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The collision integrals describing the rate of exchange of momentum and tensorial energy
between the components in a binary mixture of neutral gases with very different atomic masses
are determined for arbitrary values of their two temperatures and velocities, for realistic
intermolecular potentials, and allowing for large departures of the heavy gas from equilibrium
conditions. In the range of interest where the system is perturbed within times of the order of
the slow relaxation time characterizing the transfer of energy between unlike molecules, the
light gas distribution function is Maxwellian to lowest order, with corrections given
asymptotically in powers of the small parameter m/m,, formed with the ratio of the species
molecular masses. Also, provided that the ratio T,/T between the temperatures of the two
gases remains much smaller than m,/m, the desired collision integrals may be evaluated
asymptotically in powers of m/m, in all generality. The computation is carried out in detail
for the case when the interaction between atoms is described by a Lennard-Jones potential. A
combination of numerical computations with optimal matching of analytical expressions valid
for large and small slip velocities leads to a set of compact formulas which hold for the limits of
high and low temperatures and to a general approximate expression for all temperatures.

I. INTRODUCTION

The relative inefficiency of the interchange of kinetic
energy in collisions between gaseous molecules of very dif-
ferent masses makes it often necessary to describe their dy-
namical behavior in terms of two-fluid theories rather than
by means of the ordinary equations of hydrodynamics. One
important feature of two-fluid theories is the existence of a
transfer of momentum and energy between the two species,
so that these moments are not conserved for each gas, but
only for the mixture as a whole. The form of the coupling
terms measuring the rates of momentum and energy transfer
has been discussed in the literature in a diversity of works
concerned about such topics as free jet expansions,"* aero-
dynamic separation of species,’ reactive crossed molecular
beam experiments,4 etc. A general treatment for the case
when the two gases are under near-equilibrium conditions is
given by Burgers.’

The set of two-fluid governing laws may be obtained
straightforwardly by taking moments in the Boltzmann
equations describing the evolution of the velocity distribu-
tion functions fand f, for the light and heavy gas, respective-
ly. The following equations are obtained for the heavy spe-
cies:

ap, +V(p,U,) =0, (1)

at(ppUp) + VP, +p,U,U,) = —p,b, (2)

a,P, +V:(2Q, +U,P,) + (P, -VHU, + [P, VU, 1"
= —p, (E4+E.), (3

where the superscript 7 denotes the transposed tensor
(4 f=4;) and the hydrodynamic magnitudes, density,
mean velocity and pressure tensor p,,U, P, are defined
based on the mean speed of each individual species rather
than the mean mixture velocity:
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P mepﬁ’d3up’ (4)
ppUp mepupf;)d3up’ (5)
Pp=Jmp(up—Up)(up—Up)fpd3up, (6)

Qp :—;—jmﬁ(up _Up)(up _Up)(up —Up)fpdaup'
(7

The same definitions, without subscript, apply to the
light gas. Following Burgers,® the coupling terms b and E
can be written as

ppbzfmpfp(up)dmp B, (8)

—pE= f m, f,(w,)d*u, (I — (u, — U,)B — B(u, — ),
(9)

where

B(u,) =M 4’8580,/ (u, — ), (10)

1
Mw,) = M2 [des{5 61— 3000, + 200,) v, — ),
(11)
Q, and Q, are the usual collision cross sections given in terms
of the differential scattering cross section o(d,g) for the
heavy~light collisions,
Q = 217Ja(19,g) (1 — cos'?)sind d, (12)
gis the relative molecular velocity u, — u, and M is the small
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parameter formed with the masses 7 and m,, of the light and
heavy gas,

M=m/(m+m,).

Notice that we have written Eq. (3) for all the compo-
nents of the stress tensor of the heavy gas. Contracting it
with the unit tensor would yield the conservation equation
for the thermal energy e, free from the term E_;; measuring
the rate of change of P, caused by heavy-heavy collisions.
Only the trace of E would be of interest in standard two-fluid
theories. However, here we will evaluate the full tensor E
because of its importance in the case where the heavy gas is
dilute and departs substantially from equilibrium.

As can be seen from Egs. (8)~(11), the evaluation of b
and E requires the specification of both velocity distribution
functions, as well as the interaction potential between heavy
and light molecules, needed to determine the differential
scattering cross section.

Different choices for the interaction potential have been
used in the literature for neutral gases. Inverse fourth order
attractive potentials (i.e., Maxwellian molecules) have been
used in a number of works, because the resulting Q; vary as
g~ ! making expressions (8) and (9) independent of the ve-
locity distribution functions. This assumption, however,
leads to an unrealistic description of the transfer terms. A
long range repulsive interaction decreasing as the inverse
sixth power of the distance has been used>® in an attempt to
give a simpler description of the behavior at low tempera-
tures, dominated by the long range attractive part of the in-
teraction. A full Lennard—Jones potential has been used by
Patch* among others.

When both species are close to equilibrium, the velocity
distribution functions can be described by means of the Max-
wellian expression to lowest order,” or by the Chapman-—
Enskog solution to the Boltzmann equation to include first-
order corrections in the gradients of the hydrodynamical
quantities. Some of these corrections are discussed by
Burgers,” using Grad’s 13 moment method. A common pro-
cedure to describe nonequilibrium effects is to use an “ellip-
soidal Maxwellian” function, which allows for different par-
allel and perpendicular temperatures.>® This function is
suggested by experimental measurements of the parallel and
perpendicular components of molecular speeds of pure gases
or mixtures expanding into a vacuum.?® Since there is no
theoretical foundation for the ellipsoidal function (though it
may be produced for the heavy gas on the basis of the present
work ), the range of validity cannot be assessed. Other ap-
proximate fitting expressions for the velocity distribution,
such as the drifting Maxwellian or the Hermite polynomial
expansion model, are discussed by Patch.*

Even when the distribution functions f and f, are as-
signed, some other hypotheses can help to simplify the task
of performing the coupling integrals. The one adopted most
widely consists in linearizing,*® assuming small mean veloc-
ity or temperature differences between the two species; most
of the published results are subject to this restriction. In free
jet expansions, when ellipsoidal Maxwellian distribution
functions are used, the large parallel to transversal tempera-
ture ratio can provide further simplifications.* Schwartz and
Andres’ relaxed the small slip velocity assumption obtaining
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an interpolation formula for the momentum coupling term
for the case of an inverse sixth attractive potential [see dis-
cussion following Eq. (56)]. Burgers® reports the momen-
tum and energy (scalar) collision integrals for unrestricted
velocity differences and unrestricted temperatures in the
case of hard elastic spheres and Maxwellian distribution
functions.

