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The Boltzmann equations for a binary mixture of gases are considered in the asymptotic limit
when their molecular weight ratio and the light gas Knudsen number are small quantities. A
first mass-ratio expansion reduces the cross-collision operator of the light gas Boltzmann
equation to a Lorentz form, uncoupling its kinetic behavior from that of the heavy gas. The
light gas distribution function is then determined to first order in the Knudsen number,
independently of the degree of nonequilibrium characterizing the heavy gas, whose influence is
felt only through its hydrodynamic quantities. All transport coefficients arising are determined
variationally for arbitrary interaction potentials using Sonine polynomial expansions as trial
functions. A remarkable feature of this analysis is that it yields binary transport information
(i.e., diffusion and thermal diffusion coefficients) from considering only the Boltzmann
equation for the light gas. A second mass expansion reduces the cross-collision operator of the
heavy gas equation to a Fokker—Planck form. The corresponding coefficients involve integrals
over the light gas distribution function determined previously and are evaluated explicitly in
terms of the hydrodynamic quantities and transport coefficients of the light gas. The heavy gas
distribution function can be determined by solving a Fokker—Planck equation at dilutions large
enough to make heavy—heavy collisions negligible, or by a new Knudsen number expansion
when the molar fraction of the heavy gas is of order 1. In this latter case, the heavy gas kinetic
behavior is independent of the light gas, being characterized by the same transport coefficients

of the pure heavy gas. The problem is then reduced to a set of two-fluid hydrodynamic

equations.

I. INTRODUCTION

The behavior of binary mixtures whose constituents
have widely different molecular masses (m,>m) differs
considerably from that of ordinary gas mixtures because of
the presence of disparate relaxation times governing the ap-
proach to equilibrium of the various degrees of freedom. In
pure gases or mixtures with similar masses, the departure
from equilibrium conditions may be measured in terms of a
single Knudsen number (Kn=wu/p), or the ratio between
the microscopic and the macroscopic times, x/p and 0™,
respectively, where ¢ and p are the gas viscosity and pres-
sure. However, in mixtures involving disparate masses, the
energy interchanged in collisions among different molecules
is much smaller than in collisions involving equal molecules
by a factor of the order of the ratio of masses M=m/m,
between the light and the heavy gas. Therefore, one may
roughly characterize the process of equilibration of dispa-
rate-mass mixtures with three different relaxation times: two
for self-equilibration, 7, = u,/p; (based on the viscosity co-
efficients and partial pressures of each gas individually;
/ = 1,2), and a third one, 7, associated with the slower pro-
cess of interspecies equilibration. Typically, when the num-
ber concentrations »n; (thus the partial pressures p;) of the
two gases are of the same order, because the coefficients of
viscosity are roughly mass independent,’ the two self-relaxa-
tion times are comparable (7,7, ~7,n,) and much smaller
than the interspecies energy relaxation time 7 by a factor of
order M = m/m,, . Accordingly, the standard hydrodynam-
ic equations based on the Chapman—Enskog theory? apply to
disparate-mass mixtures only under the very restrictive con-
ditions when the macroscopic time o~ ! is much larger than
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the slow energy relaxation time 7 (w7<1). In the range
where the system is perturbed within a characteristic time
o~ ' comparable to or smaller than 7, but still larger than the
fast relaxation times u,/p; (w7 <m,/m), some rather inter-
esting relaxation phenomena arise.>® These phenomena
may still be described at a hydrodynamical level by means of
generalized two-fluid equations.”™!!

The starting point for the present work is the observa-
tion that the same mass disparity that enriches and compli-
cates the physics of the problem can be used to simplify its
mathematical description. Indeed, it was this simplifying
feature that led to the theory of the Lorentz gas'? well before
the Chapman—Enskog theory on ordinary gases. Yet the
construction of systematic perturbation approaches based
on the small parameter M = m/m,, has evolved slowly. A
key step was taken in 1969 by Bernstein'® who obtained a
generalized Lorentz (Bernstein) operator by expansion of
the corresponding Boltzmann collision integral up to first
order in m/m,, though his formalism may be extended to
any order. The approach is based on a double expansion
where (1) the finite recoil velocity of the heavy gas upon
collision with the light gas is one small parameter (of order
m/m,), and (2) the velocity distribution function £, of the
heavy gas is treated as a delta function to lowest order, while
still accounting for its finite width [of order (m/m,)"?].
The integrals in velocity space involving the heavy gas distri-
bution function f, may then be carried out explicitly so that
the Boltzmann equation for the light gas depends on f, only
through its moments »,,U,, etc., and the light gas is kineti-
cally uncoupled from the heavy gas to any order in m/m,,.
Such a remarkable feature will play an essential role in the
present work.
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Similar systematic theories for the “Brownian limit” of
a heavy gas moving in a light fluid have also appeared.!*'’
As a result, one has reduced forms for the two Boltzmann
integrals involving collisions of the light with the heavy gas
(Lorentz—Bernstein operator) and of the heavy gas with the
light gas (Fokker—Planck operator). Therefore, the Boltz-
mann equations for a binary disparate-mass mixture may
now be attacked under circumstances broader than contem-
plated in either the Chapman-Enskog theory or two-fluid
theories, as we propose to do in the present work by further
exploiting the smallness of the parameter m/m,,.

The structure of the paper is as follows. We consider the
case where the distribution function f of the light gas is near-
ly Maxwellian, while the heavy component is allowed to be
arbitrarily far from equilibrium yet with a temperature of the
order of the light gas temperature (notice that this condition
on the temperature is compatible with a strongly non-Max-
wellian distribution function f, ). After deriving the Lorentz
operator from its corresponding Boltzmann integral it is
seen that fis kinetically uncoupled from f,, implying that its
corresponding kinetic equation may be solved without addi-
tional assumptions on the heavy gas. As in the Chapman~
Enskog theory for a pure gas, the method of solution is based
on expansion in a Knudsen number wp/p around an equilib-
rium Maxwellian. To first order in m/m,, the heavy gas is
seen to perturb the distribution function f only through its
moments, number density #,, mean velocity U, and pres-
sure tensor P,. The dependence of the light gas Boltzmann
equation on 7, and P, is straightforward and linear; how-
ever, U, enters through complicated functions of the differ-
ence U—U, in mean velocities between the two gases.
Therefore the theory is also linearized in U — U,,, thus being
additionally constrained by the condition that the group
|U — U, |/(2kT /m)*'? be small compared to unity (U and
T are the mean velocity and the temperature of the light gas;
k is Boltzmann’s constant). An interesting new feature of
the governing integral equation arises from the nonconser-
vation of momentum for the light gas alone, which results in
amodified (nonsymmetric) integral operator. Such a behav-
ior leads to the appearance of a new “collision invariant”
that provides freedom to assign different mean speeds to the
two gases. Also, all the transport coefficients arising may be
calculated variationally in spite of the lack of symmetry of
the collision operator, and are determined for general inter-
action potentials.

