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As a result of the increasing inefficiency in the transfer of energy in collisions between species
with a decreasing ratio of molecular masses, the Knudsen number range of validity of the
Chapman-Enskog (CE) theory for binary gas mixtures decreases linearly with the molecular
mass ratio. To remedy the situation, a two-fluid CE theory uniformly valid in the molecular
mass ratio is constructed here. The analysis extends previous two-fluid theories to allow for
arbitrary potentials of intermolecular interaction and arbitrary mass ratios. The treatment
differs from the CE formulation in that the mean velocities and temperatures of the two gases
are not required to be identical to lowest order. To first order, the streaming terms of the
Boltzmann equation are thus computed in terms of the derivatives of the two-fluid
hydrodynamic quantities, rather than the mean mixture properties as in the CE theory. As a
result, associated with the nonconservation of momentum and energy for each species alone,
two new ‘“‘driving forces” appear in the first-order integral equations. The amount of
momentum and energy transferred per unit time between the species appear in the theory as
free constants, which allow satisfying the constraint that all hydrodynamic information be
contained within the lowest-order two-fluid Maxwellians. Simultaneously, this constraint fixes
the rate of momentum and energy interchange in terms of the two-fluid hydrodynamic
quantities and their gradients. The driving force d,, of the CE theory is directly related to the
rate of interspecies momentum transfer, and the corresponding CE functions D, and D, appear
here unmodified. But the physical interpretation of d, is very different in the two pictures. On
the CE side there is only one momentum equation, while d,, provides constitutive information
fixing the diffusion flux (velocity differences) in the mass conservation equation. Here, the
similar constitutive information associated to d,, is used to couple two different momentum
equations. Although the CE theory captures some of the two-velocity aspects of the problem,
no CE analog exists with the functions E, and E, associated here with temperature differences,
which now require solving new integral equations. Finally, the presence of two velocities and
two temperatures leads to four coefficients of viscosity and of thermal conductivity for the two

stress tensors and heat flux vectors. Also, two thermal diffusion factors enter now into the
expression for d,,. Although all these new coefficients arise as portions of the overall CE
transport coefficients, their independent optimal determination requires new developments.
The corresponding variational formulation is presented here and used to first order to obtain
explicit expressions for all two-fluid transport coefficients by means of Sonine polynomials as

trial functions.

I. INTRODUCTION

Transport phenomena in pure gases or mixtures are de-
scribed in the Chapman—-Enskog (CE) theory by an asymp-
totic solution of the Boltzmann equations in terms of a
Knudsen number parameter Kn formed as the ratio between
microscopic and macroscopic characteristic times or
lengths, and measuring the departure from thermodynamic
equilibrium. It has been pointed out by Grad,' Hamel,”
Goldman and Sirovich,®> Goebel ef al.,* Tiem,” and others
that, in the case of binary mixtures of gases with very differ-
ent masses, the range of validity of the CE theory is reduced
considerably as a result of the appearance of a slow internal
relaxation scale associated with the small interspecies energy
transfer occurring in heavy-light collisions. However, the
fact that each species still equilibrates efficiently by self-
collisions permits the development of a broader perturbation
theory in which, to lowest order, each gas has a Maxwellian
velocity distribution function with its own temperature 7,
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and mean velocity U;. Based on this scheme, a two-fluid
theory has been developed in all rigor by Goldman and Siro-
vich® for the special case of Maxwell molecules. In a recent
paper,® we have extended this work to arbitrary interaction
potentials, in the limit where the ratio of molecular masses
M = m,/m, between the two species is a small parameter.
Surprisingly, although our treatment has a broader range of
validity than the CE theory for the limit M € 1, one discovers
that many (if not all) of the new transport coefficients aris-
ing in the two-fluid theory coincide with the 4/ -0 limit of
seemingly physically irrelevant integrals appearing in the
computational apparatus of the CE approach. Given the
complexity of the theory, such an isomorphism can hardly
be taken as fortuitous: it points strongly to the possibility of
extending the CE theory, converting it into a two-fluid the-
ory uniformly valid for binary mixtures of arbitrary mass
ratios. The generalization will be achieved by allowing the
lowest-order solutions to the CE problem to be “unmatched
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Maxwellians” centered at different velocities and tempera-
tures for the two gases.