The present work is motivated by the conditions of our
own experimental research and those of many situations of
potential industrial interest involving disparate-mass gas
mixtures. Typically the light gas is close to equilibrium,
while the heavy gas is characterized by a narrow but far from
Maxwellian distribution function. Furthermore, the slip ve-
locity is not necessarily small, and the temperatures are such
that both the repulsive and the attractive parts of the interac-
tion potential may be important. We shall therefore use the
Lennard—Jones interaction potential and will abstain from
linearizing in the velocity slip. The standard near-equilibri-
um road will be used for the assignment of the distribution
function f only, while f, will be described following Bern-
stein® and Fernandez de la Mora'® in taking advantage of the
large disparity in the masses m and m, between the two
species to develop a systematic perturbation theory in pow-
ers of the small parameter m/m,. Our final expression for
the integrals (8) and (9) will be valid to lowest order in m/
m,,, although the procedure to incorporate higher-order cor-
rections is sketched. Our results will be limited by the condi-
tion that the molar fraction of the heavy gas does not exceed
order unity (r, Sn); but such a constraint is satisfied in
most situations in which disparate-mass mixtures are of
practical relevance.

Il. EXPRESSIONS FOR THE INTERSPECIES
MOMENTUM AND ENERGY TRANSFER

One of the objectives of this work is to give easily used
closed form expressions for the interspecies momentum and
energy transfer terms shown in Egs. (2) and (3). The ex-
pressions given in Eqs. (8)—(11) are completely general.
Following Bernstein,’ the large mass ratio can now be ex-
ploited by noticing that, in the particular case where m <m s
the characteristic range of values of the heavy gas thermal
speed u,=u, — U, is smaller than that of the light gas
w=u—U by a factor (T,m/Tm,|'?, which is much
smaller than unity provided that the heavy species tempera-
ture does not become much larger than 7. As a result, the
integration of Eqs. (8) and (9) over the u, variable is
straightforward: f, is so narrowly centered at u, =U,
(nearly a Delta function) that B and II can only contribute
to the integrals (8) and (9) in a small neighborhood of
u, = U,. We may thus approximate these functions within
the integrand by their Taylor expansion about u, =0 (see
Refs. 9 and 10):

B(u,) = (1+u;Vy + fwug vy Yy +..)B(U,),
(13)
and analogously for II(u, ). The integration over u, can now
be easily performed:

psb=(p, +1P,:Vy Vyy + B, (14a)
_ppE = (pp +%PP:VU,,VU,, + - )H - (PP.VU,,B)+’ (14b)
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where for a general square mixture the notation
At =A + A7 is followed, and the right-hand side terms are
evaluated at u, = U,. As we see, fp enters into Egs. (14)
only through its momentsp,, U, ,P,,... . Tofirst order inu,,
Eq. (13) is equivalent to the assumption that the heavy gas
distribution function is so narrow that it can be considered a
delta function centered in U, . In this approximation, u,, is
simply substituted by U, in Egs. (10) and (11). The first
correction, proportional to P, takes into account the finite
width of f, and is proportional to the curvature of the B and
I functions atu, = U,,.

A specification of f is now necessary to proceed. Re-
markably enough, within the range of parameters of interest,
it is possible to determine £ by a rigorous expansion in pow-
ers of the small quantity m/m, (see Ref. 10),

S=Ll1+0(m/m,)], (15)

where f,, is the Maxwellian distribution with number density
n = p/m, mean velocity U, and temperature 7. Equation
(15) results from the fact that the departures of f from Max-
wellian are of the order of the Knudsen number Kn, defined
as the ratio between r, (self-collision relaxation time given
by the ratio u/p between its viscosity component and partial
pressure) and #, (fluid dynamic deceleration time ~ g/
|[DU/Dt |). Furthermore, if 7 is the slow relaxation time
characteristic of the transfer of energy between two gases, by
purely mechanicai considerations one has that

(16)

in the range where r, /n is up to order 1. In other words, the
relative heavy molecule change of momentum or energy per
collision with a light molecule is only a small fraction m/m,,
of the relative change in a light gas self-collision.

The point of interest here is that the peculiar relaxation
phenomena that make disparate-mass mixtures so interest-
ing do set in when the system is perturbed within a character-
istic macroscopic time ¢, of the order of the slow relaxation
time 7. Defining therefore the interspecies Knudsen number

S=1/t, an

which is analogous to the Stokes number arising in aerosol
dynamics, it results that .S will take values of order 1 in the
problems that occupy our attention. This same condition,

S~1, (18)

is what makes two-fluid theories really necessary, since ordi-
nary hydrodynamics would be perfectly adequate to de-
scribe the region where S € 1. Combining now Egs. (17) and
(18) we conclude that

Kn~mS/m,~m/m,<1.

/Ty ~m,/m,

(19)

Equation (16) is thus confirmed and the light gas distribu-
tion function can be considered Maxwellian with errors of
the order m/m,:

fu) =n(m/2rkT)>'? exp( — |u — U|*/2kT)

X [1 4 O(m/m,)]. (20)

Higher-order corrections to Eq. (20) can be carried out sys-
tematically in the whole range of concentrations, and will be
considered elsewhere.

