Roll waves in floods on inclines
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The unstable nature of kinematic waves, resulting from unstifloods on steep inclines,
is investigated theoretically using the shallow water ¢igna. A numerical experiment
is designed in order to efficiently perform a stability arsédy By analysing the linear
and non-linear numerical evolution of small perturbationis possible to reveal how the
nature of the ensuing flow depends not only on the Froude nubabbalso on non-parallel
and time-varying characteristics of the background floug #ilso demonstrated that these
effects stabilize turbulent roll-waves and raise the eaitiFroude number required for
instability.

1 INTRODUCTION

Our goal in the current article is to establish the existarigdysical instabilities in floods
on steep inclines. To gain some inroads into this problemskaadl consider turbulent
flows governed by the one-dimensional shallow-water eqoatiWe shall limit our study
to large times, in which the suddenly released, fixed massiiof lkngthens and reaches
a kinematic state.

The spreading of a suddenly released mass of fluid over améacplane bed has
been widely studied in the above conditions [see, for irctakV/eir (1983), Hunt (1984),
Pritchard (2005)], and it is of hydraulic interest not ordy the hydrodynamic but also for
the associated transport of sediments. However, none gfréhwous studies have taken
into account the strongly unstable character of this flonh@quez 2006).

Another point of interest to be noted is that nowadays studiethe onset of insta-
bility, performed with the one-dimensional shallow-waggyuations, have been limited
to steady flows over plane beds [e.g., Prokopbal. (1991)] or with spatially periodic
bottom topography (Balmforth & Mandre 2004). Many compticas are introduced by
non-parallel and time-dependent effects of the backgratate, which enrich the dy-
namics of real flows, when analysing its linear stabilityl{®ed 2007). Hence, the author
considers that the study about this time-varying spaces#gnt system is an outstanding
issue.

The reader can find in this volume the definition of the danmakrproblem for a
constant but arbitrary slopef the bottom as well as the asymptotic solution under the
kinematic wave approximation (Bohorquez 2007). Howevéremvfriction is taken into
account in such problem, itis well known that the flow losesmogy of its initial distribu-
tion. Hence, considering a point source of mass, locatéd at0 with initial conditions
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U(X,0)=0andn(X,0)= Ad(X), beingA the released volume, allows to obtain a more
simple solution. In fact, defining a scaling factgrand rescaling non-dimensional vari-
ables in Bohorquez (2007 ,2, by the following relations,

= Xetan, 7 =tetanf/(8/f)sinf, u=U+/f/(8sinb), (1)

conservation of mass and momentum read
O+ 0(nu) =0, €[Frl (8;u+udyu) +d,m] =1—u?/n, 2)

respectively, wherdr,, is defined ast'r?, = (8/f)tan6. The Froude number, which

states the local ratio of the flow velocity to the wave celerity: = (ncos6)'/2, is given
in the new variables by'r = U/c = Fr.,u/,/7, and reduces to the constant parameter
Fr., when a balance is struck between the friction of the bottonh the streamwise
component of gravity, in other words, wheis neglected in the momentum balance.

The set of non-dimensional equations (2) is exactly the sasrt@ose used by Hunt,
but they come from different dimensional equations - sincattapplied the St. Venant
equations valid just for small slopes of the bottom. In vidwhas, we find thatdimen-
sionless Weir’'s (1983) and Hunt's (1984) solutions for fl®od inclines are also valid
for steep slopes when non-dimensional variables are defiogdctly. This result will be
used for the formulation of the stability problem (see b&)lo

We start defining the linear stability equations and the gt in§ 2, as well as
the numerical schemes used in following sections. Nex,dnwe study numerically the
linear and non-linear stability of our background flow. Werate § 4 to summarize our
results. Overall, the study is focused on non-uniform arsteady base flows, but some of
the results carry over parallel (uniform and steady) flowsyrider to check with previous
analytical results the ability of the numerical schemesefwroduce the behaviour of the
perturbations.