In what follows, our objective is to present a two-fluid
CE theory valid for arbitrary interaction potentials and uni-
formly valid for arbitrary mass ratios (in the sense that the
Knudsen number range of validity of the theory is indepen-
dent of M). It will be seen that a slight change of scope within
the same structure of the CE building permits the desired
generalization with practically no fundamental modifica-
tions in the resulting mathematical problem. Simultaneous-
ly, many aspects of the CE theory now acquire a newer and
richer physical significance.

Il. TWO-FLUID CHAPMAN-ENSKOG THEORY

Let us define the velocity distribution functions £, (u)
and f,(u) for the two components in a binary mixture of
gases and assume that they are slightly perturbed from two
Maxwellian distributions f(;, each with its own number den-
sity n,, temperature T, and mean velocity U,, which coin-
cide exactly with the first three moments of the functions f;:

Smy=fi,(14+@)) (i=12), (D
Sor= ni(277'ka/mi)_3/2
Xexp[ —m,ju—U,[>/(2kT;)] (i=12), (2)

where k is Boltzmann’s constant and m, is the molecular
mass of species i. Because the functions £, contain all the
two-fluid hydrodynamic information relevant to species ,
the ®; do not contribute at all to either ,,U;, or 7, [see Egs.
(41) below for a precise statement of these conditions].

The need to follow a perturbation scheme based to low-
est order on two unmatched Maxwellian distributions be-
comes evident from the following considerations.

(1) The CE theory for gas mixtures is an asymptotic
expansion in the Knudsen number that is not uniformly con-
vergent with respect to the ratio M of molecular weights, in
the sense that the relative ordering of the terms in the expan-
sion depends on the mass ratio M, with O(Kn/M) contribu-
tions appearing to first order.® Accordingly, the region of
validity of the CE theory is severely limited for small values
of M by the condition Kn <M.

(2) Following Grad,' it has been pointed out that the
mechanism of self-equilibration of each species leads to their
relaxation toward Maxwellian distributions within times of
the order of the interval between self-collisions. According-
ly, ®; = O(Kn) uniformly, independently of the value of
M.% and the two-fluid theory resulting from determining ®;
in Eq. (1) will be constrained by the condition that Kn <1
rather than the stronger condition Kn <M to which the re-
sults from the CE theory are subject.

We shall determine the corrections ®; only to first order
in a Knudsen number expansion, so that the collision opera-
tors may be substituted by their linearized forms.” A diffi-
culty of having introduced distributions /', with unmatched
velocities and temperatures is that one would be obliged to
rederive the standard properties of the linearized Boltzmann
operators for the case of these peculiar Maxwellians. Such an
approach, however, would not use optimally the available
computational machinery of the CE theory. On the other
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hand, if the differences in species mean velocities and tem-
peratures are small compared with the thermal speed of the
light gas and the mean mixture temperature 7, respectively,
one may still follow the road of linearizing the Boltzmann
operators around “matched Maxwellian distributions” f;,
with a common temperature 7 and mean velocity U, which
we leave unspecified for the moment:

Jor =n;27kT /m;) 7*? exp[ — m, (u — U)*/(2kT) ]

(i=1,2), (3)
in terms of which,
f;z.f(Jf(1+¢)i)~ 4)