Once the light gas distribution function is found, it is
used to derive an extended expression for the Fokker—
Planck collision operator governing the evolution of the
heavy gas and including the effects of the nonequilibrium
interaction between the two species. Further reduction in the
problem of determining the distribution function f, is possi-
ble only in two limits. When the ratio of number densities
n,/n is of order unity or larger, the heavy gas is also near
equilibrium, and a new (heavy gas) Knudsen number ex-
pansion results in a two-fluid theory valid for arbitrary inter-
action potentials. When the heavy gas is dilute
[n,/n =0(m/m,)], the near-equilibrium expansion leads
to the same difficulties as the CE theory (it is only valid for
the very restrictive limit w7 € 1), because both self-collisions
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and collisions with the light gas become slow compared with
po/p. Nevertheless, if the dilution is sufficient to make
heavy-heavy collisions negligible, the process of equilibra-
tion of the heavy gas s governed by the Fokker—Planck oper-
ator only, reducing significantly the kinetic equation govern-
ing the evolution of f,. However, the problem cannot be
reduced to a hydrodynamic level in the region of interest
where wr=0(1).

Il. LORENTZ COLLISION OPERATOR

The change in the light gas distribution function as a
result of collisions with the heavy molecules is given by
Boltzmann’s collision integral

le=fd3up dQ ga(g,0) [f, (w,)f(w') — £, (w, )f(u)], (1)

where u and u, denote the independent variables of fand f,,,
and their primed counterparts are the postcollision veloc-
ities; ¢ is the differential scattering. cross section,
d() = sin 6 d6 d¢ (Fig. 1), and g =u, — u. The reduction
of expression (1) to a Lorentz operator involves carrying the
integration explicitly over u, space by exploiting the small
value of the parameters

M,=m/(m+m,)
and

(2a)

(2b)

The integration to lowest order is straightforward because
u, =u, and the width of /, is negligibly small [in the relevant
scale (2kT /m)*/? or, in other words, the heavy species ther-
mal speed is small compared to that of the light species] so
that it can be treated as a Delta function. Retaining higher
order corrections requires taking account of the finite width
of f, and of the small recoil of the heavy particles upon colli-
sion with a light molecule. In the systematic perturbation
scheme introduced by Bernstein,'* the u, dependence of the
integrand in (1) is reduced to products of £, (u, ) with pow-

M=m/m,.
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FIG. 1. Reference system.
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ers of u, — U, by Taylor expansion around the mean veloc-
1ty U, of the heavy gas. The expansion is justified because
U is of the order of (2kT /m)'/>M "/? within the range
where f is not negligibly small (unless 7,,/T becomes a
large quantity). The integration in u, space may thus be
completed and all the dependence left on f, is through its
moments n,, U,, and the pressure tensor P, (to first order in
M)). We w1ll sketch Bernstein’s derlvatlon here in order to
introduce the notation, and also because the subsequent
analysis is simplified by using a slightly different reference
frame not necessarily tied to the heavy gas.
From the dynamics of elastic two-body collisions, we
can write

u, =u, + M Ag, (3)

u =u—Ag+ M Ag, (4)
where

Ag=g —g g=u —u, (5)

and as a result of energy conservation (g’ = g), g’ is obtained
by rotation of the vector g from its position in the polar axis
into the solid angle Q) (Fig. 1). We thus introduce the rota-
tion operator {2

g =Qg (6)
The expansion of /, (u;) and f(u’) in powers of M, yields

Jp (up) (') — f (u,)f(u)
= f, (u,) [f(u—Ag) —flw)]
+ M AgV, [f, (w,)flu—Ag)] + -, (7)

where V, is the gradient in u space. We now exploit the fact
that the ranges of the thermal velocity of the heavy species ¢,
=u, — U, and the light gas thermal velocity ¢ =u — U
scale quite dlﬁ'erently, being in a ratio of order (7,/T)M '/?
= O(M *'?). The analysis is simplest in the reference frame
used by Bernstein'? in which the heavy gas has zero mean
velocity. However, subsequent computations are simplified
with the choice of a reference frame moving at a speed slight-
ly different from that of the heavy gas, so that U, is a small
quantity compared to (2kT /m) /2. We are thus left with the
freedom to select a reference frame moving with the light

gas.
Defining
k=0u and kps(__)up, (8)
we have
u—Ag=k—k, +u, (9
and f(u — Ag) can be expanded as
S(u—Ag) = f(k) + (v, —k,)V,f(k)
+1i(u, —k,)(n, —k,):V, V. f(k) + -
(10)
Similarly, since () is a rotation operator we have
g=lg| =|Qg| = |Qu—Qu,| =k —k,]|, (11)
and the expansion of
742 Phys. Fluids, Vol. 30, No. 3, March 1987

80(g,0)=S(k —k,) (12)
in powers of k,, yields
S(k—k,) =8(k) —k,V,S(k)
+ 1k k,:V, V. S(k) + .- (13)

Introducing expansions (7) and (13) into the integral (1)
and using the properties k| = |u], k,*V, ¢ =u,V, 4, one
obtains

S@)[f(u—Ag) —~ f(w)]
= 8w [f(k) —f(w)] + w,«(S(u) [V.f(k)
— VW] =V, {Sw) [f(k) — )]}
+u,u,:(iV, V. S(u) [f(k) —f(n)]
+ V. {S) [V.f(w) — V,f(k) ]}

+ [S) 2] [V Vo f(k) — V, V. Au)]) + -

The u, integration can now be carried explicitly in (1), and
in terms of the moments

n, =fd3upﬂ, n,U, =fd3up u, f,

n,U,U, +P,/m, —-fd3up wu, f,,

where P, is the heavy gas pressure tensor, we obtain for the
Lorentz operator

Jiy=N+U,(L—V,N)
+ (KT,/m, + U, U,):[V,(— L+ V,N/2)

~Y/2] + MV, R+ -+ (14)

In this expression, T, = P,/n,k and
N= [0 v 0 — fw), (15a)
LEJ-d.Q v[Vifk) =V, f(w)], (15b)
Rsfdﬂ v(u — k)f(k), (15¢)
\_(stQv[Vkaf(k) -V v, f(w)], (15d)

where v = n,uo(u,0) is the frequency for heavy-light colli-
sions. Again we remark that f, apears in J,, (and hence in
the light species Boltzmann equation) only through its mo-
ments n,, U,, P,,....

