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A single, nonlocal expression for the electron heat flux, which closely reproduces known 
results at high and low ion charge number 2, and “exact” results for the local limit at all 2, is 
derived by solving the kinetic equation in a narrow, tail-energy range. The solution 
involves asymptotic expansions of Bessel functions of large argument, and (Z-dependent) 
order above or below it, corresponding to the possible parabolic or hyperbolic 
character of the kinetic equation; velocity space diffusion in self-scattering is treated similarly 
to isotropic thermalization of tail energies in large Z analyses. The scale length H 
characterizing nonlocal effects varies with Z, suggesting an equal dependence of any ad hoc 
flux limiter. The model is valid for all H above the mean-free path for thermal electrons. 

I. INTRODUCTION 

The classical expression for the electron heat flux in a 
plasma defines the thermal conductivity through a local 
relation between flux and temperature gradient.lT3 This lo- 
cal (Fourier) law was originally supposed to apply, as 
usual in kinetic theory, whenever the temperature scale 
length, HE IV In TI -’ with T the electron temperature, 
was much larger than some thermal mean-free path for 
electron scattering A, Mean-free paths in plasmas, how- 
ever, are strongly energy dependent. As an easily verified 
consequence, electrons contributing most to the heat flux 
have energies well above thermal. This means in turn that 
the mean-free paths of interest are much longer than Ar, 
thus explaining why classical flux calculations have been 
found to fail at H as large as 10*;1,. 

Albritton et a1.4 made good use of the energy depen- 
dence of mean-free paths in deriving a self-consistent for- 
malism for the heat flux that has the nonlocal character 
exhibited by numerical calculations. In solving the 
Fokker-Planck equation they could let the flux-carrying 
(superthermal) electrons be non-Maxwellian, while main- 
body or thermal electrons were assumed Maxwellian. Fur- 
ther, by considering a large ion-charge number Z, they 
could make electron scattering by ions dominate self- 
collisions, and thus take those super-thermal or tail elec- 
trons as nearly isotropic. Recently, Sanmartin et al.’ have 
simplified the nonlocal results by noting that the flux- 
carrying electrons, having energies centered at E*= 6ST, 
cover a narrow energy range, T. They also used a property 
of the kernels in the coupled integrals of the overall for- 
malism to obtain a single formula for the heat flux, q,. 

The first detailed model of nonlocal transport, by Lu- 
ciani and co-workers,6 considered Z arbitrary and used 
physical arguments in a fit to numerical simulations, later 
elaborated in a series of papers.778 Prasad and Kershaw’ 
and Epperlein and Short lo showed that nonlocal models 
break down at very steep temperature profiles, when they 

may lead to heat flowing in the direction of the tempera- 
ture gradient, qe*VT > 0. Note, however, that the regime 
H 5/2, does not make sense in the formalism of Ref. 4, 
because then main body electrons would not be Maxwell- 
ian. Further, Sanmartin et al.’ have showed that the for- 
malism has a characteristic scale length 
H-&Z”*(E,/T) , 3’2 failing ultimately at a much shorter 
H;” in practice, this reverts to the same failure condition, 
H c/2, Thus, a nonlocal model should just make colli- 
sional kinetic theory valid throughout the range H > AZT, as 
originally expected from the local Fourier law. Recently, 
Ramirez and Sanmartin proved that including nonlocal 
transport in the self-similar expansion of a laser plasma 
does extend in a limited way the validity of a previous 
classical analysis. I2 

