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The unstable nature of kinematic waves, resulting from outburst floods on steep inclines,
is investigated theoretically using the shallow water equations. A numerical experiment
is designed in order to efficiently perform a stability analysis. By analysing the linear
and non-linear numerical evolution of small perturbations, it is possible to reveal how the
nature of the ensuing flow depends not only on the Froude number but also on non-parallel
and time-varying characteristics of the background flow. Itis also demonstrated that these
effects stabilize turbulent roll-waves and raise the critical Froude number required for
instability.

1 INTRODUCTION
Our goal in the current article is to establish the existenceof physical instabilities in floods
on steep inclines. To gain some inroads into this problem, weshall consider turbulent
flows governed by the one-dimensional shallow-water equations. We shall limit our study
to large times, in which the suddenly released, fixed mass of fluid lengthens and reaches
a kinematic state.

The spreading of a suddenly released mass of fluid over an inclined plane bed has
been widely studied in the above conditions [see, for instance, Weir (1983), Hunt (1984),
Pritchard (2005)], and it is of hydraulic interest not only for the hydrodynamic but also for
the associated transport of sediments. However, none of theprevious studies have taken
into account the strongly unstable character of this flow (Bohorquez 2006).

Another point of interest to be noted is that nowadays studies on the onset of insta-
bility, performed with the one-dimensional shallow-waterequations, have been limited
to steady flows over plane beds [e.g., Prokopiouet al. (1991)] or with spatially periodic
bottom topography (Balmforth & Mandre 2004). Many complications are introduced by
non-parallel and time-dependent effects of the backgroundstate, which enrich the dy-
namics of real flows, when analysing its linear stability (Schmid 2007). Hence, the author
considers that the study about this time-varying space-dependent system is an outstanding
issue.

The reader can find in this volume the definition of the dam-break problem for a
constant but arbitrary slopeof the bottom as well as the asymptotic solution under the
kinematic wave approximation (Bohorquez 2007). However, when friction is taken into
account in such problem, it is well known that the flow loses memory of its initial distribu-
tion. Hence, considering a point source of mass, located atX = 0 with initial conditions
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U(X,0) = 0 andη(X,0) = Aδ(X), beingA the released volume, allows to obtain a more
simple solution. In fact, defining a scaling factorǫ, and rescaling non-dimensional vari-
ables in Bohorquez (2007),§ 2, by the following relations,

x ≡ Xǫ tanθ , τ ≡ tǫ tan θ
√

(8/f) sinθ , u ≡ U
√

f/(8 sin θ) , (1)

conservation of mass and momentum read

∂τη + ∂x(ηu) = 0 , ǫ
[

Fr2

eq (∂τu + u∂xu) + ∂xη
]

= 1− u2/η , (2)

respectively, whereFreq is defined asFr2

eq ≡ (8/f) tanθ. The Froudenumber, which
states the local ratio of the flow velocityU to the wave celerityc ≡ (η cos θ)1/2, is given
in the new variables byFr ≡ U/c = Frequ/

√
η , and reduces to the constant parameter

Freq when a balance is struck between the friction of the bottom and the streamwise
component of gravity, in other words, whenǫ is neglected in the momentum balance.

The set of non-dimensional equations (2) is exactly the sameas those used by Hunt,
but they come from different dimensional equations - since Hunt applied the St. Venant
equations valid just for small slopes of the bottom. In view of this, we find thatdimen-
sionless Weir’s (1983) and Hunt’s (1984) solutions for floods on inclines are also valid
for steep slopes when non-dimensional variables are definedcorrectly. This result will be
used for the formulation of the stability problem (see bellow).

We start defining the linear stability equations and the basestate in§ 2, as well as
the numerical schemes used in following sections. Next, in§ 3, we study numerically the
linear and non-linear stability of our background flow. We devote§ 4 to summarize our
results. Overall, the study is focused on non-uniform and unsteady base flows, but some of
the results carry over parallel (uniform and steady) flows, in order to check with previous
analytical results the ability of the numerical schemes to reproduce the behaviour of the
perturbations.

