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A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is
made via the Fokker-Planck equation governing its velocity distribution function. In
particular, two different hypersonic expansions of the Fokker-Planck equation are considered,
differing from each other in the momentum equation of the heavy gas used as the basis of the
expansion: in the first of them, the pressure tensor is neglected in that equation while, in the
second expansion, the pressure tensor term is retained. The expansions are valid when the light
gas Mach number is O(1) or larger and the difference between the mean velocities of light and
heavy components is small compared to the light gas thermal speed. They can be applied away

from regions where the spatial gradient of the distribution function is very large, but it is not
restricted with respect to the temporal derivative of the distribution function. The
hydrodynamic equations corresponding to the lowest order of both expansions constitute two
different Aypersonic closures of the moment equations. For the subsequent orders in the
expansions, closed sets of moment equations (hydrodynamic equations) are given. Special
emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic
quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one
might have expected from the ordinary scaling of the hypersonic closure. Also it is found that
the normal solution of both expansions is a Gaussian distribution at the lowest order. One of
the expansions is applied to a simplified form of the shock wave problem where an exact

solution of the Fokker—Planck equations is known.

I. INTRODUCTION

Hydrodynamic descriptions for heavy species highly di-
luted in a gas composed of much lighter molecules [specifi-
cally, for n,/n<O(m/m,), where the subindex p corre-
sponds to the heavy species or small particles and m and n
are the molecular mass and the number density, m/m, <1]
are only possible in the very near-equilibrium limit Kn
&m/m,. (See Ref. 1; Kn is the Knudsen number of the light
gas.) In this limit, both species behave as a single fluid obey-
ing the standard Chapman—-Enskog theory for binary mix-
tures.” Otherwise, one has to solve the kinetic Boltzmann
equation for the heavy component, even for near-equilibri-
um situations Kn €1 in which a hydrodynamic description
of the light gas is still possible.

The Kinetic description of the heavy gas is largely sim-
plified when its dilution is high enough (n,/n<m/m,) so
that heavy-heavy collisions may be neglected. In this case,
after a mass ratio expansion of the Boltzmann cross-collision
integral, the heavy species Boltzmann equation is reduced to
its Fokker-Planck (FP) form,>

kT’

g% + uI.vl.f'! — 7_l—lvu'. ( (ul _ wl)fl + vu’ fl) ,
(1)
where it has been assumed that Kn <1 and that the differ-
ence of mean velocities between both species is small com-
pared to the speed of sound of the light gas. In the above
equation f' is the heavy species velocity distribution func-
tion that is a function of time ¢ ', space coordinate x’, and
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molecular velocity u' (unprimed variables will be subse-
quently used for dimensionless quantities); & is Boltzmann’s
constant, 7" is the light gas temperature, and W', in this limit
of high dilution of the heavy species, is related to the light gas
mean velocity U’ and to 7' (both functions of ¢’ and x')
through

W =U+Da;VInT’, (2)

where a, and D are the mixture thermal diffusion ratio? and
diffusion coefficient, respectively. Here, D is related to the
relaxation time 7’ entering into Eq. (1) through Einstein’s
law:

7 =m,D/kT". 3)

As a consequence of the disparity of masses, a relatively
common situation is that in which the heavy gas Mach num-
ber (ratio between the velocity of the heavy gas and its own
speed of sound) is much larger than 1. As we shall see, in this
hypersonic limit, one can make a hypersonic expansion of
Eq. (1) in such a way that a closed set of equations for the
moments of f' results at each order of the expansion.
Therefore, a hydrodynamic description of the dilute heavy
species is still possible when n,/n<m/m, (and Kn<1)-in
this hypersonic limit.

Defining the moments of /” as

n[’,EJ-d3u'f’, (4a)

n,U; EJ du' o' f, (4b)

’ ’ ’ I)IIJ — 3,0 it L 4C

npUpUp+;——= d3u uw'u'f’, (4¢c)
4
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mn, UL UL U
+ Q@ + PoyUp + Pra Uy + P Up)
=m, fd3u’ ujuluj, (4d)

and so on, the equations for these moments can be written
[from Eq. (1)] as

on’,
L+ Ve U)) =0, (5)
n,Uy) ( P') n (W —U,)
VI. n’ Ur Ur _ — P P ,
atr + P PP + mp ’l"
(6)
aPl" ’ ’ rpr ’ 1y T, ’ DAY
L V20, + U P + PLV'U; + (P
2n,k
=L (T'I-T)), (7

and so forth, where I is the unit tensor and the temperature
tensorisdefinedas T, =P ,/n,k (thesuperscript T denotes
the transposed tensor). In the hypersonic limit (M,> 1,
where M, is the Mach number of the heavy gas), the magni-
tude of the mean velocity of the heavy gas U, is larger than
its thermal speed ¢’ by a factor of order M,,. Therefore, the
pressure tensor term in Eq. (6) and the heat flux term in Eq.
(7) can be neglected relatively to the terms »#,U, U, and