Using the Maxwellian approximation (20), the differ-
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entiation with respect to U, in (13) becomes equivalent to a
differentiation with respect to § =U, — U. At the same
time we notice that B, I, and II, (where II, and I1, are the
contributions of Q, and @, to II) are not independent:

I, = 2M [ (kT /m)V.B + EB], @n

although Eq. (21) is no longer true when higher-order cor-
rections are incorporated in Eq. (20) for £. The ensuing ex-
pressions are therefore only valid for the first approximation
which takes f to be Maxwellian.

In order to determine B, I1,, and II,, the interaction
potential between light and heavy molecules has to be speci-
fied. Our choice is the Lennard-Jones potential

@(r) = 4€e[(a/r)** — (o/r)°], (22)

where ¢ and o are the depth and radial location of the poten-
tial well. These two parameters are used to define the follow-
ing dimensionless variables:

T* =kTM, /e, (23)
T*, =T,/ (24)
v==§&/(2kT/m)'??, (25)
x=g/(2kT /m)'?, (26)

where M, = m,,/my, mg=m +m,, and T, is the tensor of
temperatures T, =m,P,/kp,. Notice a slight variation in
the normalization of 7'* with respect to the expression
T* = kT /e given by Hirschfelder ez al.'' The difference re-
sults from the product of two Maxwellian functions (one for
each component) present in their treatment, whereas only
one Maxwellian function is involved here because f, is intro-
duced by perturbation around a Delta rather than a Gaus-
sian function. If terms of order m/m, are neglected, the
difference between the two normalizations disappears, but
definition (23) must be used in a higher order theory. Before
substituting the normalized variables, the integration in Egs.
(10) and (11) can be carried out over all the g directions by
choosing the polar axis in the direction of €, that is, e; = §/¢.
Then

dg=g"dgdQ,,
where d(), is the solid angle differential. Integrating by parts

over d{}, leads to the following normalized expressions
which depend only on three scalar functions:

¥ = [1;(ee, + e,6,)/20 + I, eses ] T2, 27
¥ = (I 3ese;) ]y T*%/6, (28)
B* — T*l,e,, (29)

where IT* =I1,/K,; and B* = B/K, with

Ky = 8n7'*c%e/m,, Ky =2Q2emmg 'm;")'’K,,
(30)
and the following integrals have been introduced:

Iy :J xte K+ Qslk(xT*l/z) (COSha —SIHha)dx,
¢] [21

a
(31
I”‘ . f xSe — (X 07) Q’{(XT*I/z)
) [
sinh o 3cosha 3sinh
X ( — 5 S dx, (32)
a a a
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1 dly

2 v
and a = 2ux. Expression (33) giving Iy;, as a function of I
is only convenient when using the analytic approximate lim-
its of the I integrals determined below. When a numerical
approach is adopted, it is better to use the full expression of
I, as an integral over x to avoid numerical differentiation.
Substituting these results into Egs. (14), (15) and de-
fining b* = b/K; and E* = E/K|;, we obtain
b*= (1 +IMT*7'T,.V, V, + ---)B*, (34)
—E*= (1 +MT*'TXV,V, + - ) (ITF + I13)
—[T* V*(T*V,)B*] ™. (35)

Two alternative forms for E* can be deduced from the di-
mensionless form of Eq. (21),

+vl,, (33)

n, =

I = T*'/2(vB* + 1V, B*), (36)
leading to the expressions
— E* =\ T* 2T 2T — T%)
+ TrvB*) ™ + 113, (37a)
or
— E* = ‘%T*—I/Z( (T*I _ T;)'VVB*)+T*1/ZVB* + H;‘,
(37b)
and
b* = B*, (38)

valid to first order in M. As will be seen later, the last two
terms in both expressions for E* are quadratic in v and would
not enter in a theory linear in v. Conversely, these terms
become dominant for large values of the slip velocity v. No-
tice that although the term E* has a complicated dependence
onyv, its dependence on T} is linear. The second terms in Eqgs.
(37) are always positive, heating up the gas indefinitely in
the direction of motion as soon as v£0. This effect is coun-
terbalanced by the first term, which tends to bring light and
heavy gas temperatures closer. The term II¥ is traceless and
gives no contribution to the total internal energy, leaving the
average heavy temperature T, =Trace(T, )/3 unaffected.
Here IT* is proportional to v*I — 3vv, thus tending to extract
heat from the direction of motion to put it into the transverse
direction. The influence of the different terms will be illus-
trated in an example (Sec. V.).

lll. ASYMPTOTIC FORMS OF THE TRANSFER
INTEGRALS

The integrals (31)—(33) can be approximated analyti-
cally for the limiting cases v <1 or 1 €v, when the slip veloc-
ity U, — Uis much smaller or much larger than the light gas
thermal speed (27 /m)'/% In the first case (v<1),
cosh 2ux, sinh 2vx, and exp( — v?) can be expanded in a
Taylor series about v = 0, with the following results in terms
of the Q¥ integrals of Hirschfelder ez al.':

2 ® .
Q% (T*) =————f X* e T X QR (xT*?)dx,
! (m+ 1! Q1
(39)
48 Phys. Fluids, Vol. 30, No. 1, January 1987

I; = U[%er + (= %Q,lkl +%QT2)U2 + (21;‘0"1"1

— 408 + 5O + 1], (40
In, = v*[40% + (—30% + 305)0° + 0%
— 308 + 30000+ 0], (41)

from which Iy;  follows immediately.

For most values v < 1 the first term gives a very good
approximation (Fig. 1). For instance, forv = 1, T* = 1, the
errorsin I, and Iy, taking only the first term are, respective-
ly, 2% and 0.4%. For the same temperature, using the three
first terms of the expansion, I; and Iy, can be evaluated for v
as large as 2 with errors below 5%.