Hl. LIGHT GAS VELOCITY DISTRIBUTION FUNCTION 7
A. Lowest order solution

The Boltzmann equation for the light gas may be writ-
ten symbolically as

Df=-]11(f) +J12(f;f;)’ (16)

whereJ},( £, f,) is the Lorentz operator discussed above, Df
is the streaming operator, and J,, the Boltzmann collision
integral accounting for the light-light collisions. Since J,,
depends on £, only through its moments, Eq. (16) may be
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solved for fin terms of the quantities n,, U,, P,, etc. In an
expansion in powers of the Knudsen number, the mass ratio
and the slip velocity parameter

v=(U—~U,)/(2kT /m)'7?, amn
Eq. (16) admits a Maxwellian distribution as its lowest or-
der solution centered at an arbitrary mean velocity U and
temperature 7 provided that v is indeed small. We may thus
write

=R +¢+-), (18)
where ¢ contains first-order corrections in Kn, M, and v, and
is the function that we wish to determine, while f; is

fo=nQ2akT /m) "3 exp[ —m|lu —U|*/2kT]. (19)

The fact that ¢ is a first-order quantity in these three param-
eters results from a reasoning identical to that used in the
Chapman-Enskog (CE) theory for a pure gas, together with
Eq. (14) for Jy,. All terms except Nin Eq. (14) areof order v
or M. Here N itself is the standard Lorentz operator of order
v/, while v has the same order of magnitude as the inverse of
the light gas relaxation time when n,/n = 0(1). Therefore
N( /) and J,, are comparable. Furthermore, in the reference
frame where the light gas is at rest (U = 0), f; is spherically
symmetric and N( f;) = O. The lowest order equation

0=J,(fo) + N(fp)

is thus satisfied by a Maxwellian function. Notice also that
our choice of a reference frame in which U = 0 requires sub-
stituting U, for U, — Uin Eq. (14) for J;,.

B. Governing Integral equation for ¢

Let us use the notation

J($)=J1,(foh), (20a)
K(¢)y=J,(fod), (20b)
Jo(@)=N(fod). (20c)

Then, Boltzmann’s equation becomes to first order in Kn,
M, and v

Dfy —J(1) =K($) + Jo(9). (2n
Introducing the inner product
[fel = fd *ufe, (22)

it can be shown (see, for instance, Ref. 2, Sec. 4.4) that the
operator K is symmetric and nonpositive, that is,

[x.K¢] = [¢.Ky] and [4,K41<0, .

the equality holding for the second expression above only
when ¢ is a linear combination of the functions 1, u, and #*
(notice that our linear collision operator X is equal to — n*/
of Ref. 2). Similarly, as shown in Appendix A, J,is also a
symmetric and nonpositive operator.

Using the independent variable in u space relative to the
mean value U,

ce=u—-U, (23)
the conservation equations resulting from taking moments
in the Boltzmann equation for the light gas-are
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d,n 4+ V+(nU) =0, (24)

3,(ne) + V+(neU + Q/m) + P:VU/m = [J(1 + ¢),¢*/2],
(26)

wheree=3kT /2m is thelight gas internal energy. Equations
(24)-(26) differ from those arising in the CE theory for a
pure gas in their right-hand sides, which accounts for the
interchange of momentum and energy between the two spe-
cies. Proceeding as in the CE theory of a pure gas, we elimi-
nate time derivatives appearing in the expression for Df;, by
means of the conservation equations (24) and (26), in
which P and Q are taken to be nkT'I and zero, respectively
(Buler level). In terms of the dimensionless variable

E=c/(2kT/m)'?, (27)
the result is

Dfy =Grad + D, + Dy, (28)
with

Grad=f;[286:V'U + c¢VIn T(£? — %) ], 29)

D, =Qf/mE[EJ(1 +4)], (30)

Dr=(fy/m)(26%/3 - DIE*I(1 + 4], (31)

while V°U denotes the symmetrized traceless velocity gradi-
ent tensor.

Regrouping terms in ¢ on the left-hand side, we obtain
the nonhomogeneous integral equation for ¢:

(K +J)¢=Grad + D® + D% —J(1), (32)

where D2 and D % are given by the definitions (30)-(31) for
the particular case when ¢ = 0, and the new operator J, is

J1(8) = Jo(9) — (2fo/n)E (€8] (33)
Obviously, in a first-order theory in the parameters Kn, M,
and v, Jmay be substituted by J, when acting upon ¢, but not
when operating on the Maxwellian distribution function
[J(1)]. The expression for J( 1) is given in Appendix B. The
equation that results finally for ¢ is

(K + Jl)¢ = Gl'ad =+ 2V'§(V1 -_ Vo)ﬁ), (34)

where the driving forces are Grad (identical to the one in the
CE theory for a pure gas) and the velocity slip v [Eq. (17)].
An additional driving force proportional to a tensor asso-
ciated with temperature differences has been neglected be-
cause it leads to higher order effects in the parameter M, see
Appendix B. (However, it must be retained in the calculation
of the energy transfer [J(1 + #), ¢*/2] because in this case it
becomes the lowest order significant term, see Appendix E.)
The terms v, and v, are collision frequencies (defined in
Appendix B), v, being a constant, while v, depends on the
velocity variable £.

C. Solution of the homogeneous equation-(J/, 4+ K)$=0

Let us first find the solutions ¢, to the homogeneous
equation

(K+J)é, =0, (35)
which play the role of the collisional invariants 1, §, £ 2, the
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only solutions to the homogeneous equation K¢ = 0. Using
Eq. (33), Eq. (35) may be written as

(K +))d, = (2fy/n)ka, (36)
where
a=[d,JoE]. (37)

Equation (36) may be solved as if a were an arbitrary con-
stant, checking a posteriori whether the solution ¢, is such
that the constraint (37) is satisfied. But then, the constraint
(37) is satisfied automatically for any value of a,

[BarloB] = [$ar(Jo + K)E]

= [6(Jo+ K4, ] = [6(2fo/m)Ea] =a, (38)
where we have used the facts that [§,(2/,/7)E] = LKE§ =0,
and that K + J,, is a symmetric operator. Accordingly, the
general solution to the homogeneous Eq. (35) is given by a
linear combination of the solution to (K + J,)¢ = O plus an
arbitrary multiple of the new function ¢, such that

(K+JO)¢¢1 =2f(‘)g5¢a’ (39)

with no constraints now. Obviously, the isotropy of the oper-
ator K + J, allows for solutions to (39) of the form ¢,
= a*(£)E, so that

(K + Jo)a*(6)§ = 2ok (40)

To find the solutions to the new homogeneous problem

(K+Jo)dy =0, (41)
we form the inner product of ¢;; and Eq. (41) to obtain

[$5:Kr ] + [¢uodbu] =0 (42)
But because both K and J,, are nonpositive, Eq. (42) implies
that both K¢, and Jyé, must vanish. Accordingly, the func-
tion ¢,, must belong to the set of collisional invariants {1, §,
&2} for which K¢, = 0. Of these functions, only 1 and &°
vanish also upon the action of the operator J,, so that the
general solutions to Eqs. (41) and (35) are, respectively,

¢y =C +C§?’ (43)

and
$o = C, + Coa*(£)E + Cof >

The collisional invariant § from the CE theory is substituted
here by the new function a*(£)§ that results from solving
the integral Eq. (40). That Eq. (40) has a unique solution
(except for a linear combination of 1 and & ?) is ensured by
the fact that its right-hand side is orthogonal to the two solu-
tions 1 and £ ? of the homogeneous Eq. (41). We thus have
three, and only three, eigenfunctions associated with the
zero eigenvalue of the operator K + J,. They will permit
imposing the condition that the function ¢ in (18) does not
contribute to n, U, or 7. This requirement is essential if the
number density 7, mean velocity U, and temperature 7 of the
light gas are to coincide with the quantities #, U, and T ap-
pearing in the lowest order solution f; and in the hydrodyna-
mical equations [ (24)-(26)].