PP TP
U, P, respectively, with errors of the order of M, ' for P,

Pt op
and of order M~ ? for the component of U, in the direction
of the flow and for 7, Jclosing the system of moment equa-
tions (hypersonic closure of the moment equations).
Hypersonic closures of the moment equations can be
made at different levels of approximation. The lowest possi-
ble order is equivalent to Newton’s equation of motion writ-
ten in Eulerian form, and results from dropping P, in Eq.
(6) and ignoring the higher-order moment equations. This
hypersonic closure has been implicitly used in the literature
of aerosol dynamics.® In the field of disparate-mass mix-
tures, it has been used to describe the impingement of seeded
free jets against surfaces by Fernandez de la Mora et al.,” and
to describe the structure of normal shock waves (Refs. 6-8).
To first order, one would neglect the heat flux term in Eq.
(7) and, more generally, to order N — 1, the (N + 1)th mo-
ment would be dropped in the equation for the N th moment
of f'. Although not in the sense just explained, in which the
hypersonic closure is only applied to the heavy species of a
disparate-mass mixture and, therefore, it can be applied even
for subsonic conditions of the light host gas, Hamel and Wil-
lis® and Edwards and Cheng'® used the first-order hyper-
sonic closure in the one-dimensional spherical and cylindri-
cal expansions of a pure gas into a vacuum. If the Knudsen
number at the source is very small, the flow becomes hyper-
sonic before rarefaction effects become important, and these
authors truncated the moment equations in this region by
neglecting the heat flux term. The problem was extended to
binary gas mixtures by Cooper and Bienkowski'' and by
Miller and Andres'? who neglected the heat flux terms for
both species.
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In the next section, a systematic hypersonic expansion
in the FP equation will be performed. In fact, we shall con-
sider two expansions differing from each other in the order
of the momentum equation used as the basis of the expan-
sion: in one of them (termed deterministic hypersonic expan-
sion), the lowest-order momentum equation will be Eq. (6)
without the pressure tensor term, while in the second expan-
sion (Brownian hypersonic expansion), the pressure tensor
term will be retained in that equation at the lowest order of
the expansion. Closed sets of moment equations will be ob-
tained at each level of both expansions. We shall estimate the
order of magnitude of the errors in the hydrodynamic quan-
tities corresponding to the lowest order of these expansions
and show that these errors are smaller when the heat flux
vanishes initially [specifically, the error in P, would be
oM %} instead of O(M Py h ], as it occurs, for instances,
when the particular normal solution considered in Sec. III
applies throughout the flow. In the last section, the deter-
ministic hypersonic expansion will be applied to the deter-
mination of the shock wave structure in the limit of very high
dilution of the heavy gas and negligible thickness of the light
gas internal shock. The hypersonic results will be compared
to an analytical solution of the FP equation for the shock
wave problem in that limit.

. HYPERSONIC EXPANSION OF THE FOKKER-
PLANCK EQUATION. MOMENT EQUATIONS

The hypersonic expansion of Eq. (1) is based on the
smallness of the heavy species thermal velocity (of the order
of the speed of sound of the heavy gas) compared to the
mean velocity of the heavy gas. Typically, the expansion is
applied when the light gas Mach number is of order unity (or
larger) and the difference between the mean velocities of
both species (slip velocity) is small compared to the sound
speed of the light gas [as it was assumed in the derivation of
Eq. (1) 131, In these cases, the ratio among the thermal and
mean speeds of the heavy gas is of order M 172 (or smaller),
where M=m/m, £1is the molecular mass ratio. Therefore,
one can make an expansion in the small parameter M '/? (see
Appendix A). To that objective, Eq. (1) has to be written
with the thermal velocity ¢’ as the independent variable, in-
stead of the molecular velocity w'. However, to define the
thermal velocity, we shall not use the exact value of the
heavy gas mean velocity, but an approximate value U,, giv-
en by some level of the hypersonic closure of Egs. (5)-(7),