2 FORMULATION OF THE PROBLEM AND NUMERICAL SCHEMES

Here, we are interested in kinematic waves as base stawnetitwhen the parameter
e is small in the momentum balance (2), providedndr as well as their gradients are
order unity. In this case, the velocity and height can be eapd in powers of to find an
analytical solution:

up(x,7) =V(e,7)+eVi(z,7) +O(?), mylx,7) =H(x,7)+eH (2, 7)+O(e?). (3)

The first term in the expansion, called first-ordatersolution, was found by Hunt (1984),
and is given by

V(z,7)=2x/(37), H(z,7)=V> (4)

We shall carry the stability analysis on this basic flow.
To analyse the stability of such time-dependent system,ha#t superimpose an in-
finitesimal disturbance;(x,7) andh(x, 7), on the background flow,

u=u(x,7)+v(x,7), n=mnp(x,7)+h(z,T), (5)

where|h| < n, and|v| < |u,|. Substituting (5) in (2), and neglecting second order terms
in the small perturbations, one is left with the following ¢ linear equations for the
perturbations:
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The above partial differential equations (PDES) require imitial condition for both the
velocityv and height. fields. We shall consider the initial configuration tat 1) of the
perturbatiornv on the basic flow:, ~ V' (henceforth, we will use just the first term in the
expansion (3) to compute the base state) given by

i z=h ) if il <x <
o(,70) = B(ly) sin <27ml2—11> if [; < x <, | @
0 otherwise

where B denotes the initial amplitude of the perturbatidh£ 6V (11, 1), beingd a very
small parameter); andl, establish the boundary enclosing the initial waves, k-
notes the number of waves. For the height, the relation tikws is usedh(z, ) =
(V +v)? — H ~ 2V, whichisO(0H).

The convective nature of the perturbations is easily eistadd in terms of the Froude
number. This is understandable in view of the fact that ble¢hlinear (6) and nonlinear
(2) system of PDEs have two real and distinct charactegstices, and these are the same
for small waves. Hence, perturbations travel along theattaristicCy. : dz/dr = u, +
m/Fre,, and the convective nature comes for supercritical kinenvedives:dx/dr ~
V(1+1/Fre,) > 0 with Fr., > 1. From now on, we are interested just in supercritical
flows.

To compute the linear evolution of the perturbations, weaufseite-difference scheme
on an uniform grid with mesh sizAx. The time integration is performed with a Crank-
Nicolson method, and a fourth-order central-differenatgeme is applied in space - the
truncation error isO(A7?%, Az?), where At is the time step. In order to use the mini-
mal number of nodes, we initially solve the resulting linegstem of equations justin a
small region/; (which bounds the waves) with homogeneous boundary conditiBe-
fore the wave train travelling downwards reaches the erg, @ new domain; is defined
containing the subregion in which waves live, and it is eyg¢ardownwards adding new
nodes. This process is repeated several times during theraahsimulation. Thus, we
have to solve in each time step a linear system of equatiotisjust eleven diagonals.
Band storage mode is used to minimize memory requiremeatthak end, subroutines
DGBMYV and DLSLRB into the IMSL Numerical Libraries are used.

On the other hand, the full non-linear set of equations (Xoised with the same
numerical technique as in Bohorquez (2007). In this cas@ndganto account that the
flow is supercritical at both inlet and outlet, two boundare®nditions are imposed up-
stream (given by Eq. 4), and the characteristic variableapelation (CVE) method is
used downstream. Next, we present some results.

3 RESULTS

First, we will show results corresponding with the paraflake. To that end, we have
considered an uniform and steady basic flow wite- 1 andd = 1°. This flow has been
initially disturbed withn small waves#{ = 10), and its nonlinear evolution has been com-
puted following the approach introducedi@. Figure 1a depicts the maximum amplitude
of the wave train as a function of time for several Froude nemrslnitially, the nonlinear
growth rate is in agreement with theoretical results oletdmsing the linear theory, but as
time goes on, and the wave amplitude is not so small, the waeeges its shape towards
hydraulic jumps (as shown by the inset in Fig. 1b) and saturatppears due to nonlinear
effects.