For large values of v the integrals (31)—(33) can be
rearranged into the form

I:F e"zf,(t,v)dt+fwe"zfz(t,v)dt. (42)

A Hermite quadrature gives a good approximation. If
{(#,w, )} is the set of abscissas and weight factors for Her-
mite integration, tabulated in Abramowitz et al.,'? the inte-
gral sum (42) can be expressed as

I~ Z Sit)w, + Zfz(t/:)wk'

> — v

(43)
tp>v
This series gives a very accurate result for moderate to large
v. As shown in Fig. 1, the domains (where the small and
large v approximations are accurate to 5% ) do overlap, so
that the numerical integration is only required when a
greater accuracy is necessary.

For very large v, the Laplace method, " equivalent to the
infinite sum of the Hermite series, yields the following ap-
proximations:

10

FIG. 1. Integrals /, and I;,_ asafunctionof vfor T* = 1: numerical
computation from Egs. (31) and (32); ------ first term from expansions
(40) and (41); —-——-—- three first terms of expansions (40) and (41);
~~~~~~~~ high velocity slip limit, Eqs. (44) and (45). The results from
Hermite integration only differ noticeably from the numerical computation
for low velocities and are thus invisible here.
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I, = i7" Q ¥ (vT*"?), (44)
In, ="’ Q (T *'"?), (45)
I, =vly, (46)

which are very accurate for v > 10.

A further simplification can be made by assuming that
T * is very large or very small, which has the physical mean-
ing of making repulsive or attractive forces dominant in the
Lennard—Jones potential.

For 1 € T *, the molecules behave as point centers of re-
pulsion and the approximation given by Hirschfelder ez al."*
for the collision cross sections can be applied:

Q, = 2m(6d / ug/2))°4,(8), (47)

whered = 12, 4 = m, M, and the coefficients 4, are given by
Hirschfelder et al.** and d = 4ec"*. The resulting limiting
forms for Q * and Q¥ can be substituted in the Jower order
approximations for I, and Iy, at 1<€v and v<1.

For the opposite limit 7 * € 1, long range attraction pre-
vails over repulsive forces. However, a strictly attractive in-
verse-sixth potential is inconsistent because low energy colli-
sions would result in molecules merging. The repulsive part
has to be retained in a portion of the g range. But, since the
main contribution is a result of the attractive sixth power
law, a formula similar to Eq. (47) is to be expected:

Q; =2m(6d"/(ug*/2))"* 4;(8),

where 8 = 6 and d' = 4e0®. This 4 () may be estimated

from the asymptotic behavior at small values of g and 7' *,
]

(48)

_[0.7573 0T *~1/5(1 4 0.4596 v*)'?,

B [1.2467 vT*~13(1 4 0.4760 v*) '/,
1.040 > T*~1/5(1 4+ 0.3120%) '3,

m. = l1.504v2T*‘”3(1 +0.32207) "¢,

A similar expression for Iy;, follows from Eq. (33).
Upon direct substitution in Egs. (27)-(29), analytical ex-
pressions of IT* and B¥ are obtained. A plot of I; and /,;, in
the low and high temperature limits is presented in Figs. 2

‘s
10°-

1004

10 100

v

FIG. 2. I, as a function of v for high (7* = 10) and low (T* =0.1) tem-

peratures: rccccccce numerical computation from Eq. (31); 4+ Eq.
(50a); Eq. (50b).
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1<T*or l<vT*"?,

T*<1and vT*'/?2«]1,
1€T*or 1<vT*?,
T*«1andvT*"%«]1.

respectively, of the functions @ ¥ and Q¥ tabulated in the
literature for the Lennard-Jones potential. Our estimated
values, based on the tabulation of Ferziger et al.'® for the Q¥
atlow 7" * and the curves representing Q¥ for low g in Hirsch-
felderezal.,"  are 4 ;(6) = 0.429, A ; (6) = 0.328, while the
asymptotic trend of these computations agrees well with Eq.
(48) particularized with § = 6. This fitting approach yields
analytic expressions for Q ¥ and ¥, which can be inserted in
Eqgs. (40), (41), (44), and (45). Some references™® incor-
rectly adopt for 4 [(6) the values given by Hirschfelder et
al.'! for the inverse-sixth interaction of point centers of re-
pulsion [A4,(6) = 0.306, 4,(12) = 0.283], even though at-
traction prevails at low temperatures. Their choice leads to
important differences with our results (compare Egs. (50b)
and (56)). An alternative approach in the low temperature
region would be to use the Sutherland model which repre-
sents the molecules as rigid spheres surrounded by an inverse
sixth attractive potential.

A. Interpolation formulas for / and I1

Foreachcase (T*<1or1<«T*)wehaveobtained inter-
polation formulas covering the full range of values of v with
expressions of the type

I=1,[1+ U /I)*]"", (49)

where I, = I (v« 1) and I = I(1<v), while & can be de-
termined by minimizing the error relative to the numerical
solution. In this way, the following high and low tempera-
ture fitting expressions are obtained:

(50a)
(50b)
(51a)
(51b)

land 3 where the numerical computation is seen to be practi-
cally indistinguishable from the correlations (50) and (51).

The similarity of the terms within parentheses in Egs.
(50a) and (50b) and in Egs. (51a) and (51b) is not acciden-
tal. In effect, using the asymptotic expressions given by
Hirschfelder er al.'® for the (¥ integrals, a recurrence for-
mula can be obtained:

U _TG+3-2/8)6+D! 2
Qr  T(s+2-2/8)(s+2)! S(s+2)’
where & is the order of the interaction potential, which ac-
cording to previous considerations can be taken to be 6 at
low temperatures and 12 in the opposite limit. This permits
us to write expansions (40) and (41) in a simplified fashion
for these two limits:

I, [1+&° '+, 6=12, (52a)
1—1;“:[1+r‘svz—1%v“+'-~, 5=6, (52b)
1y, {1+22102_5_}7U4+”" 6=12, (53a)
I 1 +40— vt +, 8=6 (53b)

where I; and I}, are the first terms of expansions (40) and
(41). Similar expressions can be obtained by binomial ex-