Then, the linearized Boltzmann equations may be written
schematically as

Dﬁ:K11(¢1)+K12(¢1+¢2); (5)
Df2=K21(CI>1+(D2) +K22(¢’2)’ (6)

where D denotes the streaming operator, while the K ; are
the usual linearized Boltzmann collision operators charac-
terizing the rate of change of f; by collisions with molecules
of species j. In a linear theory consistent with the lineariza-
tion of the Boltzmann collision integrals, our primed and
unprimed functions differ by small quantities proportional
to the velocity and temperature slips

So =S (1+4), (N
& =P, — A, (8)
with
A=(=14+T/D[ -3+ m (u—=U)/(2kT)]
+m, (U, —U)+(u— U)/kT. (9)

Clearly, if A, is small, @, will be small whenever ®; is small,
and the choice of linearizing the collision operators around
the matched functions f;; is perfectly justified. As things
have been introduced, although the functions ®; are tied by
the constraint that f§,®; does not contribute to any of the
hydrodynamic quantities #,,U,, T, the functions £, ®, do ac-
tually contribute to both U, and 7, [Eqgs. (42) and (43)
below].

The perturbation procedure we shall use to solve Egs.
(5) and (6) is based on the smallness of the ®; functions
with respect to unity. Whether there are one or two tempera-
tures and velocities, the distribution function of each species
approaches a Maxwellian, with errors of the order of
its own Knudsen number. Accordingly, to first order, the
terms Df; in Eqs. (5) and (6) may be approximated by Df?,:

Df(’)l =K11(¢1)+K12(¢1+q>2)y (10a)
Dféz =[(21((1)1 + q)z) ‘f‘Kzz(q)z): (10b)

whose left-hand side can be written in terms of the deriva-
tives of the two-fluid hydrodynamic quantities n,,U,, and 7.
Because we are looking for normal solutions of the Boltz-
mann equation (that is solutions whose only time depen-
dence come through their moments), time derivatives may
be eliminated, as in the CE theory, by means of the hydrody-
namic equations (in fact, in the notation of Ref. 7, we will
eliminate d,/dt, see below). But now, such an operation
brings a key physical difference with the CE theory, because
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the present conservation equations are written independent-
ly for each one of the two gases, thus containing extra terms
caused by the interspecies transfer of energy and momen-
tum. Defining the standard inner product

[g(u),f(u)lsz(u) g(u) d’u,

and taking moments in the Boltzmann equations we obtain

a.p; +V(p,U;) =0, (11)
3,(p;U;) + V:(p,U, U, +P;) = A, (12)
3, [pile; + U/2)]

+ Ve[p,U, (e, + U?/2) +P,-U, +Q; =0, (13)

where the quantities p;,U;,P;, and Q, are the moments of f;
defined as

pi=nm;=[m;f], (14)
pUi=[mu, f], (15)
P=[m@u-U)w-U)f ], (16)
pie, =P I=3p,/2=3nkT,/2, 1n
QiE[%mi|“f_Ui|2(“—Ui):fi] . (18)

The new terms A; and o, are, respectively, the net rate of
momentum and of energy transferred per unit time to species
i by collisions with molecules of the other gas. They are given
by the expressions

A=[muK (P, +P,)], i# (19)

o, =[mu /2K, (P, + D), i#) (20)
and satisfy

A i+ A,=0, 21

o+ 0,=0, (22)

because of total momentum and energy conservation for the
mixture. Evaluating Df; and eliminating temporal deriva-
tives by means of the hydrodynamic equations (11)—(13)
but with P, = pI and Q; = O (that is, eliminating d,/dt in
the notation of Ref. 7), we obtain

Df¢; = Grad] + p; fo€0°M;

+pi l.f(,)i[ — 1+ mci/(3kT) ] o7, (23)
with
¢,=u—-"U, (24)
oj=0, — AU, = [imc, Ky (@, +®) ], i (25)

and where the term Grad; is the same one appearing in the
CE theory for a pure gas,