The extension of a self-consistent nonlocal formalism 
to values Z- 1 presents the main difficulty that self- 
collisions are then, in principle, as frequent as collisions 
with ions. There is broad evidence, however, supporting 
the idea that, even at low Z, scattering is the dominant 
process, the electron distribution function becoming isotro- 
pic faster than Maxwellian. 7,‘3 This fact allows us to use 
the same expansion scheme of the limit z~l,~~~ but now 
retaining self-collisions at the lowest order, representing 
scattering. Minotti and Ferro-Fontan,i4 who considered 
self-scattering without diffusion in velocity space, found a 
hyperbolic equation for the anisotropic part of the distri- 
bution function, as opposed to the parabolic equation of 
the Z>l limit. They obtained heat flux results for low Z, 
which show good agreement with experimental data at 
nonlocal conditions and Z= 1. Their expressions, however, 
recover neither the nonlocal results at high Z nor the clas- 
sical results of local conditions, at low Z. Murtaza et al. 
considered moderate Z, keeping terms of order 4/ (Z+ 1) , 
taken as a small parameter. They ignored diffusion in self- 
scattering at some point in their approximate scheme, and 
again failed to recover classical results at low Z.15 
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In this work we use the narrow energy-range idea of 
Ref. 5 and asymptotic expansions of Bessel functions of 
large argument and arbitrary order, to develop a nonlocal 
formalism valid for all ion-charge numbers. Velocity diffu- 
sion in self-scattering is simplified following the procedure 
used in Ref. 4 for thermalization. We further follow Ref. 5 
in reducing the overall formalism to a single formula for 
the heat flux. The next section gives the formulation of the 
problem. The electron distribution function and a nonlocal 
flux law, for arbitrary Z, are given in Sets. III and IV, 
respectively. Results are summarized in a final section, 

II. MODEL FORMULATION 

Let f,(v,r,t) be the electron distribution function and 
move to the electron frame by using w = v- u,( r,t), where 
II, is the mean directed velocity. Neglecting hydrodynamic 
effects in the kinetics on the basis of conditions 
u,4 ( T/m,) “* and a/at - u,*V, usual in quasineutral flows, 
the equation for fJw,r) is2 

eW af, 
w*Vf,+- m, ~=cei+cee 9 (1) 

with -V$ the electric field. We take collision terms C,i and 
C,, dominant (and f e close to the local Maxwellian f M) at 
thermal energies, but not at the tail energies of interest, 
centered at some value E*% T. Starting with C,,(s=e,i) in 
a form equivalent to the Landau expression,” 

CT= 
2rde,Z In Aes a 

2 
[( 

af, m, a 
me 

&’ ,-zfea, 

l A j- Iw-w’IfW)dw’], 

we neglect terms of order mJmi, and first assume 
u=u,-ui=O (no current), to obtain the usual (pure scat- 
tering) approximation for C,, 

a 

( 

af, w*L--ww 

I( 

m2w3 
-&' aW' 2Tei(W) ‘@47re4ZR In Ad ’ 1 

vanishing for isotropic f, (I =unit tensor). Rewriting C,, 
(exactly) as 

CA-= [w--w’1 

xfe(w') 2 

-dw’+h+ n (2) 

and noting that thermal electrons contribute most to the w’ 
integral, we expand j w-w’ I in powers of the small ratio 
w’/w- ( T/E*) I’* With a two-term expansion, . 

s 
,w-w,If~(w')dw' =w n (3) 

and neglecting the last term in the bracket of (2), which is 
smaller than the first in the tail-to-thermal density ratio, we 
also get a linear approximation Cie( f ,) for C,,. 

For ZN 1, CIJCLe is large and f, at energies around E.+ 
may be near-isotropic and yet not near-Maxwellian, 

fe=fo(w)+wz(w), (4) 

with fo#fM and w-g/f0 small. To dominant terms we set 
fe=fo on the left of Eq. ( 1 ), ignore Cie on the right and 
obtain 

W'VfO=C~i(W.g)=-W*p/7,i, (5) 

having changed from variables ( w,r) to (e=fm,w* -e&r). 
A velocity-angle average of ( 1) yields a second relation 
between f. and g= -r,i Vfo, 

(w*V(w*g))=c~e(fo)2 Aeemew2 a 
(6) 

On the left we have dropped a term 2r,,e V+Vfd3m, 
small by a factor 2e+/m,w*-T/E* because the electron 
momentum equation, 

O- -V(nT) +ne V4+R, (7) 

with R the ion-electron friction, gives e$- T. We will 
write similarly E+~$E-E for imy* when appearing as a 
power, but not in a large exponent, as in the local Max- 
wellian, fM=n(m/2pT)3’2 exp[- (e+e$)/7’j.16 Thus, 
for consistency, one should drop the term T/mew2 in Eq. 
(3), i.e., the last term in (6), if f. followed a power law 
(small Td In f,,/ae), but should keep it if instead foE fM 
(Ta In f,,/&- - 1). At this point, one makes a crucial 
ansatz, ~TalnIfO-f~I/&~(1,4 leading to 

34 a(fo-fd Z In 
v.g=- 

( 
Aei 

r,iz, a6 z*G lnA, ) 
(6’) 

This amounts to using the classical limit, fo=fM, in the 
a*fda2 term 0fEq. (6). 