co=u" — Up. (8)
Depending on how U,, is defined, we shall consider two
different hypersonic expansions. In a first case (determinis-
tic hypersonic expansion or DHE), U, is the Newtonian
deterministic velocity satisfying the equation

dU, W — U,
— = 4+ U, VU, =—, (%a)
' o o "
while in the second expansion U, satisfies
au; VP, W —U,
—2 4 U VU + — 2 =—— (9b)
ot m,n T

n;, and P, being the number density and pressure tensor
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resulting from Egs. (5)-(7) with @, = 0. In this second
expansion the Brownian motion (diffusion) of the heavy
molecules is taken into account at the lowest order of the
expansion through the pressure tensor P ,,, so that it will be
called Brownian hypersonic expansion or BHE.

It would seem superfluous to consider the Brownian hy-
personic expansion since, strictly speaking, the hypersonic
lowest-order momentum equation is (9a). However, it has
very significant advantages over the DHE regarding its
range of validity (see the next section). Moreover, the lowest
order of the BHE is more accurate for n, and U,, avoiding
the necessity of going to further orders in some problems
(this is particularly important for the components of U,,
that are not in the direction of the flow). On the other hand,
in addition to being simpler, the main advantage of the deter-
ministic hypersonic expansion over its Brownian counter-
part is the decoupling of the lowest-order continuity and
momentum equations from the pressure tensor equation.
This property has been exploited in the shock wave problem
to obtain an algebraic solution in phase space.’

Let us nondimensionalize the FP equation (1) taking
into account that the heavy gas mean velocity is of the same
order as the light gas thermal speed, whereas the heavy gas
thermal velocity is much smaller:

x=(x"/7,) (m/2kTy)'?, t=t'/7,, (10a)
F=(f"/n) (2kToy/m, )%, co=c4(m,/2kT,)' 7,

(10b)
U, =U, (m/2kTy)'?, T=T'/T, (10c)
W=W'(m/2kT,)"?, r=7/1, (10d)
P, =P, /2nkT,, n,=n,/ng, (10e)

where Ty, n,, and 7, are constants. Using ¢, as an indepen-
dent variable and Egs. (9), the FP equation (1) becomes

ar ( [ ) 3 T,
= 4+ U, Vf—| VU, + 2V, f— = —— V2
at o VS o T, 4 T 2r s
= — M'2Vf, (11a)
for the deterministic hypersonic expansion, and
ar ( c if r
=+ U, Vf—| ¢,VU +—°—)-VC - =V
dJt + U Vf R s T 27 4
V-P
= —M”z(co'vf'*' B 'vcf)’ (11b)
g0

for the BHE, where V. stands for the gradient in ¢, space.
From the assumptions made so far, the left-hand sides of
Egs. (11) are of order unity (or larger), while the right-hand
sides are O(M '/?), provided that the combination of spatial
gradients of the distribution function appearing there are
O(1). Therefore, away from regions where M '/2 V£ (and the
corresponding right-hand side in the BHE) are O(1) (or
larger), we can expand f;

f’2=f(0)+Ml/2f(l)+Mf(2)+...’ (12)

in such a way that the resulting sets of moment equations at
each order of the expansion become closed once the previous
orders have been solved; for the unclosed nature of the sys-
tem of moment equations is a consequence of the first term
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on the right-hand side of Eqs. (11). Notice that the expan-
sion (12) is not limited with respect to the temporal deriva-
tives of the distribution function f.

It is convenient to use the Fourier transform of f,

F(t,x,K)Efd3c0f(t,x,%)exp( — iK-c,). (13)
Equations (11) then transform to
% + U VF 4 Vi F ( VU, K + -I;(-)

+FVU, K?F: MV F (14a)
and
% + Uy 'VF+ Vi Fr ( VUK + %)

+FVU, + K;_TF

- _ilez(v-vKF+ 2‘i‘LKF), (14b)

Mpo

which after the expansion

F=F© y M2 L MEO® 4 ... (15)
become
L(F©) EaI;t(O) + U VF @ + Wy F ‘°’-( VU, K+ -I-T(—)

KT

+ F OVU, +2—F‘°’ =0, (16a)
T

at the lowest order of both expansions (however, U, is dif-
ferent in each expansion), and

FL(FP)= —iVV FU-D, (16b)