On the other hand, since the operator K + J, is singular
(A = Obelongs to its spectrum ), Eq. (32) has solutions pro-
vided its right-hand side satisfies some compatibility rela-
tions. That this is so is verified in Appendix C.

(44)
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D. Variational approach for the optimal determination
of the transport coefficients

It follows from our previous analysis of the homogen-
eous equation (K + J;)¢, = O that finding the solution ¢ to
the integral equation

(K + )8 = fo[266V°U + ¢VIn T(£* ~ )]
+ 2vE(v, — vo)f, (45)

is equivalent to solving the new problem involving a self-
adjoint operator,

(K +Jy)bo = fo[ 266:V'U + eV In T(£% — ]

+ 2vE (v, — Vo) fo (46)
where ¢ is related to ¢, through
¢ =do+ C, + CyEa*(§) + Ci£ 2, (47)

and where the coefficients C; are determined from the condi-
tions that ¢ does not contribute to the hydrodynamic quanti-
ties n,U, and 7. We may use linear superposition to decom-
pose the problem into the following ones:

Po=¢oa + o1 + Pob> (48a)
with

(K + Jo)bo. = ¥, =/,28E:V°U, (48b)

(K + Jo)o» = ¥ =2/ovEvy, (48c)

(K +Jg)or = =foeVIn T(£2 —3), (48d)

where in Eq. (48c) we have put v, instead of (v, — v,) asin
Eq. (34). But because v, is a constant the difference is pro-
portional to f,§ and thus to the right-hand side of Eq. (40).
Accordingly, the resulting solution ¢,, changes only in a
trivial multiple of the function a*(£)&. Both Eqgs. (48) and
Eq. (40) may be written as

(K+Jo)¢0i = lﬁ,-,

whose solution ¢, coincides with the function y, that extre-
malizes the functional

Az{l’,}E[X,’(K“f‘Jo)X, “2¢,] (49)
Furthermore, the extremal value A* of A; is
A= — [¢Oi7¢i]’ (50)

which is related to the transport coefficients that we wish to
obtain. Our treatment will follow that of Bernstein'® in ex-
ploiting the fact that errors of order € in the evaluation of ¢,
lead to errors of order € in the resulting value for A, (and
thus for the evaluation of the transport coefficients ). Indeed,
if y =¢ + ¢, then

Ay) = — [8.4] + [(K+ Jp)eel.

Furthermore, because [(K + J,)€,€] is nonpositive, A* is
an absolute maximum.

1. Pressure tensor and viscosity coefficient

The nonequilibrium contribution to the pressure tensor
of the light gas is

P’ = [mec, fip]1= — 2uV°U. (51)
But because the terms ¢, and ¢, do not contribute to the

J. Fernandez de la Mora and R. Fernandez-Feria 744

Downloaded 16 Jun 2006 to 150.214.40.140. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



inner product, and because, by parity considerations, d,,
contains no contributions of @*§, we may write
p=— (kT/2)[$o:s¥. ]/ (VUVD), (52)

where the inner product [@,,,¥, ] may be determined opti-
mally from Eqs. (49) and (50),

— [Poas¥s ] =Max[x,(K+Jo)xy —2¢, ]. (53)
2. Heat conductivity

The heat flux for the light gas is

Q = [mcc?/2, fu$], (54)

which has no contribution from &;,. Realizing also that
[e, fo#] = O, we may write

QVinT=KkT [¢r + ¢5,¥r], (55)

where ¢, and ¢, are related to ¢, and ¢, through Eq.
(47). The flux has therefore two additive components, pro-
portional to ¢, and ¢, , respectively. We therefore introduce
the two transport coefficients A and 7,

Q= —AVT+q(U-1,), (56)
so that ‘

A= —k[¢r$r)/(VInT)? (57)

7 =kT [¢1.45,]/[(U-U,)VInT]. (58)

The optimal determination of these coefficients is complicat-
ed by the fact that ¢, and ¢, contain contributions of a*E,

@1 = Por + AV In T'a*§, (59a)
&y = o +Ayva*s, (59b)
so that, for instance,
[8r:¥r] = [dor + Ara*EV In T3¢ ]
= [@or¥r] +Ar[a*6eVInT,¥r].  (60)

The unknown coefficient 4, may be obtained optimally
from the condition that the mean velocity of fé, vanishes,
[¢or +Ara*EVInT, fE] =0, (61)

by realizing that £, is related to the driving force ¥, [Eq.
(40)], so that

Ar[beVIn T, ] = — [dor¥a ] (62)
Accordingly
[¢T'¢T] = [¢ors¢r] - ["’a'vm T»'/’T]
X [Gors¥a]/[$aVIn T, ], (63)

and if each one of the four inner products appearing in Eq.
(63) is found optimally, the resulting thermal conductivity
coeflicient will be also. The determination of the diagonal
terms [dor,¥r] and [&,, P, ] is straightforward based on
Egs. (49) and (50),

— [bors¥r] =Max[yr, (K +Jo)yr —2¢¥r], (64)

- [¢a»\"a] =M“[Xa’(K+Jo)Xa -21'1,,]. (65)

The two off-diagonal terms [¢,,¥r] and [dor. Y, ] are
equal to each other as a result of the symmetry of the opera-
tor (K + J,). They may also be related to diagonal terms
through the identity
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[for + boVIn Ty + b, VIn T]
= [bor-¥r] +2[for$aVIn T ]
+ [¢,°VInT%,-Vin T, (66)

so that

—2[@ors¥e'VIn T
= Max[Yor (K +Jo)Yor — 2¢0r — 24,°VIn T']

~Max[y7r, (K +Jodyr — 2¢r]

—Max[x, VIn T,(K+Jo)X'VIn T

—2¢,VinT]. (67)
It may be shown that, within a given space of functions, the
function y¥*, that maximizes the first term in the right-hand
side of Eq. (67) is the sum x%V In T" 4 y¥ of the functions
that makes extremal Eqs. (64) and (65) so that [@or,¥, ] is

given optimally by either [ x¥,%, ] or [ x%,¥r]. According-
ly, for optimal results, one must take
[8r:¥r] = [xF — b [xba |1/ [basba ] L¥7 ], (68)
where the term proportional to ¢, added on to y% is such as
to make its mean velocity null, exactly as if our guess for y¥
were the exact solution ¢, .