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100} f*”
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.qf'.’:;{
10f Tﬁf*i’
M
9?\ 1
1 0 v 100
FIG. 3. I,;, as a function of v for high (7* = 10) and low (7* = 0.1) tem-
peratures: — X — X — X — numerical computation from Eq. (32);
---------- Eq. (51a); Eq. (51b).

pansion of the fitting equations (50) and (51):
Iy _ [1 +0.15320% 4+ -+, 1«T*orl<oT*"?
I, 114+007930% + -, T*<landvT*"?«l,

I, [1 4+0.104 2 + -+-, 1«T*or1<vT*"?
I, 140053702+, T*<landvT*?<l,
whose coefficients differ from those of Egs. (52) and (53) in
arange of 9% to 16%. This shows that if the fitting formulas
were perfectly accurate in the low v region, the terms within
parentheses in Eq. (50a) and (50b) and in Eq. (51a) and
(51b) would be exactly coincident. In any case, the similar-
ity between the terms within parentheses observed in Eqgs.
(50) and (51) permits us to rewrite these expressions in the
approximate form:

0.7573wx!3, x>1,

1.2467wx'e, x<«1,

1.040u?y'/3, y>1,

1.504w*y'’e, y<«1,

where w=0vT*"? x=T*+4+0.4678w*, and y=T*
+ 0.3165w?. The definition of x and y is obtained by averag-
ing the parenthesis terms in Eqs. (50) and (51). The former
expressions suggest writing /; and I, in the following form:

T*I, = 1.2467wx"/° f (x), (54a)
T*2L, = 1.504w?y"/°g(p), (54b)

where fand g are undetermined functions subject to the con-
ditions

T*I, ={

T*3/21n — {

Sf-lforx-0 and g-—1 for y-0,

f—0.6074x"/% for x> 0 and g—0.6915y'¢ for y— oo.
Numerical computation confirms that indeed, the functions
fand g are approximately independent of the variable w. In
Figs. 4 and 5, T*I;/(1.246Twx''®) and T*¥°I, /
(1.504w?y'/®) are represented as functions of x and y, re-
spectively, for different values of v. It can be seen that, pro-
vided v does not become too large, the curves fall together.
Functions f and g can be fitted from numerical results by
using an interpolation formula of the type

[1 —A(l _e—cxz)xa+Bxb]l/(6b)‘
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FIG.4. T*I,/(1.2467wx"/®) asafunctionof x = T* + 0.4678w> for differ-
ent values of v. Results are approximately independent of v so that a single
curve can be fitted [Eq. (55a)].

In this expression, only B is given (from the conditions at
infinity ), so that the four parameters 4,a,b and ¢ are un-
known. This multiple degree of freedom optimization prob-
lem can be easily addressed with the particular expression
chosen, because the search for a solution can be done in two
stages: first, the fitting function is forced to go through the
minimum point of the numerically obtained curves in Figs. 4
and 5. In these points, the factor 1 — e~ can be approxi-
mated by unity, so that the relation dependence between 4,
a, and b can be explicitly derived, provided that b is chosen to
be the free parameter. Once that ¢ and 4 are known as a
function of b, & is chosen so as to fit the large x region of the
curve, where ¢ can be ignored. Next, the convenient ¢, to
match with the rest of the curve, is selected.
Our results for fand g are

S(x) = [1—0.8794(1 — e~ *2¥)x%127 1 0,0502x] /¢,
(55a)

1.4

01 1 10 y 100

FIG. 5. T*3/21,,2/(1.504w2y”°) as a function of y = T* + 0.3165u? for
v=1and v = 5. A single curve, given in Eq. (55b), is fitted as an approxi-
mation for general w.
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g(y) = [1—0.8414(1 — e >¥"))°?*%° 4+ 0.0876p""]"/*°.
(55b)

Equations (54) and (55), represented in Figs. 4 and 5, pro-
vide a general expression of the transfer integrals for unres-
tricted 7* and v. Notice, however, that the approximation
becomes poorer in the vicinity of the minimum point for
large v; in such cases, Egs. (44) and (46) can be more con-
venient. However, in most physical problems, v does not ex-
ceed the value [¢/(y — 1)]"/?~ 1.5, so that Egs. (55a) and
(55b) are very suitable.

B. Comparison with previous work

A correlation similar to (50b) has been used by
Schwartz and Andres® for [, in the case T* <1, vT*'/2<1.
In our notation their expression reads

I} =0.8848 vT*7'3(1 + 0.4744 v*) "6, (56)

which differs from Eq. (50b) only in the value of the leading
coefficient. The difference (40% ) is caused by their use of
the repulsive inverse-sixth constant 4, (6) to account for the
long range attractive interaction constant which has been
called 4 ;(6) in the present work.

The low temperature expression (51) for I can also be
compared to Burgers’”® calculation of the momentum trans-
fer integral for unrestricted velocity differences, performed
under the assumption of hard elastic spheres. This model can
roughly describe low—medium temperature range systems.
In our notation,

Iy = (20/3)[(377”2/8)(1) Lo =34
Xerfo+3(14+v7%/2)e "], (57)

which for the limiting cases v €1 and v> 1, respectively, be-
comes

Iy =2/3, Iy =7'""%"/4
Our own results are

IB‘, = (21)/3)0?‘1 (T*)’ IB'x} — (771/2U2/4)Q’1"(T*1/2U).
(59)

This is consistent with the normalization adopted following
Hirschfelder et al.,'! which reduces {1; and Q; by dividing
them by the corresponding rigid sphere values. Consequent-
ly, Eq. (58) can be derived from Eq. (59) by simply setting
Of =90r=1

We can compare Burgers’ energy transfer term (scalar)
with our resulting energy transfer tensor by setting
T} = T'}1 and considering the trace of Eq. (37),

— E*= _ Trace(E*)/3 = (T*"%/3)

X [ (Iy/v+ (813/30)/2)(T* — T¥) + vl T*].
(60)

The corresponding expression in Burgers’ equation (15.15)
is

(58)

—E* = (T*"/3) [(#'?(w+ v "/)erfv+e™")

X(T* = T¥)/2 + vl 5T*], (61)

where I ; is given by Eq. (57). Low and high velocity limits
for Burgers’ expression can again be obtained by setting ¥,
and Q ¥ equal to 1 in our results. For v<1,