LF )= —i(V-VKF G=h +——V'P"°-KF G- “) ,
Moo
(16c)

for j>1 and the deterministic and Brownian hypersonic ex-
pansions, respectively. We define the moments of £ ¢ as

n‘f’EJ‘d%of‘j)=F‘j’(K=0), (17a)

JU)Efd%o f e, =iV F (K =0), (17b)

n©g <f>5f dc, f Pegeq= — 29,V F P(K =0),
(17¢)
q‘f’zfd3co fPegteto = — VeV Vi F P (K =0),

(17d)
and so forth. Then, the successive moment equations can
easily be obtained from Egs. (16) by just taking derivatives
with respect to K and letting K = 0. For j = 0, and from Eqgs.
(9a) and (16a), at the lowest order of the DHE we obtain
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U, W-U,

—2 41U,y VU, =—, 18
at w0 T (182)
an®
’; +V(n®¥U,) =0 (18b)
i%—— + ULV 4 0ONU, 4+ (8OVU,)T
_pw
=2&7_9—, (18c)
i my Uy, | 3
mn + 'mn + (,(,),)n Poi 2 ('?1)"
ot P o, K Ix; + T K
au, au, au,
a9 S 4 gl R g, S o,
g ox; g ox; 7 ox;
(18d)

and so on (repeated subindices are summed). Notice that,
by definition of U,, J =0. The lowest-order moment
equations in the BHE are the same, except for the lowest-
order momentum equation (18a) which now is [Eq. (9b)]
au
e , U VU, + = M V6@ 49OV Inn®]
WUy,

r

) (18e)

where we have identified n,,=n'?, P, =0 “n‘®/2. For
the subsequent orders j> 1, from Eq. (16b) (DHE) we have

3’; +V-(n“)U 4+ JU=-Dy = (19a)
aJy @) (@]
9I? L 5 \VUm + )+ V(3 Up)
_%v.(n(o)e(}—l)) , (19b)
a6y W R (N T
+U VO + 0PVU, + (6VU,)
() /4,(0) AW .
_, P/ TI— 6 — 2Vl D, (19¢)
T
g g2 LU 3 avu,
L Himn_ gt p0i g\ ] 2=
at pOi ax' q b/ —ax_i + r I + q axi
i Do gn Do T s 504 6,00
ax; Ix; T
5 gy =T (19

ax;
and so forth, where §; is the Kronecker’s delta and g
= — ViV V.V . F(K=0). In the BHE, the right-hand
sides of the moment equations (19b)-(19d) must be re-
placed, respectively, by

%[n(/‘— l)(v.g (0) + 9(0)'V In n(O)) _v.(n(O)g(j— 1))]’

(19e)
.0 (O o0, Oy yj—1 ]
2((V9 + 6 ©ViInn)J —V-q“"”), (190)
n®
a\yglj— 1) 3 ) ae (O)n(O)
— 4+ 5"1"— 74 1
ox; 4 Ix; (19%)
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At each order j, the system of equations (19) is closed once
the previous orders have been solved.

The actual values of the moments of f [see Egs. (4)]
can be obtained from the moments defined in Egs. (17) by
realizing that ¢ = ¢, + (U,, — U,). We obtain

n,=n®+M"n"+Mn® 4 -, (20a)
U,=U, + (M/n) (D +MVIP 400, (20b)
Tp — (n(o)/np)(e(o) +M1/29(1) +M0(2) + ...)
— MU, —U,)(U, —Uy), (20c)
Qi = (1/n,) (g2 + Mg + Mgi@ + -++)
—M (U, - U,,o,-)( i — Upop) (Upie = Upor)

— (1/2M V) [T,; (U — Ur) + T (U

—Up) + Tpu (U — UpO:‘)]’ (20d)
where the heat flux tensor Q,,;, has been made dimensionless
with n,kTo(2kTo/m, )12 " At zeroth order we obviously
haven, =n®, U, =U,, T, = 60", and @, = ¢V/n®.