For Z- 1 there is no large parameter to allow writing 
Eq. (4). To the order considered, and for one-dimensional 
geometry, that approach, however, is equivalent to expand- 
ing f, in Legendre polynomials P,, and neglecting n)2 
terms; there is evidence supporting this use of a two-term 
Legendre expansion, 
Z=O( 1).7J3 

with fo#fM, down to values 
In a sense, this indicates that f, becomes iso- 

tropic faster than Maxwellian, and allows writing Cii 
+ CL (nonisotropic) %Cie (isotropic). Thus, we keep (4) 
and (6’) and add to Rq. (5) the self-scattering term 

Cie( w*g) = - $&*[+-&p)-$ (w+T&g)], 
(8) 

where we may drop the term T/mew2 against unity. Finally 
we now allow a current, u#O, by including in (5), the 
correction term 

C,ai- Cii( W*g) Cd= 2 ) 
a 

where, from the ansatz preceding (6’), one uses afM/aw 
for afdaw. 
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Take now gradients and current along the x axis and To get the classical form of h, we use Eq. (5’) with u = 0 
define and fo=fM. For Z- W, one has 

h=wg,, 

Eqs.(6’)and(5),withthenewterms(8)and(9),readas 
h(classica1) =&$+Po-e/T)exp( --E/T), 

where Eq. (7) and Braginskii’s result, R= -Don VT 
<&=3, are used, yielding the well-known value 
E,-6.56T. For Z= 1, Eq. (5’) at large E/T gives” 

dh 
wr,Fe s = &33 ( fo -fM )/de, 

vo 2 8 
Wreiz=yeFE 

* 

(6”) 

Once h (and fo) are determined, one uses Eq. (7) and the 
equations 

(10) ch de, 

(11) 

to obtain R and the heat flux qe in terms of VT and u. 
Equation (10) expresses the fact that the mean directed 
velocity of electrons vanishes in their own frame.” For 
consistency, we set the lower limit in the integrals ( 10) and 
( 11) equal to zero instead of - e$. 

The J2h/@ term of Eq. (5’) was ignored in Ref. 14, 
where good agreement was found with experimental data 
at highly nonlocal conditions and Z= 1. The low-Z results 
found there, however, disagree substantially with classical 
values in the collision-dominated limit; actually, it has been 
shown that to obtain transport coefficients close to classi- 
cal, from an analysis of (5’) with fo=fM, one must retain 
the d2h/8$ term.” Here, we do retain it, and lower the 
order of Eq. (5’)) as in going from (6) to (6’)) by writing 
h + T ah/&= h[l+ TJ(ln h)/&] and using the classical 
value of the bracket. Note that this bracket, contrary to the 
expression 1 + T a( In fo)/& in Eq. (6)) does not vanish in 
the collisional limit. It will be later shown that the effect of 
the term retained does decrease as one moves to nonlocal 
conditions. 

Since a substantial departure off0 from a Maxwellian 
is being considered, 

Ifo-J-M I -f&l 9 (12) 

the ansatz leading from (6) to (6’) may be rewritten as 

l”‘f”a;fM)~<+Z&l. (13) 

Conditions ( 12) and ( 13) can hold simultaneously only 
within a narrow energy range ( - T), although this range 
may include the electrons carrying the heat flux. It will 
thus suffice to obtain TJ(ln h)/& (in the classical limit) 
at E 2: E*. To determine e*(Z) one maximizes c?h ( E) in the 
integral ( 11)) and finds 

cY(ln h) -2 - =- 
ae 

% E* 

h(classical)cce[4(1+&)(l+e/T) 

-3g/T2]exp( -e/T>, 

with po-0.71, yielding ~*~5.93T. To the accuracy con- 
sidered in the analysis, and because self-scattering has van- 
ishing effects at Z- co, we may just set e*(Z) =6T. Thus, 
we approximate the first term on the right-hand side of 
(5’) in the form 

2~ d(h+TcYh/&) 4~ ah - 
Z* ae -jz,z (14) 

III. THE ELECTRON DISTRIBUTION FUNCTION 

Eliminating f. between Eqs. (6”) and (5’), where 
(14) is used, we obtain 

g+zg ($)-j&g (k$) 
=S(&d+y2 [$+(yJr;2)“2]$, (15) 

where source terms of order T/E have been neglected on 
the right-hand side, and 

Equation ( 15) is hyperbolic,t4 except in the limit Z.+-+ 00, 
when it becomes parabolic.4P5 To solve it introduce the 
Fourier transform 

and define 

F(k,y) 3E-2(1+v)h, 

y= (3Z,/16)“2k2, Y= (3Z,-5)/16. 