2 FORMULATION OF THE PROBLEM AND NUMERICAL SCHEMES
Here, we are interested in kinematic waves as base state, obtained when the parameter
ǫ is small in the momentum balance (2), providedu andη as well as their gradients are
order unity. In this case, the velocity and height can be expanded in powers ofǫ to find an
analytical solution:

ub(x, τ) = V (x, τ)+ ǫV1(x, τ)+O(ǫ2) , ηb(x, τ) = H(x, τ)+ ǫH1(x, τ)+O(ǫ2) . (3)

The first term in the expansion, called first-orderoutersolution, was found by Hunt (1984),
and is given by

V (x, τ) = 2x/(3τ) , H(x, τ) = V 2 . (4)

We shall carry the stability analysis on this basic flow.
To analyse the stability of such time-dependent system, we shall superimpose an in-

finitesimal disturbance,v(x, τ) andh(x, τ), on the background flow,

u = ub(x, τ) + v(x, τ) , η = ηb(x, τ) + h(x, τ) , (5)

where|h| ≪ ηb and|v| ≪ |ub|. Substituting (5) in (2), and neglecting second order terms
in the small perturbations, one is left with the following set of linear equations for the
perturbations:

∂h

∂τ
+

∂ηbv

∂x
+

∂hub

∂x
= 0 , F r2

eq

[

∂v

∂τ
+

∂vub

∂x

]

+
∂h

∂x
=

u2

b

ǫηb

[

h

ηb
− 2v

ub

]

, (6)
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The above partial differential equations (PDEs) require one initial condition for both the
velocityv and heighth fields. We shall consider the initial configuration (atτ = τ0) of the
perturbationv on the basic flowub ≈ V (henceforth, we will use just the first term in the
expansion (3) to compute the base state) given by

v(x, τ0) =

{

B(l1) sin
(

2πn x−l1
l2−l1

)

if l1 ≤ x ≤ l2

0 otherwise
, (7)

whereB denotes the initial amplitude of the perturbation (B ≡ δV (l1, τ0), beingδ a very
small parameter),l1 andl2 establish the boundary enclosing the initial waves, andn de-
notes the number of waves. For the height, the relation that follows is used:h(x, τ0) =
(V + v)2 −H ≈ 2V v, which isO(δH).

The convective nature of the perturbations is easily established in terms of the Froude
number. This is understandable in view of the fact that both the linear (6) and nonlinear
(2) system of PDEs have two real and distinct characteristiccurves, and these are the same
for small waves. Hence, perturbations travel along the characteristicsC± : dx/dτ = ub ±
ηb/Freq, and the convective nature comes for supercritical kinematic waves:dx/dτ ≈
V (1 ± 1/Freq) > 0 with Freq > 1. From now on, we are interested just in supercritical
flows.

To compute the linear evolution of the perturbations, we usea finite-difference scheme
on an uniform grid with mesh size∆x. The time integration is performed with a Crank-
Nicolson method, and a fourth-order central-differences scheme is applied in space - the
truncation error isO(∆τ 2,∆x4), where∆τ is the time step. In order to use the mini-
mal number of nodes, we initially solve the resulting linearsystem of equations just in a
small regionI1 (which bounds the waves) with homogeneous boundary conditions. Be-
fore the wave train travelling downwards reaches the end ofI1, a new domainI2 is defined
containing the subregion in which waves live, and it is enlarged downwards adding new
nodes. This process is repeated several times during the numerical simulation. Thus, we
have to solve in each time step a linear system of equations with just eleven diagonals.
Band storage mode is used to minimize memory requirements. To that end, subroutines
DGBMV and DLSLRB into the IMSL Numerical Libraries are used.

On the other hand, the full non-linear set of equations (2) issolved with the same
numerical technique as in Bohorquez (2007). In this case, taking into account that the
flow is supercritical at both inlet and outlet, two boundaries conditions are imposed up-
stream (given by Eq. 4), and the characteristic variable extrapolation (CVE) method is
used downstream. Next, we present some results.

3 RESULTS
First, we will show results corresponding with the parallelcase. To that end, we have
considered an uniform and steady basic flow withU = 1 andθ = 1o. This flow has been
initially disturbed withn small waves (n = 10), and its nonlinear evolution has been com-
puted following the approach introduced in§ 2. Figure 1a depicts the maximum amplitude
of the wave train as a function of time for several Froude numbers. Initially, the nonlinear
growth rate is in agreement with theoretical results obtained using the linear theory, but as
time goes on, and the wave amplitude is not so small, the wave changes its shape towards
hydraulic jumps (as shown by the inset in Fig. 1b) and saturation appears due to nonlinear
effects.