Equatxons (18) must be solved with the initial condi-
tions

n®(t=0)=n,(t=0),
U,(t=0)=U,(r=0),
6@ (t=0)=T,(t=0),
g@@=0)=n,=0)Q,(t=0),

while Egs. (19) for j>1 must be solved with the initial con-
ditions

nP(t=0)=3J01=0)=

According to these initial conditions, and from Egs. (19)
and (20), the order of magnitude of the errors in the lowest-
order hydrodynamic quantities of the DHE are (see also
Appendix A)

0 (t=0)

n,=n" + O(M), (21a)
U, =U, + O(M), (21b)
T,=0 +0M'"?), (21c)
since, from Egs. (19a), n"> = 0 because J'©* = 0. [ Notice

that, according to the nondimensionalization (10), only the
component of U, in the direction of the flow is O(1); the
remaining components are smaller, typically O(M '/2).] On
the other hand, for the BHE, we have

n, =n + O(M?3'?), (22a)
U, =U, + 0(M*"?), (22b)
T,=0® +0M'?), (22¢)

since from Eq. (19b) with the right-hand side given by Eq.
(19e), J*V = 0, so that n‘®> = 0. If the heat flux tensor van-
ishes initially, from Eq. (18d) ¢ = 0; whence, from Eq.
(19¢) 6’ = 0 (notice that n'*> = 0), so that the error at
the lowest order in 7, is substantially reduced to O(M). In
addition, J® = 0 from Eq. (19b) and n*> =0 from Eq.
(19a). (These results are valid for both the DHE and the
BHE.) Thus, in the BHE, n, =n® + O(M?) and U,
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=U,, + O(M?). In the DHE, the errors for n, and U, at
the lowest-order remain unchanged because J'’#£0 and
n® £0,

llil. NORMAL SOLUTION

In the preceding section we expanded the FP equations
(11) in powers of M '/2. However, instead of solving the re-
sulting equations (16) for the Fourier transform of the dis-
tribution function, we were contented with obtaining the
moment equations for the successive orders in the expan-
sion. In the present section, an important particular solution
to Egs. (11) (termed the normal solution) is given, whose
lowest order is an anisotropic Gaussian distribution. Wher-
ever this normal solution applies, the error in the lowest-
order temperature tensor is smaller by a factor M /2 than
that given by Egs. (21) and (22), since ¢'© = 0.

In fact, the function

F§'=n exp( — KK:0©/4), (23)

with n©(x,¢) and 8 (x,t) governed by Egs. (18b) and
(18c), is a particular solution to Eq. (16a). Since the inverse
Fourier transform of (23) is

FO=[n"/m"2(det 6 ) *Jexp( — ce:0 @ 1),
(24)

at the lowest order we have a Gaussian distribution with
number density #‘”, mean velocity U, and temperature
tensor 8 @ satisfying the hydrodynamic equations corre-
sponding to a hypersonic closure of the moment equations.
Notice that the solution (24) is valid for both the DHE and
the BHE; the difference resides in the lowest-order equation
for Up,.

It is shown in Appendix B that, if at r1=0 [or at
x = x(0) for stationary problems] F '* is of the form given
by Eq. (23), the general solution to Eq. (16a) is everywhere
given by Egs. (23) and (18b) and (18c¢). If, in addition, one
were able to show that any solution of Eq. (16a) would tend
to Eq. (23) as t— oo, F & could properly be called the nor-
mal solution of Eq. (16a). However, we have not succeeded
yet in obtaining the general solution of Eq. (16a), except for
some particular cases (see Appendix B), most of them satis-
fying the condition F (¥ - F { as t— «. In any case, we
shall term F §”, and the solution at the subsequent orders
derived from it, the normal solution of the hypersonic expan-
sion.

Let us consider the BHE. Making use of Eq. (23), the
first-order equation [Eq. (16c) forj = 1] may be written as

L{F DY = — (i/8)K-0 OV O:KKF Q. (25)

The general solution of this equation is the sum of the gen-
eral solution of the homogeneous equation (16a) (which,
therefore, can be included into the lowest-order solution),
plus a particular solution cubic in K:

F = (igi) KK, K,/n®)F O, (26)
where the proportionality constant ¢’ (,x) obviously coin-
cides with ¢'" as defined by (17d) and satisfies Eq. (19d)

with the right-hand side substituted by Eq. (19g).
Similarly, the particular solution F ¢ for the subse-
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quent orders j> 1 is polynomical in K, whose constants are
the moments of f entering at that level of the expansion
satisfying the moment equations given in the preceding sec-
tion. Therefore, there is not much gain in pursuing this pro-
cedure beyond ;= 1. Nevertheless, the above normal solu-
tions for j =0 and j = 1 yield additional information not
completely contained in the moment method of the preced-
ing section. First of all, consider the order of magnitude of
the errors in the lowest-order hydrodynamic quantities.
Since ¢'® = 0, wehave 8V’ = 0, J*¥ =0,and n'*’ = 0, and
from Egs. (20) we have (BHE)

n,=n"+ 0(M?), (27a)
U, =U, +0M?), (27b)
T,=0 4 O0M). (27¢)