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—E¥=T*"2Q¥(T*)(T*—T,)/3. (62)

For 1 <u, the second term in (60), which represents the dis-
sipation of energy connected with the resistance or drag
force caused by the transfer of momentum from the light to
the heavy species [ 7 *'/vB* in Eq. (37b) ], prevails over the
term proportional to the difference of temperatures:

— E* =72 T*2Q % (0T *"12)/12. (63)

As it was pointed out, Egs. (60)-(63) were obtained
assuming T = T *I. This condition is quite restrictive, since
according to our temperature tensor equations, large differ-
ences in the parallel and perpendicular components of tem-
perature are to be expected when 1 <v. Therefore, for unres-
tricted v, T} should be allowed to be a general tensor. The
corresponding expression for E * is obtained by contracting
Eq. (37a) and dividing by 3:

—E*={[T* 'II;:(T*I — T#) + T'* '*T*wB*].
(64)

In the particular limit v < 1 Eq. (62) remains valid even
when the heavy gas is far from equilibrium, provided that we
define T'* = Trace(T})/3. For v of order unity or larger
Egs. (60) and (64) differ considerably because £ * depends
separately on the components of the heavy species tempera-
ture tensor, T:

— E*=(T*"2/3)[I;2T*—T* —T%*)/(2v)
+ Iy (T*=T¥)+TxIzv]. (65)

For large v, the first term in the right-hand side becomes
negligible and given that Iy; —vlp as v— o, the same limit-
ing form given in (63) is formally recovered. However, this
cancellation of Iz v and /,; is unrealistic because for large v,
T* (the component of T} along the slip direction) will be-
come very large and amplify the small difference (Zp
v — Iy, ) making it as important as the other terms. There-
fore the expressions involving an average heavy gas
temperature can only be used in the low slip velocity limit.

IV. HIGHER-ORDER CORRECTIONS AND RANGE OF
VALIDITY

The expansion in powers of u,-U,, which gave rise to
the seriesin (14) and (15) or, in dimensionless form, in (34)
and (35), becomes poorer as the ratio of the widths of the
two distribution functions ceases to be large. Inspection of
the dimensionless expansion provides a criterion for the con-
vergence of the series:

TX<T*/M. (66)

For large values of v, the range of convergence is even
broader, as can be seen from the order of magnitude of
P,V V.
Tx<u’T*/M.
As T ¥ grows closer to the limit value given in (66) and (67),
the importance of the next-order correction in M becomes
greater. This additional term can easily be introduced by
carrying out the direct differentiation indicated in Eqgs. (34)
and (35), which is straightforward given the simple form of
correlations (50). In this way, analytic expressions for the

(67)
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high and low temperature ranges are obtained; they will not
be included here because of their complexity. Notice how-
ever that a systematic theory including first-order correc-
tions in M must incorporate our modification in the defini-
tion of T* [Eq. (23)]. It also has to account for the
departure of the distribution function f* from a Maxwellian
resulting from the nonhomogeneity of the velocity and tem-
perature fields.

Under the assumption of number density dilution,
n, €n, the kinetic influence of the heavy gas on the light gas
distribution function f can be neglected, so that f can be de-
scribed in terms of the pure gas Chapman-Enskog solu-
tion.® If we also approximate the solutions of the integral
equations appearing in the theory by the first term in their
Sonine polynomial expansion, we may write

f(u) =nQakT /m)=*%~“[1— ec(c* —3) — Kiee],
(68)

where ¢ = (u — U)/(2kT/m)'/?, € is the dimensionless
temperature gradient,

€= (3u/2p) (kT /m)V*VIn T, (69)

and K is the dimensionless, symmetrized, and traceless ve-
locity gradient tensor,

K= (u/p)[VU + (VU)” — 2/31(V-U) ]. (70)

Using the expression for the cross collision operator giv-
en by Fernandez de la Mora and Mercer'’ for the limit of
small v, we obtain the following expressions, valid to first
order in M and v:

B* = (T*/3) [2v{Q% 1 —3(3Q% —30%)K}
+e(30% —301)], (71)
—E* = (T*/%/3)(Q4 I - §QKK)«(T*I - T%)
+ T*2(—1O5T*+3Q5T*DK, (72)

while the full nonlinear v dependence of B* and E* on the
new K and e terms could be evaluated similarly as done be-
fore. We note that even in the absence of velocity slip there is
an acceleration B* leading to the drift of heavy molecules
down temperature gradients caused by the term proportion-
al to € in Eq. (71). This thermal force degenerates into the
thermal diffusion effect under near equilibrium conditions.
In these conditions, the K term does not contribute to the net
force, but it does make a contribution to the energy transfer
term E*. The order of magnitude of this contribution is only
a fraction M of that of the analogous compression heating
terms P, (V-U,), (P,V)U, in the left-hand side of Eq. (3).

V.HEAVY GAS PENETRATION INTO A LIGHT GAS AT
REST

In this section, the expressions obtained previously will
be applied to the study of heavy molecules penetrating into a
stagnant light gas. The impingement of fast heavy molecules
on a target gas at rest is an approximate model for different
phenomena occurring in gas mixture flows. For instance, the
shock layer that develops in front of a probe or any other
obstacle immersed in a supersonic field can roughly be con-
sidered a light gas stagnation zone through which the heavy
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molecules keep a large fraction of their former speed, while
their temperatures may overshoot significantly above the
gas temperature.

The starting point is Egs. (1)-(3), where two assump-