The equation for F is then 

(17) 

Since hay ‘+“F must vanish as cay “2-k CcJ , the solu- 
tion to (17) is 

s 

- 
fYk,Y) = - 

rry’ dy’ s( k,~‘) 

Y 2k2 e’2+2y 

x [J,(Y) YJY’) --JJy’) Y,(y)], 
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with y’= (32,/16) “2k&2, and J,,, Y, the Bessel functions 
of the first and second kind, and order v. Then, the Fourier 
invert of X is h(g,=) = -2 

X 
s 

E* $$ (J,Y;-J;Y,)S(~‘,E’). 

In the expression for S({‘,E’) we write 

ff.&?,e’) =fh&‘,~)cw[ g (%- 1) 1, 
where T’E T({‘). For a general profile T(x), the super- 
thermal condition E> T leads to E> T’.5 Then, only a nar- 
row range of values, be’ - T’, contributes to the E’ integral 
above; ’ particular, we 
S(~‘,E’) ,s;;‘,E)exp[(E-c’)/T’]. 

might set 

With this energy range the characteristic “length” A{ 
in Eq. (15) is 

A~-E,T (Z*- 1); (18d 

-2’2T1’2 (Z,)l). * (18b) 

We may now use AS to estimate the ratio between the 
second and first terms in the expression for S(&) in Eq. 
( 15). This ratio is order ( m,u2/3e,) 1’2 for Z* - 1, and of 
order (Z,m&‘/3 T) 
against ( T/m,) “2, 

1’2 for large Z*. Since we took u small 
effects due to the current are small, 

except possibly for large Z.+, a limit for which they have 
been already discussed.’ Hereafter we drop the tl term in S 
and write 

A further consequence of the fact that the energy range 
is narrow, is that the arguments of the Bessel functions are 
typically large. Using k- l/Ag and (18a) and (18b), we 
have 

2y-E,/T (Z*- l), 

-(Z,E,/T)“~ (Z,,l). 

Assume for now that Z, is also large. Then we may sim- 
plify the Bessel functions by using asymptotic expansions 
for large argument and order,” 

J,,[ ( %)1’2ke-j Yv[ (2) Ink&‘] 

-J,r[ (%)‘/‘ket21Yv[ (+)l”kf?j 

where 

and the E’ =E condition was used. The above sinusoidal 
and exponential behaviors correspond to the hyperbolic 
and parabolic character of Eq. ( 15) for Z, =0( 1) and 
Z,> 1, respectively. Further, note that dominant terms in a 
Bessel function at large argument are the same for order 
large but less than the argument and for order about 
unity.18 Thus, we may now relax the requirement Z,>l. 

We then have 

exp[ --SC 1 +P)“~I 
vu+p)y+1’4 

I sin[pv(~2-1)1’2]/(~2-1)1’2, 
’ sinh[pv(1-[2)1’2]/(1-~2)1’2; 

the expression above (below) applying for <> 1 (6 < 1). 
Since SEE/T’ is large, we will take the limit s+ CO in eval- 
uating the integral I. The exponent vff in its denominator 
resulted from writing S( [‘,E’) eS( g,e”2e”‘2) 
xexp[(e-e’)/T’], which is formally correct in that limit 
and improves the agreement with heat-flux values at clas- 
sical conditions. We find 

I=[ (;+~+v)2++q-1, 5‘21. 
Next, integrate by parts in r and replace the derivative 
J/J{’ on exp[ik(c’ -c)] by -a/&$. The k integral can 
then be carried out, to finally obtain 

where 

,_Igr-ll 
T’2 ’ ,(sk(&z+z~)1’2. (20) 

Using now ( 19) in Eq. (5’), the isotropic part of the dis- 
tribution function may be written as 

fo(&> u j- diY fdiY,e) g. (21) 