(As was discussed in the preceding section, this reduction in
the errors of the lowest-order hydrodynamic quantities in
the BHE is just a consequence of ¢'® = 0, which is satisfied if
the heat flux vanishes initially, independent of whether the
normal solution is valid.) On the other hand, when the nor-
mal solution applies, the procedure of solving the hierarchy
of moment equations (19) is enormously simplified because
all the highest-order moments are known functions of the
hydrodynamic quantities > and 8 ‘> (for instance, ¥'®
= — 196 @9 ). Finally, since the gradient of n® does
not appear in the right-hand side of Eq. (25), the Brownian
hypersonic expansion with F® = F & fails inside density
boundary layers in which |Vn,| =O(M ~'), instead of
O(M ~'/?) as one might have expected from considering Eq.
(14b) alone, thus broadening the range of applicability of
the expansion. In real velocity space, the right-hand side of
Eq. (25) reads [from Eq. (11b)]:

S &cx[iVIn(det 8V) + V8@ ~lieye,
+6© = 1(V-0 @) (28)

The simplification in the expansion due to the normal
solution also applies, obviously, to the DHE. However, the
extension in the validity range of the hypersonic expansion
with respect to the density gradients is a consequence of the
inclusion of the pressure tensor term in the lowest-order mo-
mentum equation and thus it does not apply to the DHE.
The reduction of the errors at the lowest order of 7, and U,
is also a consequence of this inclusion, so that, in the DHE,
n, =n‘“ + O(M) and U, = U, + O(M) (see the end of
the preceding section), even if the normal solution is valid.
Nevertheless, T, = 6 ¥ + O(M), as in the BHE.

V. APPLICATION TO THE SHOCK WAVE PROBLEM

In this section, the DHE is applied to the determination
of the structure of a normal shock wave in a heavy gas dilut-
ed in a much lighter gas.>® In particular, we consider the
limit in which the internal shock of the light gas has negligi-
ble width (it is a discontinuity occurring at x = 0) and the
heavy gas is so diluted that the light gas properties remain
constant for x> 0. We apply the hypersonic expansion to
this oversimplified case because there is an analytical solu-
tion of the FP equation'® with which the hypersonic results
may be compared. On the other hand, we use the DHE be-
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cause the hydrodynamic equations corresponding to the
lowest order of this expansion were used in Refs. 6-8, yield-
ing an algebraic phase space solution for the velocity of the
heavy gas (see Ref. 7). Here we also give the first-order
hypersonic correction. Notice that the normal solution given
in the last section applies throughout the shock, since up-
stream (x— — o ) the mixture is in equilibrium, and there-
fore the distribution function is Maxwellian (isotropic
Gaussian).

For this shock wave problem, the hydrodynamic equa-
tions corresponding to the lowest and first orders of the de-
terministic hypersonic expansion can be written as [Eqgs.
(18) and (19); the equations are, obviously, for x > 0]

n®U, = const=U,(0), (29a)
au
o _ W _y, (29b)
dx Upo
()] (0) W U
de| _ (w/ ) (29¢)
dx Uyo
© _awO
de! -2 T-6¢ , (294)
dx Uy
q(()) q(O) 0 (296)
nY=0{"=6{"=0, (30a)
dar __J“’ ( 2W—l)
dx Up \ Uy
9 (d0|‘|°) _ 6{” dU, ) (30b)
2U, dx Up dx ’
dgi® _ 4’ ( AW 1)+ 3O
dx Uo \ Uy Uy
3 _‘f_ (n(mg(me(m) (30c)
4U, dx
d (1) (1) )
i _ ( 2w + 1)+ J
dx Uo UPO Uy
b g (© (©
8,70:™), 30d
4U d —(n ) (30d)
where 6 =0,,, 6,=0,, =0,,, ¢, =qxxx> 91 =qxyy = Gy

To complete the first-order correction to the lowest-order
approximation, we also need the equations for >’ and 8 *:

n® = /U, (31a)
dof _ _,0PW  _2w® 2 dg” o
dx vy = U, U, dx '
dg(O) 0(2) ) d (1)
1 - _2 12 + 20” __2 ; (31c)
dx Uy n9U, U, dx

Notice that we have used 7' ~, n, ~, and 7' as the constants
Ty, ng, and 7, respectively, in Egs. (10), where the super-
scripts — and 4 stand for the conditions upstream and
downstream of the shock (7’ is now constant since the light
gas properties are constants).

