefore we depeatrthis information.
We have only added the effects of basal drag using the Darigh&lch friction factor
f (considered constant in the present work) in the momentuamba equation. These
equations, are valid faany slopef of the constant-slopéed, not just for small channel
slope, provided that the ratio of the deptko the streamwise extent is sufficiently low.

3 RESULTS
3.1 Kinematic wave solution

In this section we follow the same theoretical approach as i982) but solving Equa-
tions in (1) valid for arbitrary bottom slope to obtain theviard wave (wetting front)
advancing over a dry bed.

In the kinematic wave approximation, one neglects the kfidhside of the momentum
equation and obtains the relation that follows betwgandU, U? = (8n/ f) sin 6. Taking
into account this relationship, mass conservation yields
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The equation above can be readily integrated together Wwehirtitial condition forn

[see Fernandez-Feria-(2006) for its definition]. The wawdile should be defined in two
different regions: the first area (denoted¥®y) is enclosed by the two real characteristics
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Figure 2: Asymptotic solution (7) for the height() for a given instant of time for
several values ofV. The caseV = 1 corresponds to the analogous solution given by
Whitham (1955). Also included is the asymptotic solutiorHynt (1984) and the numer-
ical one for the same conditions. We have sele¢tedd411, 1y = 1m, e = 0.0175 and

Fr =2.5.

Cy = —1/e andCy (1) = 37/2, and this region exists for any, the second regiorn(,)
ranges between the characteristigr) andCs(7) = (16e? + 972)/(8e), and it exists just
for 7 < 4e/3. After defining these two different areas the solution reads

(X.7) = 1+ (e/2) (e7? +2X —7VA+ 272+ 4eX) if X e Ry
MT)= 1—(2eX — 72 —7V4e2 + 72+ 4eX)/(2¢*) if X € Ryp '

3)

being7 = 37/2. As in Hunt's (1982) solution, a shock must be inserted instbigtion to
satisfy the mass conservation requirement. For simplieéyprovide the location of the
shockz,(7) just for > 3z,/2. In closed-form it is given by
7 (44 €27 + dex,)””

Figure l1a depicts both the regi@ty (dashed-dotted line) and the regi®n; (dotted
line) in the characteristic plangX, 7} for e = 1. The border between these two regions
is established by the characteristic cutve (solid, squared line). One should note the
presence of the shoak (solid, circled line), which establishes the validity oétbolution
(3): on the right hand side of the shock the solution is no énvglid, and both the height
and the velocity field vanish. The other two characteristiggsolid, crossed line) and
(5 (dashed line) are also shown in the same figure. To validatdrtmt location (4),
Equations in (1) (with the corresponding initial condit®)mave been solved numerically
on an uniform grid using an upwind TVD (total variation dinghing) method, second-
order accurate in both space and time, with semi-implictt apwind treatment of the
source terms, as described by Burguete & Garcia-Navar@il(20he boundary condition
used for the wetting front is a cut-off height/(,.... < 10~*), the Courant-Friedrich-Lewy
number isCF'L = 0.45, and the number of nodesig: = 10*. Figure 1b shows a close
agreement between the numerical (solid line) and the doalyesult (4) (dotted line).
We have also plotted the asymptotic result provided by HL®82, 1984) considering the
shallow-water equations due to Saint Venant. The solubgrikis author becomes worse
as time goes on because the slepgnot small.

= e’ + 12z, + 6€*Fx, + 6e (7° + 22 — 1) . (4)

3.2 Wave-front shape

If we define the variablg = z,(t) — X, wherez; is the position of the wetting front,
Equation (1) read (note that > 0)

On + (2 = U)0cn —noU =0, (5)



U + (x — U)0:U — cos#n = sinf — fU*/(8n), (6)

where primes denote differentiation with respect.t®ne can obtain a solution of the
resulting equations in powers o¢fusing the same expansion as Whitham (1955), which
can be written as

al j+1 al i+l
n(CH) =Y mCT, U )= Ut (7)
j=0

j=—1

If the wave-front is taken to b& = z,(t), thenU_, = z/; at the wave-front. On the other
hand, the particle acceleratiof,U + (=, — U)9.U, is expected to be finite while the
effect of resistance is to pile up the fluid near the waveifrea that.n becomes large.
Therefore, to first approximation;n cos9.n = nsinf — fU?/8. Taking into account
(7) and grouping terms of ordgrone obtains), = ', /2(f/ cos)'/2. Now, substituting
the expansion (7) in the continuity equation (5) and grogmgain terms of orde(

one obtaind/, = 0. Repeating this process for the next exponents, ifirstly with the
momentum equation (6), and then with the mass balance @)défficients); andU;

are obtained explicitly. For instance, grouping texi{g'/?) in the mass balance provides
m = 2(z’f —sinf) /(3 cosd). All the coefficients can be obtained analytically:

N-1
1 2
Uy=—|——=nv_1— Uinn—j | forN > 1 8
" (N+2"N1 2 Uy a) 21, ®
N-1 . N—-1
2 1 N—-j+1 . f
= ————— | —cosf ————n;nN—; —sinfnn_1 + = U;Un—j—
W N+2770(3089|: cos ; SN — sy 1+8j;1 jUN—j—2+
9)
N-1 N-1 N+1—j _
N—-k—-j+1
77jU]/V—2—j+Z <_77j Z %UN_k_jUk_1> forN > 2.
J=0 J=0 k=1

This asymptotic solution, which actually converges even(fo- 1 (see Fig. 2), was
originally found by Whitham (1955), but this author only pided explicit expressions
for the first few coefficients, just up t& = 1. The first result we must point out is that
the velocity field depends of from the third term in the expansion, and therefore the
assumption performed by Whitham “thatis nearly uniform in the tip region” (Whitham
1955) is valid only untilO(¢). Second, the solution converges slowly/éds increased
if ¢ is not too small, as it is shown in Figure 2, where the heighas been plotted as a
function of¢ for a givent. To computer’. and next derivatives we have used the previous
result (4) valid foranyslope of the bottom.

In that figure we also include the form of the wetting frontegivby the asymptotic
solution by Hunt (1984) showing a very good agreement wighetsymptotic solution (7)-
(9) if N is sufficiently large. This is so because we have used a veajl dwttom slope
(note thate = 0.0175 implies# = 1°), and thus the Saint Venant equations for a plane
bed approximates with precision (1), in order to check (Zhaiknown solution. But this
solution is actually valid for any constant slope. Our exgan is in agreement with the
inner solution (plotted in continuous line) faf > 2. From the matching point (big star) to
the right hand side, the inner and the composed solutiomédbdotted line) by Hunt are
almost identical, and we need quite a lot terms in the expar(gi.g.,/N > 25) to obtain a
similar result. Furthermore, we have also computed the nigaiesolution with the same
technique described 3.1 (CF L = 0.45 andnz = 10*) and a very good agreement has
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been found with the theoretical ones (Fig. 2). Finally, alihh the slope of the bed is
small, the kinematic wave approximation is valid [one carifyer, > 4(e + 1/¢)], and
thus the source terms in Equation (1) dominate the fluid meveniven in this case the
cut-off height method used to compute the advance of thangefitont is good enough
for the problem under consideration.

4 CONCLUSIONS

In this study we have considered the effects of hydraulistasce on the dam-break flood
over an inclined plane of arbitrary but constant slope.

For the kinematic wave regime the theoretical location efilretting front has been
supplied together with the velocity and height field3.1). We have also solved the
shallow-water equations (with the appropriate initial ditions) using an upwind TVD
method, second-order accurate in both space and time, asth-isnplicit and upwind
treatment of the source terms. We find that both solutionsnaagreement. One of the
most noticeable effects of the results for large slopes efatbitom is the divergence of
the previous solution by Hunt (1982, 1984), who providednailair asymptotic solution
using the traditional Saint Venant equations. This divecgearises mainly because the
whole gravityg moves the fluid when the Saint Venant equations are use@athsff its
projection along the perpendicular to the plane.

We have also considered the analysis of the shape of the fidbd tip region§ 3.2).
The results are not only valid for a dam-break flood but alscafty mass of fluidhat
spreads on a plane bed. The solution has been obtained asxpfamsion in terms of the
streamwise coordinate located at the wetting front. OQwiltesre directly comparable
to those obtained by Hunt (1984) for small slopes of the Imottd/e find that the earlier
result exhibits a good agreement with our solution when we ersough terms in the
expansion, but Hunt’s solution is valid only for small slepé the bottom. The accuracy
of the numerical solution has been also checked, and verg gggults are obtained by
just using a cut-off height as boundary condition for thetingtfront.

Finally, we note that the solutions developed could be useth¢ck, for instance, the
precision of other numerical schemes or boundary condition
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