This is the same result of Ref. 5 if we write 
a,= ( T’/E) 3’2, which is, in fact, the limit of a, as Z*- CO. 
The characteristic range AC’ in Eqs. (19) and (21), cov- 
ering values g’ below and above f, is 
Ac’=2T’2/oz( T’/E*) [compare with (18a) and (18b)]. 
Using Eq. ( 16), this gives the scale length HE A{’ dx’/dc’ 
or 

H= 2 T2/?re4n( 6Z In Aei In A,) 1’2az( T/E* > 

= (Z*+~)~ZT/(6Z*)“2a,(T/E*), (22) 
where we have introduced a representative total mean-free 
path for scattering of thermal electrons, 
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~,_2W~ei(W)Z*/(Z*+~), at fm#‘=T. 

Note that for H, as given by (22), Eq. (21) yields fo-fM 
at thermal energies. Further, if H is much larger, (21) 
gives fo- fM at energies E-e*, to recover classical results 
for qc Finally, if fM varies in a distance well below (22)) 
changes in f. will lag behind, and condition ( 13) will not 
hold.” 

The factor (Z* + y )/Z, in jl,, representing electron- 
electron effects in scattering, is obtained by carrying the 
approximation (14) to its end, so that, in the local limit 
and for u=o, Eq. (5’) reads as 
wr,,df &ax = - (Z* + y) h/Z*. This provides a rough way 
to correct for finite-Z effects, so that one might write 
qe(Z)/qe(Z>l) Id,=z*/(z*+~). The factor 
Z*/(Z*-t?) compares well with the factor 
(2,+0.24)/(2,+4.2) obtained from an ad hoc fit to clas- 
sical results,1-3 and often used to correct the pure ion- 
scattering (high Z) heat flux.” 

IV. THE HEAT-FLUX FORMULA 

Useof(19)inEqs.(lO)and(ll)determinesq,andR 
in terms of the temperature gradient. Equation (7) allows 
us to eliminate the electric potential, which appears in the 
local Maxwellian, fhiaexp[- (e+e#)/q.’ Here, how- 
ever, we will follow the formalism of Ref. 4 for the large Z, 
case, and ignore (7); Eqs. ( 10) and ( 11) are then taken to 
give qe and the electric potential or, for convenience, a 
“nonlocal” potential defined by 

e&#t,’ ea# Talnn 5aT 
dx-dx- aX+iaX’ 

Since the expression for f. has a form similar to that in 
Ref. 5, we may directly write results similar to those of that 
paper. 

The final expressions are thus 

mLJ = J- 

( 
W i, x {I$KTl ~-cm ax, I)* (23 1 

0.15. 

FIG. 1. Kernel Lr( 0) in the present heat-flux model, Eq. (25), normal- 
ized with JL*, (13) de, for several values of ion charge number Z. 

In the classical case (smooth gradients) only the com- 
plete integrals of the kernels, e.g., J,“I,*(tJ)dtI, enter the 
results. In the opposite limit (steep gradients) only the 
values of the kernels at 8=0 count. Further, the following 
relations: 

S;~(6J)d@ So”I;(B)de e(O) I,*(O) 1 
s,“L:(e)de-so”l;c(e)de=L:(o)-~= ’ 

the limit case of which for Z*+ 00 was given elsewhere,5 
can be easily shown to hold. One may then verify that a 
single expression, 

s 

dx’ nrTL”2 dTi 
4e” - 47-r(3m$*)“idx’ Lf(e)’ (25) 

where LF is given in (24)) 

LfEg8rri/2 
s 

m sdsexp [-s-eaz(s)l , 
0 u,(s) 

and Z*, o, and 0 (and 0, are given in Eqs. (6’), (16), 
and (20), recovers exactly results from the coupled equa- 
tions (23) for both smooth and steep temperature profiles, 
and can be a convenient approximation for intermediate 
profiles, as discussed in Ref. 5 for large Z.+. A plot of 
Lf (0)) normalized with S,“L*, (@de, is given in Fig. 1 for 
some values of Z,. 