One should note that the main difference of the numericdirtiegie we have used,
with respect that applied by Broak al. (1999), are the boundary conditions. Tradition-
ally, roll waves are numerically studied by using their pditity properties, and periodic
boundary conditions are usually stated. However, in orantlyse the stability of more
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Figure 1: (a) Amplitude of the water wave velocity— U,, against non-dimensional time,

t, for different steady flow Froude numbefs-., > 2.0 and an initial amplitude of the
velocity perturbatiod = 5 x 10~°. The solid curves represents the solution obtained from
the non-linear numerical code, and the dashed lines ireitet corresponding growth
rates obtained from the linear stability analysis (see, Brgoket al.1999).nx represents
the number of nodes used by wave. (b) Plots of perturbatitocie, U — U, against
distance along the channel,, at several instants of time & 1.4 x 10*) corresponding
with the case'r,, = 2.1

general basic flows (see bellow), which are not periodic, aeeHollowed a different
approach (seg 2 for details).

Next, we analyse the stability of the unsteady and non-umifoase state given by
(4). One should focus the study on the question that folldwsv temporal and spatial
gradients of the basic flow affect the stability criteriar Bomplicity, we study only the
linear evolution of the perturbation, and due to the fact tha linear case conclusions
do not depend on the wave amplituBewe have normalized the perturbation veloeity
(B =1). Inorder to present the results, we have selected a wagthlequal to unity\ =
(I —11)/n = 1, a wave train generated by three waves; 3, and the initial conditions
of the base state will change from one simulation to another.

The first novel result we have found, when analysing the @aler casef'r., = 2,
is that non-parallel and unsteady effects stabilize the.flagpection of Figures 2a, b
corroborates this statement. Furthermore, while the wangth remains constant in the
parallel case as time goes on (Prokopiou et al. 1991; Bro®R) @listurbances lengthen
in the present case, as it is shown in Figure 2b.

Second, when increasing the Froude number, the flow beconstahle - as it is
shown in Figure 2c, which corresponds with the numericalu$ation of the same per-
turbation and base flow as in Figure 2a but rising the Froucdheben up toFr., = 2.2.
However, even background flows with Froude numbers largen tiwo are stable for
some wave numbers. In fact, the numerical simulation of #se @lotted in Figure 2b
with Froude numbet'r., = 2.2, instead ofF'r., = 2, reports similar effects, i.e., the
amplitude decreases while the wave lengthens (we do not #iegraph due to space
requirements).

4 CONCLUSIONS

In this study we have considered the stability analysis afddsnly released, fixed mass
of fluid that reaches a kinematic regime. In particular, weehdesigned a numerical ex-
periment, and a clever numerical method, that allows to edeite linear and nonlinear
evolution of small perturbations.

We have found that non-uniform and unsteady effects of tbkdraund flow stabilize
turbulent roll-waves and raise the critical Froude numlaguired for instability. The
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Figure 2: (a) Plots of perturbation velocity, against distance along the channgl, at
several instants of time witli'r.,, = 2, A = 1, Uy(l1,79) = .1282, and oxUy(l1,70) =
1.36 x 107°. The case (b) corresponds with the case (a) but Wwitt;, ) = 3.9 and
OxUp(ly,70) = 4.09 x 107%. (c) As in (a) but withF'r., = 2.2. The solution has been
obtained with the linear numerical code describefl h

well known stability criteria for parallel flows at high Reglds number (the basic flow
is unstable for any wave length and Froude numbers larger 2haliffers abruptly of
that resulting from kinematic waves. One of the most nobéeaffects is stabilization of
disturbances on basic flows wiffr., = 2. In addition to that, for larger Froude numbers,
Fr., > 2, the wave amplitude decreases or increases depending veltioity, and both
spatial and temporal gradients of the base flow. Furthermaees lengthen as time goes
on - this behaviour is also different with respect to the fparane, in which waves remain
with constant wave length even when hydraulic jumps areldpee.
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