Equations (29)—(31) must be solved with the following
boundary conditions at x = 0

399 Phys. Fluids A, Vol. 1, No. 2, February 1989

Upo=U,(0), 6°=6= (32a)
J(l)=q(1)=q(l)=0 (32b)
(2) 9(2) 0(2) (320)

In terms of the upstream Mach number of the light gas,
Ma=U'"/(ykT'~/m)"?, (33)

where ¥ is the specific heat ratio of the light gas, we have
U,(0) = (¥/2)"/* Ma. On the other hand, # and T can be
related to Ma through the Rankine~Hugoniot conditions for
the internal shock of the light gas (discontinuity at x = 0):

O A (1)'/2 Ma M2y — 1) +2]
kT~ /m)2 \ 2

Ma’(y + 2)
(34a)
TET’* =1+2(7/—1)(Ma — 1)(yMa® +1)

T~ (y + 1)? Ma?

(34b)

Using Eqs. (20), up to first order in M, we have
n, =n" 4+ Mn?®
p 9,

UP _ Upo + (M/n(O))J(l)

(35a)
(35b)

n©® R J\2
T, = ©) 2 0 )+M[9() ( )]’
n® + Mn® n®

(35¢)
=[n®/(n® + Mn®)]1 0@ + MO®,  (35d)
M g’ 3gw

Qp = RO (9(0) > ) (35e)
M gV gw
Qpl = n(o)Upo (6}0) - 2 ’ (35f)

where QP" EQ;?xxx/ U; P px and Qpl EQ;Jny/ U P poy
= Q/x:/U, P,,,. We have plotted in Figs. 1(a)- l(e) the
quantities (35) at the lowest order and first order in M fora
He-Xe mixture (M =0.0304) and a He-Ar mixture
(M = 0.1) with Ma = 1.5. We have also included the results
from Ref. 13 where the FP equation for this problem is
solved analytically by means of an eigenexpansion whose
coeflicients are obtained with errors of order exp( — 1/M)
[0(107%) for He-Ar and O(10~'5) for He-Xe]. As pre-
dicted, the difference between the results from the lowest
order of the deterministic hypersonic expansion and the ex-
act FP results for n s U,, and T, remain O(M) or smaller.
The results at the first order in M practically coincide with
the FP results, except for T, just after its maximum for the
He-Xe mixture [Fig. 1(b)].

The reason for the excellent agreement between the hy-
personic approximation and the FP results even down-
stream of the shock where the Mach number of the heavy gas
is not very large (for a He—Ar mixture with Ma = 1.5, the
downstream value of the heavy gas Mach number is 3.38,
while for a He-Xe mixture it is 6.13), is the approach to
equilibrium of the mixture as y— «, so that the Gaussian
distribution corresponding to the lowest order of the hyper-
sonic expansion becomes exact as y— «. Hence the lowest
order of the hypersonic expansion works very well through-
out the shock. The subsequent corrections are more accurate
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in the head than in the tail of the shock [as it is observed in
Figs. 1(a)-1(¢)]. A direct comparison of the Gaussian dis-
tribution (24) corresponding to the lowest order of the hy-
personic expansion with the distribution function obtained
by the direct solution of the FP equation can be found in Ref.
13.
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APPENDIX A: ERRORS AT THE LOWEST ORDER AND
VALIDITY OF THE HYPERSONIC TRUNCATION

In Secs. I and III it has been assumed, without any loss
in generality, that U, is of the same order as U, and that the
Mach number of the light gas is O(1), so that
M, = O(M ~'/?). The reason for this has been the use of the
mass ratio (more particularly, M '/?) as the small parameter
of the expansion, instead of M - ' Of course, all the results

remain the same if one substitutes M '/ by M ;. This sub-
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stitution may be particularly convenient when expressing
the errors at the lowest order of the expansion [Egs. (21),
(22), and (27)]. In addition, one must also take into ac-
count the gradient of the distribution function appearing on
the right-hand side of Eq. (11) (which has been assumed of
order unity) when expressing these errors. With the dimen-
sionless variables defined in (10), the gradient terms multi-
plying M /2 in Eqs. (11) are of order

S=[1,(2kTy/m)"?]/L, (A1)

where L is a length characterizing the spatial variations of n,
and 7,

L=min(|VInT,|~", |V Inn,|™"). {A2)
(Notice that, according to Sec. III, the gradients of the den-
sity are not important for the BHE when the normal solution
applies.) The orders of magnitude given in Secs. II and III
must then be multiplied by the Stokes number (A1), making
it explicit that the hypersonic expansion ceases to be valid in
regions where the spatial gradients are so large that SM "
= O(1) or, in the case when the heat flux vanishes initially,
SM ;%= 0(1).