tions are introduced: first, the flow is assumed to be unidirec-
tional, along the z direction; and, second, the pressure tensor
is neglected in the momentum equation and the heat flux in
the energy equation. For P and Q to be negligible, respec-
tively, in Eqgs. (2) and (3), it is necessary that

kT,<m,U2, (73)
which turns out to be a hypersonic condition stating that the
Mach number of the heavy species has to be much larger
than unity. For simplicity’s sake the constraint p €p, (small
heavy gas mass loading) is added, so that the self-collision
energy tensor transfer term [E in Eq. (3)] can be neglect-
ed.

With these restrictions Eqs. (1)—-(3) become

U,U,=b, (74)
(k/mp)UpTllpz =EII - 2TllpkUpz/mp’ (75)
(k/m,)U,T,, =E, (76)

where b = |b|, and T, E|| and T,,, E,, are, respectively,
the components along the z direction and in any perpendicu-
lar direction of the temperature and energy transfer terms.
Equations (74)-(76) can be normalized by defining
v=U/U, t=t/ty, x=1z/L, (77)
where Uy = (2T */1)"?, so that the definition of v agrees
with that given in Eq. (25), ¢, = U;/Kg, and L, = t,U,. The
variable 7 will be used later. Notice how the deceleration

scale is determined by the interaction potential. Denoting
d/dx ="', Egs. (74)-(76) become

w = B*, (78)
vTﬁ‘p’ +2Tﬂ‘pv’ = —4T*_l/2EW‘, (79)
vT¥ = —4T*~12E¥, (80)

where B * is given by (29) and

—Ef=[Iy (T*=T%) + 0T} I, — T*I, /3] T*7,

(81)

—E¥=[z/20)(T*—T%) + I, T*/6]T*"% (82)

This system is to be solved given initial conditions for the
impinging heavy gas:

v=uv, TT, =The, atx =0.

Th =Tk, (83)

A. Limit vo<1

If v, is small enough, the approximations (40) and (41)
hold and we are left with

V= —20%T*/3, (84)

Tl‘f;,’=4T"‘2 Q¥ /(3v), (85)

T’fp’=4T"‘ Q;"I(T*—Tfp)/(3v), (86)
which can easily be solved to yield

|’|"p=T|TPO—2T*1nV, (88)

T =T*+ (Tt —T*V? (89)
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B. Limit 1 <v,

For large v, a new limit for Egs. (77)—(79) is reached.
Substituting expressions (44)—(46), the following set of
equations is obtained:

V= —T*Q* 7''%/4, (90)

Tty + 2Ty =T* 7% (QF — 03/3), (91)

Ty = [2T*—-T%) Q¥v+2T* ;‘u3/3]7r”2T*/4.
(92)

Provided that v~ >« T *, which is a condition very easily met
because 1 €v, @ ¥ and Q ¥ can be written as

R

0 0.5 x! 1.0

FIG. 6. Velocity and temperature tensor evolution as a function of x’ [depth
normalized with the linear theory stopping distance x/ (.S 'v,) ] for T* = 10
and different initial velocities v,. The limiting solution for small v, given by
Eqs. (87)—(89), is shown in continuous line. The rest of the curves are ob-
tained using numerically evaluated transfer terms: — - — - — - — Vi-enu-
(T, =T/ T*— — — — (T, = T*) /(T — T*).

where V'=v/v,and $' = (2Q% T*/3) . A stopping dis-
tance x, =S 'v, is thus predicted. At this point, Eq. (88)
becomes singular and 7', has a vertical asymptote while
T}, tends monotonically to T *. Of course, close to the singu-
lar point, the solution for T'%, is no longer valid since the
hypersonic condition T"* <v*T */M fails to be true. Notice
that for small v, the hypersonic condition is more stringent
than the condition for the expandability in powers of M giv-
enin (66). Expressions (87)-(89) are represented in Fig. 6
as a function of x'=x/(S "v,).

In the same figure, the results of integrating Eqs. (78)-
(80) with transfer terms E * and B * numerically evaluated
by direct integration of Egs. (31)—(33) is shown for differ-
ent v,. As can be seen, the agreement with the linearized
solution (87)-(89) is good even in the case v, = 0.5. The
case v, = [¢/(y¥ —1)]"% corresponding to the strong
shock wave limit when the light gas is assumed to be fully
decelerated after the shock while the heavy gas conserves its
initial speed, is also included. The differences with respect to
the linearized solution increase as v, grows. In the case
vy = 10, an overshoot in both T'f, and T}, is seen to occur,
while the behavior close to the singular point is the same as in
the small-v solution: vertical asymptote for T}, and conver-
gence to T'* for T'¥,. Obviously the different behavior ob-
served in the 1 and || directions results from the compression
heating term — 27 ,kU,,/m,, which acts only along the
deceleration path. Notice as well that for large v,, an over-
shoot occurs in the transversal temperature. As was dis-
cussed at the end of Sec. III, this behavior is caused by the
redistribution term II, [/}, in Eq. (82)], which extracts
heat from the parallel direction to put it into the perpendicu-
lar direction.
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Q*=1319p 3T+ 1/e (93)

0¥ =12100% (94)
In this limit, the following solution is obtained:

V=(1-x"/3)% (95)

6% — 6%, =C(1—V*)/V?, (96)

0F, — 0% = —DV2InV, 97N
where

V=u/vy 0% =T3/(T*),
x" =708 T*, Q% =Q¥T* ),
C=0.59676, D=0.80647.

These expressions are restricted again by the condition
6 * <V?*/M. Figure 7 shows the predicted shape of V, 8%,
and 0¥, as a function of x”, together with the results for
numerically computed transfer terms: as can be seen, ¥ and
0¥, are accurately predicted by formulas (95) and (97), but
Eq. (96) only agrees with the computed &, in the first
stages of the deceleration. The same discussion made about
Eq. (65) applies here: The otherwise negligible difference
Iy, — vl = (013/dv)/2 is amplified through the factor
T, becoming as important as the other terms. This causes

T}, to reach a peak and then decrease.

C. Stopping distance

The hypersonic assumption decouples the momentum
from the energy equation, so that the problem can be inde-
pendently solved for the velocity in a simple way. A single