Grad;=f{, [2m;¢;c;:VoU; +¢,VIn T,

X (m;c} — SkT;)]/(2kT,), (26)
in which VoU, denotes the traceless, symmetrized gradient
tensor of U,. The mathematical problem is thus completely
specified: one has to solve Egs. (10) when their left-hand
sides are given by Eq. (23), with the constraint that the ®;
functions do not contribute to #;,U,, or T;. In principle, the
A and o’ terms complicate the problem because A, and o are
linear functionals of the solutions ®, and P, that ought to be
grouped on the right-hand side of Eqgs. (10), thus breaking
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their original symmetry. Alternatively, one may consider A,
and o] as given constants [subject to Egs. (21) and (22)]
and then treat Egs. (19) and (25) as constraints on the solu-
tion, as one does with n,,U;, and T, which are also function-
als of ®,. Remarkably enough, proceeding in this fashion,
the two constraints are satisfied automatically for any value
of A, and o7 . Let us assume that A, and o7 have been chosen
arbitrarily [subject to Eqgs. (21) and (22) but free from the
constraints (19) and (25)]. In that case we shall subse-
quently show that solutions ¢, and P, exist such that

K;® +K;(®,+ D))
= Grad] +p;” 'foeh +0ip fo

X[—=1+mel/(3kD] (=12, j#i). (27)
Forming the inner product of this expression with m;¢;, the
contribution of the term Grad; and that proportional to o7
are null, while [ K, ®P,,¢; ] is also null because the operator
K; is symmetric (ie, [®,K,¥]=[K,;P,¥]) and
K;¢; = 0. It thus results that

[mici!Kxj(q)I +@,)]= A, [f(')iC;,C,- 1/p: = A,
so that the constraint (19) is satisfied for any value of A;
subject to Eq. (21). That the constraint (25) for ¢} is satis-
fied automatically for any o] [subject to Egs. (21) and
(22)] results from forming the inner product of Eq. (27)
with m,c?/2, realizing that the inner product of ¢? with both
Grad; and the A, terms vanish; also K¢ = 0, and further-
more, [m;c}p; 'f;(— 1+ m;c}/3kT)] =1. Equation
(27) may thus be treated as if A; and o were arbitrary con-
stants [except for Egs. (21) and (22)]. The presence of
these two free parameters is an essential feature of the pres-
ent theory, as they will make it possible to satisfy the condi-
tion that £, P/ does not contribute to m;,U,, and T;. Simul-
taneously, that condition fixes A, and o] univocally,
providing constitutive expressions for the momentum and
energy transfer terms that close the two-fluid hydrodynamic
equations (11)-(13).

Notice that the independent variable enters in the right-
hand sides of Eq. (27) as ¢; or ¢,/ (2k7,/m;), rather than ¢
or ¢/(2kT /m;), where

c=u—U,

as in the CE theory. However, complete analogy with the
equations arising in the CE theory may be achieved by realiz-
ing that substitution in the right-hand side of Eq. (27) of our
féieis and ¢,/ (2kT,/m;) by fy;,¢, and ¢/ (2kT /m,) intro-
duces second-order errors proportional to A? [Eq. (9)]. Ac-
cordingly, consistent with the linearization of the Boltz-
mann collision integrals, we obtain

K11¢l + KIZ((DI + 4)2)
= fo[2mcc:VoU, + ¢V In T, (mc* — 5kT)1/(2kT)
Ffleh+0' (=1 +mc/3kD )/ (nkT), (28)
K ®; + Ky (P + Py)
= f,[2m,ce:VoU, + ¢V In T,(m,c® — 5kT)]/(2kT)
—fooled +0'( =14+ myc?/3kT) ]/ (nkT),
where we have substituted 2
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— Ay = A=A,

Because o} + o] = A+(U, — U,), interchanging o} with o]
is not exact; but the differences induced by the term propor-
tional to A are second-order quantities, comparable to those
resulting from putting ¢ instead of ¢;. The substitution of ¢’
for — o3 is essential in order for Eqs. (28) and (29) to
satisfy the required compatibility conditions associated with
a singular nonhomogeneous linear equation.