To calculate 7 one could use the optimal trial function
Y*. Alternatively, ¢, can be obtained analytically by notic-
ing that v
'/,b =2V'§ﬂ)‘V1 = ""‘2-’0(§‘V) = — 2(K+Jo)§'v’ (69)

from which Eq. (48c) can be integrated exactly to give

bop = —2vE (70)
and, from (59)
¢b = V'g(/lba* —_ 2). (71)

Similarly to A, 4, is such that f,¢, has null mean veloc-
ity '

[¢0b +'1b¢a.v’¢a ] = O’ (72)
from which

Ay = (3n)/[Ea* b, |:L (73)
Thus Eq. (58) gives

- [¥r.8]

(U-U,)VInT
2 __ *7].
_m, (ZkT)VZ [(£°—5/2)¢fp,6a*]:] ’ 74)
2 m [&a*,2/,E]:1

since [ (£ — 5/2)¢f,§] =0.

3. Transfer of momentum between species

An important term entering into the hydrodynamical
equations is the right-hand side of Eq. (25) accounting for
the interspecies transfer of momentum

M=m[J(1 +$).cl. (75)
From Appendix B, in first approximation,
J(1) = — ¢, = —2v§ fovy, (76)
J. Fernandez de la Mora and R. Fernandez-Feria 745

Downloaded 16 Jun 2006 to 150.214.40.140. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



and using the symmetry of X and J, together with the prop-
erties Kc = 0 and [¢,¢] =0, we may rewrite (75) as

M=M, +M,, (77
with
M, = mirp[¥,,e]VIn T= (2kT/m)"*nmA ¥V In T
(78)
and
M, = mA, [P,.c]*v = (2kT/m)">mnA,v. (79)

The coefficient A, is given by Eq. (73) while, from Eq. (62),
Az can be related to  through [Eq. (74)]

7= —nm2kT /m)""*A,.
To unify, we define a thermal diffusion ratio &, as
kr=n/nkTy= —nmQkT /m)"?A,/nkT,,  (80)
where n, and T, are the mixture number density and tem-
perature (no=n + n,,n,To =nT + n,T,), so that the heat
flux and M, become

Q= —AVT + nokTpk (U —1U,), (56')

M, = —nkTok;VIn T (78")

The variational techniques described in this section are
used in Appendix D to calculate the light gas transport coef-
ficients for arbitrary spherically symmetric molecular inter-
action potentials.

IV. FOKKER-PLANCK COLLISION OPERATOR

The cross-collision integral appearing in the heavy spe-
cies Boltzmann equation, which accounts for the changes in
the distribution function f, caused by light-heavy species
collisions, can be written as

Iy = Jd3u dQ go(g,0) [ £, (w)f(u) — £, (w,)f(w) ],
(81)

where the differential cross section is the same as in Eq. (1).
Similarly to the cross-collision integral J,,, Eq. (81) may be
expanded in the mass ratio M to yield the so-called Fokker—
Planck coilision operator [see Eqs. (16)-(18) of Ref. 15]
valid to first order in M,

J21 zvup‘[bf;) +%Vup.l;lf;r] + Ty (82)
where the vector b and the tensor IT are defined as
b=M1fd3gggQ1f(u,, —8) (83)

1
0= M7 [ g5 @1 300, + 2200, fu, — ).
(34)

Here M, is defined in Eq. (2a), and the functions Q, and Q,
are defined in Eq. (B1) of Appendix B.

Using now the expression found previously for f, the
coefficients b and II may be obtained including all nonequi-
librium effects to first order in M and Kn. The present treat-
ment generalizes previous work'® in that it incorporates the
kinetic effects of the heavy gas in £, including those resulting
from differences in the mean velocities and temperatures
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between the species. The new terms resulting from the analy-
sis that follows are of the order n,/n, so that the conclusions
of Ref. 15 are still valid in the limit n, €n. With a complete
specification of £, b and II may be obtained for arbitrary
values of u, — U. But because / has been determined only to
first order in U, — U, we may consistently compute these
coefficients to first order in U, — U, Kn, and M only, to
obtain

b= Mfd g g0, f(—g)
+ (u, — U)M'fd%gngngo( —g)+ -, (85)

= MZJ.d s g(% (&1 - 3gg)Q, — 2ggQ1)

X fol —8)+ . (86)
Let us write (85) as
b=b,+ (u, ~U)B4 - . (85")

The tensor B is equal to 7~ ‘!, where 7 is given by Eq. (BS5)
and L is the unit tensor. Similarly,

II=(2kT/m,7)1 (86")
[notice that the first term in (86) is zero].

To evaluate b,, we notice that

n,by= —M [n,uuQ,, f(u)]. (87)

Since n,uQ,=v, (Appendix B) and Jou = —ufyv,, Eq.
(87) becomes

nby =M [Jou,(14+¢)] =M [uJd], (88)
where use has been made of the symmetry of J, and of the
fact that J,(1) = 0. Comparing Eq. (88) with Eq. (75), we

can relate b, with the momentum transfer between species
M,

ppby =M —m[J(1),ul, (89)
which after using the relation (Appendix B)

m{J(1)ul = — (p,/7)(2kT /m)"/?,
can be written as

poby =M+ (p,/7)(U—-1U,). (90)
Thus from Eq. (85a),

pb=M+ (p,/7)(n, —U,), (91)

and substituting this expression and Eq. (86a) into Eq. (82),
we are led to the modified Fokker—Planck collision operator

Jy= Vup'{[M/pP + T—l(up - Up)]f;?

+ (kT /m, D)V, f,}. (92)

V. HEAVY GAS DISTRIBUTION FUNCTION WHEN
n,/n>0(1)

As mentioned in the Introduction, a Knudsen number
expansion for the heavy species distribution function, simi-
lar to that of Sec. III for the light gas, is only possible in the
case in which the heavy gas is not very dilute. This is readily
seen from the relative order of magnitude of the collision
terms in the Boltzmann equation for the heavy species distri-
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bution function with respect to the free-streaming operator:
the self-collision term is of order p,w~'/u,, and the cross-
collision term (Fokker-Planck operator) is of order
(wr)~'. Now, p,&~'/u, can be written as

(T,/T)(n,/n)(p/p,)Kn~'~(n,/n)Kn~",

where Kn = wu/p is the light gas Knudsen number. On the
other hand, using relation (B6) between 7 and the diffusion
coefficient D, in addition to the definition of the Schmidt
number Sc=pu/m(n + n,)D, (@r) ~" can be written as

() ' =(Ty/TSc MKn '~MKn~1

Accordingly, because Sc is almost temperature independent
and of order unity (Sc~2.3 for He-Xe mixtures), the Boltz-
mann equation for the heavy species and the order of magni-
tude of its terms can be written symbolically as

D, f, =Ju(£i 1) +I(fo)s
Kn’ M, np/n.

