Nonlocal electron heat flux revisited
J. R. Sanmartin and J. Ramirez

E.T.S.1. Aeronauticos, Universidad Politécnica, 28040 Madrid, Spain

R. Fernandez Feria

E.T.S.I Industriales, Universidad de Sevilla, 41012 Sevilla, Spain

(Received 22 November 1989; accepted 1 June 1990)

A known nonlocal model of electron heat flux, applying for (scale length/thermal ion—electron
mean-free path) of order Z }/2(e*/T)>/?, ionization number Z, large, and €* ~6.5 T (the
energy of electrons carrying most of the flux), is reconsidered. The large €*/T ratio simplifies
the complete formalism. A simple flux formula, exact for both smooth and steep profiles, is
given. Thermoelectric effects and other models are discussed.

Heat transport is essential to the physics of laser targets.
Albritton et al." gave a self-consistent calculation of nonlocal
heat flux ¢ in a weakly collisional regime. In the present
work we reconsider their model and give new results and
simplifications.

We first review the model conditions not quite stated in
Ref. 1. The kinetic equation for the electron distribution
function f (inhomogeneous along x) reads v, df/dx

— (eE/m)df /dv, = C,; + C,,. We use the ion frame, so
C..=vA;(3/3u)(1 —u*)df/du plus terms of order
m,/m;;? here p=v,/v and A, =m*v*/2nZ,ne’*In A,,, the
symbols being as usuval. In the free-streaming operator, and
based on both the small value of the mass ratio and flow
quasineutrality, (i) we have neglected the time derivative d /
Ot and terms arising in the ion frame from ion hydrodynam-
ics. The energy dependence of mean-free paths allows us to
assume that (ii) main-body electron are near-Maxwellian,
but (iii) those contributing dominantly to ¢, characterized
by an energy €* ~ 6.5 T,? are not. Taking Z, large allows us to
also assume {iv) that €* electrons are nonetheless near-
isotropic. For e~e€* and f=f, (isotropic),>? C,,
=24 ;' (3/3v) [fo+ (T/m)dfy/dv] with i, InA,,
=Z A, InA,,.

Assumption (iii) determines the regime of interest

He(AXA*)2ZV2(e*/T)°AL, (e*/T)*~40,
(1

with H=scale length and A *, 1 " being A at energies €* and
T, respectively; (ii) and (iv) require AZAL/H? and
(A */H)? to be small, that is, (¢*/7)*>1 and Z;> 1. Ne-
glect of the free-streaming term (i) requires
(m,/Z;m,)'"*>(Z,T/e*)""%. Using x and e=jm,
— ed(x) as independent variables, the kinetic equation and
its angle average yield both f— f, = — pld,; df,/dx and an
equation for f; itself, which is simplified by using €*> T The
ansatz dIn|fy — fi,|/de< T ~', where fyy =n(m,/2aT)*?
Xexp|[ — (€ + ed)/T], allows us to drop the last term in
C..a(d/3€) [fo —Sfu + T — fu )/0€]; the ansatz is sat-
isfied, for example, by a power law but not by f,,. Also, since
electron-momentum balance gives ed~7, one writes
€ + ed =€ for im,v* when appearing in powers within the £,
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equation. For a scale length larger than (1) one obtains
Jo = fu, exactly recovering classical results, E-field effects
included. In general,

g&_af_M= _e’azfo )
de  de I’

where dé=(6Z,In A, InA,,)"?>me*ndx and Z,~const.
For an infinite plasma the immediate solution to this “heat-
diffusion” equation, with — €*/4 as a time-like variable and
Jo vanishing as € - «o, was given in Ref. 1,

dE' (= fulE'€)de —(£—£')?
g = [ 46 [T B e (<=2,
3)

a solution that satisfies the ansatz; here T'=T({').