APPENDIX B: SOLUTION OF EQ. (16a)

If we write F ©(£,x,K) = ¢(£,x,K)F , where F 0 is
given by Eq. (23), the characteristic equations associated to
the lowest-order Eqgs. (16a) and (18a) are (DHE)

ax

& _yu,, Bl
a7 (BD)
dK K
2 (VU)K +—, B2
ot (VU,) +—T (B2)
dUp _ (W-Up) B3)
dt T
d(VU,)  VW-VU,
= — (VU ) (VU,), B4

” . (VU5 ) (VU,) (B4)
dy
- =0. BS
dt (B3)

Hence the general solution of Eq. (16a) may be written as
F QK1)

= ¢[§1(X,K,t), §2(X)K1t)9 §3(X3K1t)] F (GO)(X9K9t)y
(B6)

where the £, are the invariants of Eq. (B2) [the invariants of
Eq. (B1) depend only on x and ¢ and can be included in
FQ 1. If [F© is Gaussian at ¢ =0 [or x = x(0) for sta-
tionary problems], ¢ is a constant and, from Eq. (B6), F ¥
will be described by Eqgs. (23), (18b), and (18c) throughout
the flow. Therefore, the lowest-order distribution £ © will
always be a Gaussian distribution if it is Gaussian at t = 0.

The solution (B6) (and, therefore, all the results given
in this Appendix) is also valid for the BHE since Eqs. (B1),
(B2), and (BS) remain the same [we have the same Eq.
(16a) at the lowest order]. However, because the inclusion
of the pressure tensor in the momentum equation (B3)
(which, thus, is no longer deterministic), it is not possible to
obtain a closed set of ordinary differential equations like Egs.
(B1)~(B5) at the lowest order of the BHE.
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We have not succeeded in obtaining the general form of
the invariants of Eq. (B2) but for two particular cases. Let
us write Eq. (B2) as

JK K
— + U, VK= (VU ) K+—.
ot ” ” T
For a spatially homogeneous problem, U, is a constant and

the invariants are

)

Hence, since 7>0, the solution (B6) decays to F & as
t— o . The other particular case in which we find a solution
of (B7) is the stationary one-dimensional problem in which
dK dvu, K

2+

U,—=K
o dx dx T

so that

* dx
K=&U _—
d ”(X)CXP(L U,o<x)r(x))

and the invariant is (making the use of dx = U, dt)

K ( f’ dt )
expl — .
Uy (D) o (1)

For this case, it is not clear whether the general solution of
Eq. (16a) tends exponentially to the function (23) as fr goes
to infinity, because there is a ¢ dependence in Uy, (). For
example, for linear flows of the light carrier gas, W= U
= ax, with 7 = 7, = const, it can be shown that £ decays to
zero as t— oo only if a> — 1.'* Otherwise £ oscillates, but
never diverges, as f— co.

Furthermore, in general, if VU, is a symmetric tensor,

K=& Uy, exp(f é)
o T

is a solution of (B7) for the stationary case (notice that
U,V =d/d), though the other two invariants are not so
easily obtained. The symmetry of VU, is guaranteed auto-
matically for problems where U, is irrotational upstream
[x = x(0)] and W is potential through the flow field, as can
be seen by taking the curl of Eq. (18a). Again, that £, goes to
zero as t— oo depends on the form of U, ().

We conclude that, at least for some situations, the low-
est-order distribution £ © decays exponentially to a Gaus-
sian distribution, so that Eq. (24) is a very good approxima-
tion for ¢’ > 7, (74 is the initial value of 7') regardless of the
initial distribution. On the other hand, Eq. (24) is valid for
all £>0if at ¢ = O the distribution is Gaussian, as it occurs, for
instance, in the shock problem of Sec. IV.

(B7)
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