If n,/n is of order unity or larger, we can expand f, in
powers of Kn (provided, of course, that Kn€1)

and solve Eq. (93) by the Chapman—Enskog procedure. A
peculiarity is that now the zeroth-order equation for f,, is

which yields a Maxwellian distribution for f, with mean

velocity and temperature independent from those of the light

gas

fro =n,(m,/20kT,)*? exp[ — (m,/2kT)|u, — U, |*].
. (95)

However, if n,/n = O(M), this expansion is not valid
except in the case when Kn<M for which the Chapman-
Enskog theory for binary mixtures-can be applied. There-
fore, in the limit Kn~M~ (n,/n) €1, the complete kinetic
equation (93) has to be solved. A simplification arises in the
limit of extreme dilution of the heavy species (n,/n<M) in
which Eq. (93) is reduced to a Fokker—Planck equation by
neglecting the self-collision term.

In the remainder of this section we will restrict ourselves
to the case n,/n>0(1) and will derive and solve the integral
equation for the first-order correction ¢,. The correspond-
ing results are obviously far more restricted than those in the
previous sections. The principal difference with respect to
the light gas is that now the cross-collision and the free-
streaming terms are of the same order of magnitude (when
Kn and M are comparable) and the linearized equation for
¢, must be written as

Kp¢p =Dpfp0 —F(l)a (96)

where K, ¢, =J,,(f0$,) and F(1) is the Fokker-Planck
operator applied to f, = f,. From Eqgs. (92), (95), (77),
(78a), and (79),

(93)

F(1) = 20 {&,* [nokTokr (m, /2KT, ) !/
XVinT—MpA,v]/p,
+7 ' (1 =-T/T,)3—-&D)
where M, = (T,m/Tm,)~"/* and

N
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€, = (w, —U,)/(2kT,/m,)"2.

On the other hand, similar to the case of the light gas,
D, f,o can be written as

D, f,, = Grad, + D, + D,r, (98)
with
Grad, = f,{(£,> — 5/2)¢,VIn T, + 2§,§,:V°U, },
(99)
Dpu =(2/np)§p.[§p’F(l)], (lw)
D,r = (n,) (&, — D [&,AF(D]. (101)

Using Eq. (97) to evaluate Eqgs. (100) and (101), and
substituting into Eq. (96), we have

K,$, = Grad,, (102)

where the terms associated with F(1) cancel exactly: There-
fore, as expected, in first approximation the heavy gas be-
haves as a pure gas.

The hydrodynamic two-fluid equations for this case
n,/n>0(1) are given in Appendix E.

It is worth pointing out that, in the limit Kn<1,
n,/n>0(1), the problem may be treated with greater gener-
ality for arbitrary values of the parameter M by expansion of
the original Boltzmann equations in the two Knudsen
numbers Kn and Kn,. The correspondmg analysis is pre-
sented in Ref. 17.

VI. CONCLUSIONS AND COMPARISON WITH
PREVIOUS WORKS

In the present work we have made a rigorous expansion
of the cross-collision Boltzmann operators in the small pa-
rameters M and v [Egs. (2b) and (17)] retaining terms up
to first order in both of them, to obtain new simplified opera-
tors (Lorentz—Bernstein and Fokker-Planck). Then, the
Chapman-Enskog method has been used to solve the Boltz-
mann equation for the light gas when its Knudsen number is
small. Provided the temperatures of the two gases are of the
same order, the method yields a correct description of the
light gas distribution function for arbitrary interaction po-
tentials even when the heavy gas is dilute and far from equi-
librium. From it, all the coefficients entering in the expres-
sion of the Fokker-Planck operator are calculated to first
order in the Knudsen number. No such description of either
the light gas distribution function or the Fokker—Planck op-
erator had been given previously.

A two-fluid hydrodynamic description of the behavior
of the heavy gas is only possible when n,/n>0(1), and is
given here for arbitrary potentials of interaction. Previous
literature on two-fluid hydrodynamic descriptions of dispa-
rate-mass mixtures® ! followed early ideas of Grad.” For
instance, Goldman and Sirovich® developed a general two-
fluid Chapman-Enskog theory for. the case of Maxwell mol-
ecules, while Goebel, Harris, and Johnson'® made use of
Grad’s 13 moments approximation also for Maxwell mole-
cules. The more recent work of Tiem'! is also based on
Grad’s'® expansion of the distribution function in Hermite
polynomials, but allowing for arbitrary interaction poten-
tials. From this expansion and using the hard sphere model
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to estimate orders of magnitude, Tiem derives a scaling of
the collision terms. He makes the hypothesis of similar mo-
lecular diameters for light and heavy species, which would
imply that the viscosity of the pure heavy gas is (m,/m) 172
times larger than that of the light gas. However, because the
experimental data for noble gases indicate that the viscosity
is mass independent,’ the validity of this scaling is limited to
some hypothetical gases that might not be easily found in
nature. Incidentally, the arbitrary assumption u/u,
= O(M ''?) was first suggested in the pioneering work of
Grad’ and has prejudiced much of the literature in this field.
A direct consequence of such scaling is that the light gas
stress tensor does not appear in Tiem’s hydrodynamic equa-
tions, a result that is not correct even for the case
n,/n=0(1) assumed in his derivation. Furthermore,
Tiem’s expansion is restricted to M /> = O(Kn), while we
expand independently in Kn and M, to first order in both.
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APPENDIX A: SYMMETRY OF THE OPERATOR J,

The following derivation is from Professor I. B. Bern-
stein of Yale University (unpublished). From Egs. (15a)
and (20c),

1 = [d@ v fi v - v,
with

k=0Qu and v=n,u0(u0).
Then,

(6, J¢] = npfd *udQuo(u,0)é(m)fy(u) [¢(k) — g(u)],

and after changing the variable of integration from u to k

(6] =n, f K dQ uo (u,0)$ () fo(w) [(n) — P(K) 1.