Generally, €*(T) /T’ will be large. Clearly, this is so if
the high and low temperatures (7,,T;) of the profile are
comparable, or if 7, €T, and T~T,; for the final case,
T~T,<T,, note that if (1) is satisfied at the top of the pro-
file, €*(T, ) electrons will usually be collision dominated at
the high densities, n~ T, n(T, )/T,, prevailing at the bot-
tom. Let us now make the ansatz £, T’ <[e*(T) 1%, with
£n/H=dE /dx evaluated at the density n(7) and rewrite
(3),

_ (T expl—a(p'*—1)—ab/(y—1)]
Q(a’b)=J: y3/4(y__ 1)1/2 dy’

Herea, b ~ ' arelarge, so only values € closeto e (y=1)
contribute to f; we have

« 1 ab
~ — 1)~ 124 (—— —1)— )
o J] -1 ly exp 4a(y ) 5-1)

172
= Z(E) exp( —ab'’?),
a

leading to
S (€ e)dE’ —|E—¢&]
f;)(§96) = 2(€3T,)1/2 exp( (63Tl)l/2 ) * (4)
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The parameter range of interest is clearly
&% ~[€*(T)]’T', which is equivalent to
H~Z}™e*/TY’?AL, (e*/Ty/*~15, (1

aslight correction to (1), arising from the fact that the effec-
tive energy width in Eq. (2) is T not €*. We recall that the
overall balance of momentum and energy in the corona
blowing off a laser target yields a typical distance from abla-
tion to critical surface H~ (m,/Z,m,)"/?A T,* which nu-
merically agrees with (1'). For that range our ansatz follows
from T’ <e*(T); also, Eq. (4) at thermal energies, e~ T, isa
convolution of £, (£ ',€) and a & function, giving f,~fy. For
smoother profiles (4) gives fo~fy, at e~€*(T), asit should.

Equation (3) and standard formulas were used in Ref. 1
to obtain electron particles and heat fluxes

— (Au/AI? (ax' n' Tl
477(3”19)1/2 Tll/2 4

[nu,q + —%— nuT‘ =

XUk +y EL s oL wYeE 0)
X

(3)

where eE,,=¢E + Td In n/dx — 3 dT /dx. Albritton et al.!
found kernels I, J, K, and L given as four double integrals,

02+23f dyﬂ’exp( . 01/2y1/4)
(1]

1
Xf dy' y*(1—y)'? exp(—_lf)
0 y(1—-y")

for different a,B; here =& — £'|/T'%. The term jnuT is
needed because formulas valid for fin the electron frame are
used. In a strictly one-dimensional (1-D) plasma one usual-
ly has u = O and then (5) determines g (and E,;) in terms of
the temperature gradient.

Here we use (4) to arrive at (5) with new expressions
for the kernels in terms of one single integral,

J*0) = 81r”2J; dss”zexp(—s—ﬁ) ,
I*=3J*—-20dJ*/d6, L*=3%44J* and
K*=4L* —20dL*/d6. All widths are around A6~10;
from &,/T">~A@ we recover (1'). In the classical limit,
&> T'? A, we only need the complete integrals of the ker-
nels, which are equal for the new and old expressions, e.g.,
§& dO(I* — I) = 0, so there is exact agreement with the re-
sultin Ref. 1, Spitzer’s formula. In the opposite limit we just
need the values at 8 = 0, slightly higher for the new kernels
I*/I=J%/J~1178,K*/K=L*/L~1.123at8 =0),s0
we find a heat flux 12.3% above that in Ref. 1. The difference
falls within the asymptotic accuracy of the model: the step
from (3) to (4), consistent with the model itself, does not
impair its accuracy.

Next we note the following fact: f(3Kd@/
SeLdO— §&1d0/f¢Jde and K(0)/L(0) — 1(0)/J(0)
have unity as a common value. The same applies, of course,
to the new kernels. Consequently, the formula

— (Al [, 2 8T
7= 47(3m,)""? fdx wT ax’' L*® (6)
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exactly recovers results from Eq. (5) for both smooth (or
classical) and steep limit profiles, and could be used for in-
termediate profiles, as a very convenient approximation.
For nonvanishing # we use the ion force on electrons,
R=JC,m_ vu dv (a quantity of interest in itself), instead of
the auxiliary field E,,. The electron-momentum equation
R = neE + d(nT)/dx, directly obtained from the kinetic
equation, gives eE,; = R /n — JdT /dx. We then make the
change  I*dT'/dx' +J*eE [~ (I* —3J*)(dT'/dx')
+ J*R'/n’, and similarly for K *, L *in (5). Though g and
R are nonlocal they are linear in both « and dT /dx: we write
g=gqr+4q,, R=R,;+ R,.? All results up to now corre-
spond to g, with u = 0; in this case we obtain for R, the
classical value — 3ndT /dx in the limit £, > T'* A6, and
n dT /dx in the opposite limit: note the change in sign. For
dT /dx = 0 and the classical limit, one recovers Ohm’s law
and the known thermoelectric flux g, = 3nu7, meeting On-
sager’s principle, g, d In T/ dx + Ryu = 0;for £, < T'* A6,
however, this principle would require

(sdx' T"?R})  2TJ*(0)

§dx' T'"=V2R* ~ L*(0) '

an equality that will not hold, in general.