One should note that the main difference of the numerical technique we have used,
with respect that applied by Brooket al. (1999), are the boundary conditions. Tradition-
ally, roll waves are numerically studied by using their periodicity properties, and periodic
boundary conditions are usually stated. However, in order to analyse the stability of more
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Figure 1: (a) Amplitude of the water wave velocity,U −Ub, against non-dimensional time,
t, for different steady flow Froude numbersFreq ≥ 2.0 and an initial amplitude of the
velocity perturbationδ = 5×10−5. The solid curves represents the solution obtained from
the non-linear numerical code, and the dashed lines indicate the corresponding growth
rates obtained from the linear stability analysis (see, e.g., Brooket al.1999).nx represents
the number of nodes used by wave. (b) Plots of perturbation velocity, U − Ub, against
distance along the channel,X, at several instants of time (t < 1.4 × 104) corresponding
with the caseFreq = 2.1

general basic flows (see bellow), which are not periodic, we have followed a different
approach (see§ 2 for details).

Next, we analyse the stability of the unsteady and non-uniform base state given by
(4). One should focus the study on the question that follows:how temporal and spatial
gradients of the basic flow affect the stability criteria. For simplicity, we study only the
linear evolution of the perturbation, and due to the fact that the linear case conclusions
do not depend on the wave amplitudeB, we have normalized the perturbation velocityv
(B = 1). In order to present the results, we have selected a wave length equal to unity,λ ≡
(l2 − l1)/n = 1, a wave train generated by three waves,n = 3, and the initial conditions
of the base state will change from one simulation to another.

The first novel result we have found, when analysing the particular caseFreq = 2,
is that non-parallel and unsteady effects stabilize the flow. Inspection of Figures 2a, b
corroborates this statement. Furthermore, while the wave length remains constant in the
parallel case as time goes on (Prokopiou et al. 1991; Brook 1999), disturbances lengthen
in the present case, as it is shown in Figure 2b.

Second, when increasing the Froude number, the flow becomes unstable - as it is
shown in Figure 2c, which corresponds with the numerical simulation of the same per-
turbation and base flow as in Figure 2a but rising the Froude number up toFreq = 2.2.
However, even background flows with Froude numbers larger than two are stable for
some wave numbers. In fact, the numerical simulation of the case plotted in Figure 2b
with Froude numberFreq = 2.2, instead ofFreq = 2, reports similar effects, i.e., the
amplitude decreases while the wave lengthens (we do not showthe graph due to space
requirements).

4 CONCLUSIONS
In this study we have considered the stability analysis of a suddenly released, fixed mass
of fluid that reaches a kinematic regime. In particular, we have designed a numerical ex-
periment, and a clever numerical method, that allows to compute the linear and nonlinear
evolution of small perturbations.

We have found that non-uniform and unsteady effects of the background flow stabilize
turbulent roll-waves and raise the critical Froude number required for instability. The
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Figure 2: (a) Plots of perturbation velocity,v, against distance along the channel,X, at
several instants of time withFreq = 2, λ = 1, Ub(l1, τ0) = .1282, and∂XUb(l1, τ0) =
1.36 × 10−5. The case (b) corresponds with the case (a) but withUb(l1, τ0) = 3.9 and
∂XUb(l1, τ0) = 4.09 × 10−4. (c) As in (a) but withFreq = 2.2. The solution has been
obtained with the linear numerical code described in§ 2.

well known stability criteria for parallel flows at high Reynolds number (the basic flow
is unstable for any wave length and Froude numbers larger than 2) differs abruptly of
that resulting from kinematic waves. One of the most noticeable effects is stabilization of
disturbances on basic flows withFreq = 2. In addition to that, for larger Froude numbers,
Freq > 2, the wave amplitude decreases or increases depending on thevelocity, and both
spatial and temporal gradients of the base flow. Furthermore, waves lengthen as time goes
on - this behaviour is also different with respect to the parallel one, in which waves remain
with constant wave length even when hydraulic jumps are developed.
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with Prof. Ramón Fernández-Feria.
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