[ Notice that the Jacobian of the transformation is unity, that
u = k and that f,(u) = f;,(k) in the reference frame in which
U = 0.] Adding these two expressions and dividing by 2, we
obtain

(58] = _%&faﬂu 40 uo(,0)f, (1)

X [p(k) —d(u) ] [¢(k) — ¢(u)],

from which it follows that J;, is a symmetric and nonpositive
operator. Moreover, from its definition, J,i = 0 for any
function ¢(u) invariant under rotation.
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APPENDIX B: EXPRESSION FOR J(1)
Using f=f; [Eq. (19)] in Egs. (15), we obtain

mn
N0=0, L():_kmy:fz)npfdﬂ au(u-—k) =—l'c’T—pﬁ)Qlcc’

m 2
Yo= (_ﬁ) fonpfdﬂ ou(uu — kk)

3 ({m)\? ( c? )

="\|—)nficlce ——1 , Ro=jfon,ceQy,
Z(kT)’fo 31) @ Ro=/onpced:

where u = ¢ in our reference frame in which U = 0 and the

Q,’s are functions of ¢ defined by

Q.(¢c) =2m| dO(1 — cos'8)o(c,0)sin 6.

0
Thus, up to first order in M, we can write

(BD)

J(I) = —Zfbylv-g_'_M(_él‘_ d(,;;;:vl) + 31/22f(‘))§°:§g

1 . d( f()Vl))
M 4+ — &= Tr(2),
+ (ﬁ)vl 3 '3 dE (%
where v, = n,cQ,, v, = n,cQ,, and the tensor ¥ is defined
by

2=1-T,/T—2w/M, (B3)

and 1 is the unit tensor. Here Tr(Z) denotes the trace of T
and

F=32-Tr(D3

Only the first term of J(1) will be retained since our aim
is to develop a first order theory in the mass ratio M [except
in the evaluation of the energy transfer between species since
the first term inJ( 1) does not contribute and the next signifi-
cant term has to be retained ]. From Eq. (B2), we can calcu-
late the contribution of J(1) to D, and D;:

D = 2fy/m&[8J(1)] = —2v, fovE,

(B2)

DY = (fo/m)(2£%/3 — DIE% ()] (B4)

= Mfov,(2£%/3 — 1)Tr(2),

where v, = n,/nMr, with 7 given by
7= 2(1/nMQ,""), (B5)

which is a measure of the energy relaxation time between
species, and is related to the first approximation of the diffu-
sion coefficient D given by the Chapman—Enskog theory for
binary mixtures:

D= (kTy/m,)[n/(n+n,)]r, (B6)
APPENDIX C: COMPATIBILITY RELATIONS FOR
EQ. (32)

Let us write Eq. (32) as

(K+J)d =1 (C1)

Since X + J, is a singular operator, according to Fredholm’s
theorem for linear integral equations,’® Eq. (C1) has nontri-
vial solutions if, and only if|

[l/’rTi ] = O,
where the Y, functions are the nontrivial solutions of the
transposed homogeneous equation
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(K+J)™, =0. (C2)
Multiplying Eq. (C2) by a generic function ¢ and forming
the inner product, we can write

[¢’(K+Jl)1Ti] = [T (K+J)¢] =
or, from Eq. (33),

[0 (K + J)8] — (2/m) [TLE4] (6] = 0. (C3)
Since K and J,, are self-adjoint operators, (C3) may be writ-
ten as

[ {(K+J)Y, — (2/n) [T, E£5]TE1=0.

This equation is valid for any ¢ and thus Y, satisfies the
relation

K+ J)Y: — (2/n) [ Y1, /5] Yok =0
or, since K § =0,

(K +J){Y; = (2/m) [ Y6 /0]6} =0.

Any solution of this equation is a linear combination of the
functions 1,§, and £ 2 (that § is a solution is readily seen from
the equality [§,€/o] =nI/2) because the only functions
that vanish upon the action of (K + J,) are 1 and £2 [see
discussion following Eq. (42)].

Thus, the compatibility relations that have to be satis-
fied are

[#,1] = [#E] = [#£°] =0,
where from Eqgs. (28) and (23),

Y =Lo{28E:V'U + ¢VIn T(£% —3) + 2vE(v, — ) ).
By parity considerations, the first and the third of Eqs. (C4)
are straightforwardly satisfied (notice that € is traceless).
Also, for the same reason

[28E:V'UE] =

The two remaining relations are satisfied since

and
[[tevietemni— e = [ degem(—g2.

Moreover, it is easy to show that the neglected termsin J(1)
related to the tensor X [see Eq. (B2) ] also verify the compa-
tibility relations (C4) when they are included in .

(C4)

APPENDIX D: TRANSPORT COEFFICIENTS FOR THE
LIGHT GAS

In this appendix, we use the variational methods de-
scribed in Sec. I1I D to calculate the furictions y,,,y 7, and X,
that maximize the inner products [y,,¥.], [xr¥r], and
[Xa»¥a ], for a specific set of trial functions (expansions in
Sonine polynomials). Then, these functions are used to ob-
tain expressions for the light gas transport coefficients.

Expanding the functions y; in the orthogonal set of Son-
ine polynormals,

Xa = 2 a8 ) (£ )66V,

k=0

(D1)
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t-= 3 4SBEIVIT, (D2)

za S(k)(g- )g,

k=0
the equations for the coefficients a;, 7,, and a, that satisfy
relations (53), (64), and (65), respectively, are given by

(D3)

za‘,éy = nan, (D4)
i
5né;
Sody= ———, (DS)
]
(D6)

i

To obtain these equations, the orthogonality properties of
the Sonine polynomials have been used. The matrices 4, and
A are defined by

ApI=[S$H8(K +J,)S§)E) (D7)
A, A=[5{8%6,(K +J))SBEE], (D8)

where [ is the unit second order tensor and the fourth order
tensor A is defined by A,y,,, =640, + 8xaOim + OxmOni-
The portions associated with the operator X in Eqs. (D7)
and (D8) are known from the Chapman-Enskog theory of a
pure gas (see, e.g., Ref. 2, pp. 157-159 or Ref. 21, Sec. 7.2).
The part of (D7) and (D8) corresponding to J, is easily
evaluated using the definition of J, given by Egs. (15a) and
(20c), and the orthogonality properties of the Sonine poly-
nomials.? In terms of the Q) integrals,?' the first few terms of
these matrices are

A= __s_,m Qi
3

1 a c
xle ((n/m))a,+b (n/n,)b,+d|,
¢ (n/ny)by+d (n/n,)c,+e
4 _8 0o [1+ (n/n))3; 3+ (n/nP)EI]
= 5 @+ (n/n,)b, b+ (n/n,)é,]’
where
a-i.._ Q2 _ 25 Qu» Qe
2oagY T 4 gy ey’
_ 35 7 ng,z) 1 9%3)
T8 2080 204y’
g 15 105 9% 19 2Y 1 0hY
16 8 Qv 4 quv 2 @’
_ 1225 245 QY 133 07
64 8 @b 8 Q@b
_108% 1 0p”
T2 aun T 4 un’
1 Q§22)
al ="2" Qg'l) »
Q2 Qe
b1=_1'(7 :11)_2 :n))’
2 Q5 Qi
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_ 1 E—Q%LZ) _ Q§2.3) 952,4)

“T2\e e apr et/
S_ 10 o4 037 050

2 oY 4 g af’
a _l__ Q§2,2) _ _._1— 7 052,2) —2 Q%Z,})
“T2 7 T\ e Tapd)
o 1301 087 Q> ﬂi“’)
s\ 12 a@» o>  Q@?