Luciani and co-workers gave an early analysis of nonlo-
cal heat flux for arbitrary Z,. Physical arguments, and a fit to
numerical simulations and the classical limit,>¢ led them to
an equation like (6) with a kernel

J 10} 51927r1/2__‘}__<_1_r3_/_\_e_,._)1/2
31\6ln Aee

[ 4 ( In Aei )1/2
xexp| — 80— R
31 \6InA,,

written here in present variables and for Z; large; the ratio
In A,;/In A,, stems for their using a single Coulomb loga-
rithm. They also gave an integrodifferential iterative proce-
dure to determine f (its Legendre expansion broken at some
order) and then g¢,;° from the first iteration and setting
E =0, they derived (6) with a kernel, given graphically,
quite close to L. Referring to E = 0 as the isobaric case, they
took nT = const: note that this would imply R, = 0. Bendib
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FIG. 1. Kernels for use in Eq. (6), L *, L (Ref. 6), and K’ (Ref. 8), vs
=T ~2|f7(6Z,In A, InA,) *re*n" dx"|. For L we set
InA,./InA, =1
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FIG. 2. Heat flux for fixed profiless T/T=n/n,=1— | tanh 2x/H,
Z, =10, and Hnye*m(6Z,In A, In A_;)">T; 2, equal to (a) 400, (b) 20,

and (¢) 1. Flux normalized to a free-streaming value at the highest tempera- -

ture, 2'2n,T ¥*/m!/% scheme (5), —; Spitzer, —; Eq. (6) with kernel L *,
L, - ;0orK’, — -

et al.” accounted for electric field effects in Luciani’s model
through the ad hoc change L—L exp[ (e — e¢')/T"']. For
e¢ they suggested using edd/dx= — T'dInn/dx
—3dT/dx, an equation equivalent to always requiring
Ry = —3indT/dx.
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Figure 1 compares L with L *, settingIn A,, =In A,,.
Since L was fitted to recover the classical limit the area under
the curve is the same, but differences are substantial. Also
shown is K’ = (KF — LFIF/JF)F with superscript F for
Fourier transform, exact in the classical limit and also for
small temperature variations, which Holstein and Decoster®
considered as a kernel for (6) while examining nonlocal flux
models.

We have numerically determined the heat flux for an
infinite, static plasma with a given temperature profile,
T=T,(1 — j tanh 2x/H) ', nT = n,T,, for which 8(x,x")
is found explicitly. Figure 2 compares g, as given by
Spitzer’s formula, the complete scheme (5), and Eq. (6),
with L* I, or K' for Z;, =10 and values of
Hnye*m(6Z,In A, In A,,))"/>T 52 = (a) 400, (b) 20, and
(c) 1. All curves are in close agreement for case (a). For
(b), lying at the heart of the regime of interest, all three
kernels, L*,L,and K’, especially the last one, give a reason-
able approximation to scheme (5), well below Spitzer’s re-
sult. For profile (c) only L * remains valid. Summing up, if
accuracy is preferred to convenience, the complete scheme
must be used; otherwise one should use Eq. (6) with kernel
L*, which is simple and remains reasonably accurate
throughout the range of validity of that scheme.

To conclude we note that Eq. (4) was derived by Lu-
ciani and co-workers® by a resummation procedure. They
also gave evidence supporting the use of a two-term Le-
gendre-polynomial expansion with £, # f,,, for arbitrary Z,.°
It would thus be possible to extend the formalism here con-
tinued from Ref. 1, which is strictly valid for Z; large
(A..>A.;),tovalues Z; ~ 1. One writes f for f, in C,, as given
at the beginning and adds to it a term C,;/Z; (already re-
tained in Ref. 1).
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