Notice finally that A, is small provided that (7, — T3)
and (U, — U,) are small with respect to 7" and the thermal
speed of the light gas, respectively. But the time derivatives
or the gradients of 7; and T, (or U, and U,) may be com-
pletely different from each other when the mass ratio differs
significantly from unity. For instance, VIn 7, and VIn 7,
are both first-order quantities; but their difference may be of
the same order as either of them.

In conclusion, Egs. (28) and (29) are mathematically
nearly identical to those arising in the CE theory for a binary
mixture. Yet there are important physical differences
between the two theories. Here, the terms A and o' are free
parameters providing the liberty to select the two velocities
U, and temperatures 7; independently, each satisfying its
own dynamical equation (with time derivatives). The o'
term is absent from the CE theory, where only one tempera-
ture is allowed. The term d, associated to diffusion in the
CE theory is directly related to the present A as we shall
discuss below (end of Sec. III B). The remarkable thing is
that the generalization to a two-fluid theory can be made
within the same mathematical framework of the CE theory.

In order to solve Eqgs. (28) and (29), we introduce the
notation K ¢ for the left-hand sides of Egs. (28) and (29),
where K is the matrix operator

K: ]Kll +K12 K12
- K, K, + K,
and @ is the column vector

-0y =0]=0". (30)

3D

. (32)

D

0= |®

- ¢2
For these functions we introduce the inner product

{(_I_),‘g} = [q)l;\yl] + [(1)2,\1/2] s
in terms which the operator K is symmetric and nonpositive
(see, for instance, Chapman and Cowling,” Sec. 4.4, noticing
that their operators — nil,, —nn,l,, —nn,l,, and
— n 1, are, in our notation, K, K,,, K,,, and K,,, respec-
tively; notice also that the Chapman-Cowling” — n*{®,¥}
is our {®,KP}). That is, K satisfies

{®,K¥} = {¥.KD} (33)
and

{®.KP}<0 (34)
for any pair of functions ¢ and W.

The solutions to Eqgs. (28) and (29) may be obtained by
superposition as

® = B,coc:VU, + B,coc:VU, +4,¢:VIn T,
+4,e:VIn T, + (De*A + Eo') /KT, (35)

where the vector functions B;, 4;, D, and E are defined,
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except for a linear combination of the collisional invariants
whose transposed vector functions are (1,0), (0,1),
(m,e,mc), (m,c’,m,c*), by the solutions of the integral
equations:

KB,coc =b;coc, i=1,2, (36a)
K4,c=ac, =12, (36b)
]_(]_)c:c_ic, (36¢)
KE=e, (36d)
with
b m, |fe b m 0
b= 1| = Jor = (Y2 ’ 37
= by, kT = by, kT \fo, G
a,= @i E(___m,&_i)f;n
=! a, 2kT 2 ol’
(38)

__laxn ,_(mzc2 5 ) 0
a,= = - ,
- (259 2kT 2 ﬁ)z
d= d, = Jor/n, ’ (39)
= ld, — for/ 1>

_le| | (mic?/3kT — 1) fyu/n, (40)
~ eyl 1(=myc®/3kT + 1) foo/n,y0

There is a similarity between these equations and the corre-
sponding ones in the CE theory [Ref. 7, Egs. (8.31,4,5,6)].
In particular, the functions 4, B, and D of Ref. 7 are our
functions — (4, +4,), — (B, + B;)/2, and — nD, re-
spectively, while our function E does not appear in the CE
theory. However, except for the D function, this equivalence
is meaningful only in the limit when both temperatures
and mean velocities coincide (7, =1, =7, U, =U, =U)
because the CE functions 4, + 4,, B, + B, are split in our
function ® accounting for the two different temperatures
and the two different mean velocities. Moreover, there are
important differences in the constraints imposed to the func-
tions @, versus those in the CE theory. The present ®; and
®; are such that they do not contribute to the mean tempera-
ture and mean velocity. Such a restriction could not be satis-
fied in the CE theory; but it may be here, because our free-
dom to vary A controls the difference of mean speed between
species, while changes in o’ lead to variations in the tempera-
ture difference (see below). The ordinary collision invar-
iants of the CE theory allow the other necessary control on
the mean mixture temperature and mean velocity, so that
our solution provides a complete specification of A and o in
terms of 7, — T}, U, — U,, VIn T}, and VU,, thus closing
the two-fluid equations.