Notice that from the nature of the right-hand sides of Egs.
(D4) and (D35), one more term is needed in the matrix 4
thanin the matrix 4 to obtain the same degree of approxima-
tion.

Once the coefficients a;, ¢;, and ; are known, the viscos-
ity, thermal conductivity, and coefficient % of the light gas
can be calculated using equations (52), (57), and (74), re-
spectively. The first approximation (resulting from taking
one term in 4; and two terms in 4;;) is given by

5nkT
[u], = —— (D9)
161, Q322 [ (n/n,)E, + 1]
2
(A1, = Tonk T : (D10)
64mn, Q" [(n/n,)a, + b ]
(0], = SnkTa (D11)

2[(n/n,)a, + b ]

The second approximation is easily computed using the
terms of the matrices 4 and 4 given above. It is observed that
in the limit n/n, — « (pure light gas), Egs. (D9) and
(D10) are the first approximations for the viscosity and
thermal conductivity of a pure gas given by the Chapman—
Enskog theory (Ref. 2, Eq. 9.7,3). In the opposite limit
n/n, —0, the above expressions agree with the viscosity and
thermal conductivity in the Lorentz limit (Ref. 2, Sec. 10.5).
The comparison between our results for 4 and A and the
exact values in the Lorentz limit is made in Table I for mole-
cules repelling each other with a negative power of their dis-
tance, using the first and second approximations of z and A.
As an indication of the convergence of the successive ap-

TABLE I. Comparison between the first and second approximations [ u],,
[ #];and [4],, [A], of viscosity and thermal conductivity in the limit 7/ n,
—0 and the corresponding values for the Lorentz gas i; and 4, (Ref. 2,
Sec. 10.5). The comparison is made using repulsive molecular potentials
varying as r~° (8 = 4 corresponds to Maxwell molecules and § = e to
hard spheres). The ratios [ u1,/¢, and [ ],/A, are temperature indepen-
dent. Notice that, from Fig. 2, it is in this limit n = 0 when the convergence
of the Sonine polynomial series is the slowest. Also notice that the conver-
gence is slower for the thermal conductivity than for the viscosity.

) [ul/p, [ 2)s/0, [A1./4, [A 1/,
4 1 1 1 1
6 0.9909 0.9984 0.9663 0.9946
12 0.9639 0.9918 0.8625 0.9749
0.9204 0.9779 0.7282 0.9383
750 Phys. Fluids, Vol. 30, No. 3, March 1987

proximations in the Sonine polynomial expansion, Fig. 2
represents the ratio [A],/[4], between second and first ap-
proximations of A as a function of the light gas molar frac-
tion n/(n, + n). It is observed that the minimum ([4],/
[4], =1) isreached at n/n, = 1.

From Eqgs. (80) and (D11), the first approximation of
the coefficient k- may be written as

S5nTa
[k T ] 1= »
2noTo[(n/ny)a; + b ]

which is equal to the first approximation of the thermal dif-
fusion ratio k; of the Chapman—Enskog theory in the limit
M0 (Ref. 2, p.165).

Finally, from Eq. (73), the second approximation to the
coeflicient A, appearing in the transfer of momentum is giv-
en by

16 a®
Ay]a= — 8, mw(l ______)
[4s ]2 3 P b+ na,/n,

(D12)

_ ( __a ) (D13a)
nMr b+ na,/n,

where 7 is defined in Eq. (B5). Notice that the second rather

than the first approximation is obtained since we have re-

tained two terms in 4;; in order to obtain the first approxima-

tions for A and k, while, from the right-hand side of Egq.

(D6), only one term of 4; is needed for the first approxima-

tion of A, which is
[As]1= —n,/nMr. (D13b)

APPENDIX E: TWO-FLUID HYDRODYNAMIC
EQUATIONS FOR n,/n>0(1)

In this particular case we can complete the system of
hydrodynamic equations for the two fluids:

an+V-(nU) =0, nmd, U+ nmU-YU 4 V-P=M,
$nk 3, T+ 3nk U-VT + V-Q + P:VU = E,

Y 1.06

1.04

(A / [];
1.02

0 0.5 1
n/(n + np)

FIG. 2. Ratio [A],/[A4], between second and first approximations of the
thermal conductivity as a function of the light gas molar fraction. A Len-
nard-Jones molecular potential with reduced temperature 7* = 10 has
been used to evaluate the (2 integrals.? This ratio is almost independent of
T *. Because of the faster convergence of the Sonine polynomial series for the
viscosity (i.e., Table I), the equivalent ratio [ x],/[ 1], is smaller.
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a,n, +V+(n,U,) =0,

n,m, 8,U, +n,m, U, VU, + VP, = — M,
k3,7, +3n,kU, VT, +VQ, +P,:-VU, = — E,
P=pl —2uVU, Q= —AVT + nkTok+(U—-U,),
P, =p,1-24,VU,, Q,=—A,VT,

The transport coefficients of the light species, which are not
restricted with respect to the number detisity ratio, have
been introduced in Sec. III A and evaluated in Appendix D
by means of a Sonine polynomial expansion [Egs. (D9),
(D10), and (D12)]. The transport coefficients -for -the
heavy gas are those of a pure gas (see, e.g., Ref. 2, Sec. 9.7).
It must be noticed that, when both temperatures are the
same, the mixture transport coefficients x,, A,, and k-, de-
fined as the sum of the respective transport coefficient for
each species coincide with those given by the Chapman~
Enskog theory” in the limits M <1, n,/n> M.

The momentum transfer M between species is given by
either m{c,J(1 + ¢)] orm, [¢,,F(1) ], which obviously co-
incide, and are given by Egs. (77), (79), and (78') with 4;
and &, calculated, at the first approximation of the Sonire
polynomial expansion, in Eqs. (D12) and (D13a) of Ap-
pendix D.

The energy transfer term in the light gas energy equa-
tion can be written as

E=m[J(1+ ¢),63/2] =m[J(1),¢/2],
since [J$,c?/2] = 0. From Appendix B, using the complete
expression (B2) for J(1), we have
E= —mn,(2kT/m)Te(Z)/2r
= —3kn,(T—T,)/r+mn,(U—U,)/r,

(ED)

7 being given by Eq. (BS). The corresponding term in the
heavy gas equation is

m, [F(1),62/2] =3n,k(T —T,)/r.

The term proportional to (U — U, )? in Eq. (E1) must be
neglected in this first-order theory In fact, thesum E + E,
should be equal to M:(U — U, ), but this is a higher order
termthatlstakentobezeromﬁrst approximation.
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