For smooth enough gradients, Eq. (25), or Eqs. (23), 
yield 

3yo( Z) p’2 aT/dx 
qe= -4( 2~) “2m~‘2e4Z In A,i ’ (26) 

The kernels c, c, c, and Lf are given as functions of 
both &Is - {l/Ti2 and Z* in terms of two simple 
integrals: 

(JTce),Lyce) 1 =8P2 
s 

UJI 
m ds exp[ -s-eo,(s)]a,o, 

0 

with y. given by 

28dLT 
K;C=4L;--&- * 

Since the expression for a,(s) in (20) goes into s-3/2 as 
Z*+ UJ, we exactly recover the results of Ref. 5 for that 
limit. 

Yom = I m 2qye) $. 
0 

Equation (26) is the usual expression for the classical flux. 
Numerical results on y. by Braginskii2 were extended, and 
confirmed within about l%, by Epperlein and Haines;3 
earlier, Spitzer and Harm’ had numerically given 
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0 I 
1 * zo SC 40 

2 

FIG. 2. Coefficient ye(Z), normalized with its value for Z-+Q), in the 
classical flux law, Eq. (26): Exact results (Refs. l-3), X; present model, 
Eq. (27’), -. Also shown are results from a crude variant of the model 
(see the end of Sec. IV), -.-, and from Refs. 14, - --, and 15, 0. 

3rrys/320=Sr(Z)e(Z), in terms of two other coefficients, 
8r and E. Figure 2 compares our analytical formula (27), 
i.e., 

16 m s4ems ds 
YO’G I 

m se-‘ds 4Z* -- 
0 m-3m s 0 s+3(Z*-1)/4’ 

(27’) 

with the “exact” values.‘-3 For the comparison we set 
In A,=ln A, or Z* =Z. The agreement is quite reason- 
able. 

Also shown in Fig. 2 are results from a simpler variant 
of our model in which, instead of making use of ( 14), one 
just drops the #h/&-term in Eq. (5’). This amounts to 
using a modified function 2 = (2/ZA> + (Z* - 1) /Z.,$. 
The variant model follows correctly the Z dependence of 
‘y. but gives values too small, particularly at low Z, where 
it agrees with the results from Ref. 14, also shown in the 
figure together with the results from Ref. 15.19 At extreme 
nonlocal conditions, we have qe a Lf(0) a s;s 
Xexp( -s)ds/a,(s), and the variant produces weaker 
changes. 

V. SUMMARY AND CONCLUSIONS 

We have derived from the kinetic equation a nonlocal 
formalism for the heat flux valid for all Z. We recover 
results from Refs. 4 and 5 at large Z, and results similar to 
those in Ref. 14 at low Z. In the classical limit we obtain a 
thermal conductivity that follows closely the entire Z de- 
pendence known from “exact” calculations. We have fur- 
ther shown that, as in the large Z case, a single integral 
expression for qe, Eq. (25), reproduces exactly results from 
the coupled equations of the entire formalism, for both 
smooth and steep profiles, and would be a very convenient 
approximation for intermediate profiles. 

The kinetic equation could be solved because the en- 
ergies of interest cover a narrow range, he- T, centered at 
a value QT. The solution then involves asymptotic ex- 
pansions of Bessel functions of large argument and Z- 

dependent order above or below the argument. The result- 
ing exponential or sinusoidal behavior corresponds to the 
parabolic or hyperbolic character of the kinetic equation. 
To simplify the diffusion in velocity space, in the aniso- 
tropic self-collision term, we introduced the classical limit 
behavior, in a spirit similar to that taken in Ref. 4 to deal 
with thermalization. The model is accurate to order T/E*, 
or about 16%, similar to the accuracy of Coulomb loga- 
rithms. 

We have shown that nonlocal transport is character- 
ized by a scale length H given by Eq. (22). Note that the 
characteristic ratio H/A, is large and increases with Z. The 
breakdown of local transport at H/A,) 1, instead of 
H/A r- 1 as originally expected, explains why the limiterf 
in the flux bound qe < fn T3’2/mi’2 of standard numerical 
simulations has been found to be small. If H/A, is well 
below the value (22), or H-A= (when the distribution 
function ceases to be near-Maxwellian at thermal ener- 
gies), nonlinear transport breaks down. In practice, one 
can write its range of validity as 1 <H/A < CO. For H below 
Ar, one might resort back to the use of a limiterfwith a Z 
dependence, f a Z:/2az( T/E*)/( Z, + 9)) where E* e 6T. 
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