curve giving the stopping distance x*; =x, /5" as a function
of the initial velocity is obtained for each temperature (Fig.

+Eq.(96)

0.5 e . ‘\Bl.lv'el.wo

/ N ‘
~ ,
9-_9- . ‘\_/
Y B TNY

X~ Eq.

o ‘ . '/ q.(95)
0 1 2 x" 3

FIG.7.V,0% — 0%, and 0%, — 0%, asafunction of x” in the high initial
velocity case with 7* = 10: Egs. (95-97); — - — - — numerically

computed transfer terms, in the case v, = 10.
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FIG. 8. Stopping distance x* as a function of initial velocity v,. Figure 8(b)

is an expanded Fig. 8(a) for moderate values of vy: High tempera-
ture limit, obtained by integration of Eq. (50a); ----- low v, limit; — X —
X=X =X T*=0———T*=[— et —— T* = 10,

8). The low v, limit given by Eq. (84), x¥ = v, is also indi-
cated. For high temperature cases, expression (50a) for I
can be substituted in (78) to give a general stopping distance
curve valid for 1 €T *. This condition is not very stringent
because in most mixtures €/k is a small temperature.

In order to compare our results with those of Ander-
son,'® who used a Monte Carlo method to simulate the decel-
eration of fast molecules penetrating through a gas at rest,
Eq. (78) is rewritten in a time frame:

av — _B*, dx

dr dr

(98)

In Fig. 9, x'=x/(S 'v,) is plotted as a function of 7' = 7/S".
Anderson’s data for a repulsive inverse-12th potential can be
compared with our own results for high 7*, since at high
temperature the repulsive part of the Lennard-Jones poten-
tial prevails. In the case v, = 4/, corresponding to Ander-
son’s Q = 1, the agreement is good. For low v, the curves
x’(7') are close to the small-v limit, x' =1 —e~".

For large values of v,, Anderson presents an analytical
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FIG. 9. Penetration depth as a function of time for different values of v, and
T *. % Anderson’s results using Monte Carlo simulation for M = 100 and
inverse-12th repulsive potential.

expression obtained by averaging the velocity change of the
impinging molecules as they collide with target molecules at
rest. The effect of the target molecules motion is estimated
by using an approximate expression for the collision rate.
His results are thus more accurate when the stagnant gas
molecules have a thermal speed much smaller than the mean
velocity of the incident molecules, that is, 1 €v,. His results
for the 12th potential can be written as

172
v _ 4715508 (1 n iz) :
v

99)
dr (
while our expression for 1 € 7* [Eqgs. (50) and (74) ] can be

rewritten as

dv (100)

173
2= -0.584u*5/3T*5/6(1 + 2‘1275) .

dr v

A difference of about 20% is observed. The terms within the
parentheses, when expanded in v™', respectively become
(14 0.6366/v% + +-+) and (1 + 0.7252/v* + --+). Differ-
ences probably arise from the approximate expression for
the collision rate used by Anderson.

VI. CONCLUSIONS AND LIMITATIONS OF RESULTS

In this paper, simple formulas are given for the cross-
collision integrals describing the light-heavy momentum
and energy (tensor) transfer in a binary disparate-mass gas
mixture. Our results, to lowest order in m/m,,, are subject to
the constraint that the molar fraction of the heavy gas be
moderately small (n,/n51) so that the distribution func-
tion of the light gas can be considered unaffected by the pres-
ence of the heavy molecules. However, this is not a severe
restriction in disparate-mass mixtures, since large heavy gas
mass fractions are compatible with », S n. Furthermore, the
complementary situation can easily be handled by using an
equilibrium two-fluid approach,® which describes both spe-
cies distribution functions as Maxwellians. Only to go one
step further in our perturbation technique in powers of m/
m,, is one forced to impose the more restrictive condition
n, <n so that f can be described in terms of the first-order
pure gas Chapman-Enskog solution. Our equations are also
subject to the restriction that the relation S between the in-
terspecies relaxation time and the characteristic macroscop-
ic time be at most of order unity. This constraint precludes
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extreme nonequilibrium conditions, in which the light gas
distribution also departs considerably from the Maxwellian
distribution.

On the other hand, this work is only concerned with the
cross-collision integral terms, b and E in Egs. (2) and (3).
Given that the self-collision integral terms become impor-
tant as soon as the mass fractions are comparable (p~p, ),
some model for the heavy gas distribution functions is re-
quired in order to compute the self-collision integral tensor-
ial energy transfer term E_.. In Sec. V the heavy gas tem-
perature tensor was determined without a model for E.,
thanks to the assumption p <p, .

The expressions for the interspecies transfer are based
on the disparity of thermal speeds between the two species,
which requires 7}, to be much smaller than m, T’ /m. Under
extreme circumstances (i.e., a hot beam encountering a cool
light gas) this assumption is not fulfilled, but in practically
all relevant situations 7, and 7" are of the same order, thus
ensuring the legitimacy of our expansion. This condition
should not be confused with the hypersonic requirement
which was added for simplicity in the example of Sec. V.

Finally, the normalization and the resulting correla-
tions are based on the Lennard-Jones interaction model,
which provides a simple and realistic representation for
spherical nonpolar molecules at a wide range of tempera-
tures. The extension of these results to other interaction po-
tentials is straightforward.
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