The condition that £, P! does not contribute to n,,U,
and T,

[W, /58] =0, ¥=1lec® (i=12) (41)

may be rewritten in terms of the unprimed function f;, ®;.
Using the fact that £, ®; = fo, P, + fo; — f& we find

[l’foiq)i] =n—n=0 (i=12),
[c!f;)i¢i] =n (U, —U) (i=12);
[ for®:] = 3n,k(T, — T)/m, (i=12), (43)

(42)
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where the second-order term n,(U;, —U)?/m, has been
dropped from the last equations. The first of these con-
straints can be satisfied, like in the CE theory, by appropriate
combination of ¢ with the collisional invariants whose
transposes are (1,0) and (0,1). The second two vectorial
conditions may be reexpressed in terms of the d; functions
[Eq. (39)] as

U, — U= [d,c,P,], (44a)

U, - U= — [d,e,d,]. (44b)
Their difference yields

U, — U, = {cd,®}, (45)

which fixes A after substituting the expression (35) for ®:

A=A4VInT, +A4,VInT,+4,U, —U,), (46)
while

A, =3kT /{Dc*d}, (47)

A= —A,{4,62d}/3. (48)

Similarly, the two conditions (43) may be rewritten in terms
of the e; functions [Eq. (40)] as

(T, —T)/T=[e,?,], (49a)

(T, —TY/T= — [e,,P,], (49b)
whose difference yields

(T, — T,)/T =A{e,®}, (50a)
determining ¢’ as

o =k(T,—T,)/{Ee}. (50b)

The second-independent constraints in Egs. (42) and (43)
can be satisfied, like in the CE theory, by suitable combina-
tion of @ with the collisional invariants whose transposes are
(m,e,m»c) and (m,c2,m,c?). It is convenient to choose this
combination such that U is the center-of-mass velocity of the
mixture and T is the mixture temperature, that is,

pU=p,U, +p,U,
and
nT=nT, + n,T,,
which means that
[me, fo: 1] + [mye, f,®,] =0
and
[m &, fo: @] + [mac?, fr,®@,] =0,
or
pildie,®,] = p,ldye,@,], (51a)
nle,®,] =nyle,,d,]. (51b)
Notice that the above addition of collisional invariants
leaves the transport coefficients unaffected because they can

be expressed (see next section) in terms of quantities of the
form {L,I}, where KL = I are Egs. (36a)-(36d).

Ili. TRANSPORT COEFFICIENTS AND THEIR
VARIATIONAL DETERMINATION

The closure of the two-fluid hydrodynamic equations
requires expressing the interspecies momentum and energy
terms A and ¢’ as well as the heat fluxes Q, and stress tensors
P, in terms of the hydrodynamic variables and their gradi-
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ents. All these objects, like @, are linear in the nonequilibri-
um driving forces VoU,,VIn 7,,(T;, — T), and (U; — U),
with proportionality coefficients (transport coefficients)
given by integral functionals of the solutions to the integral
Eqgs. (36a)-(36d). In the present section we follow Bern-
stein® in expressing these transport coefficients in terms of
quantities that can be determined optimally through a vari-
ational approach. Equations (36a)—(36d) may all be writ-
ten schematically as

KL=1 (52)

In view of the symmetry properties (33) of X, the solution L
to the above equation extremalizes the functional

AlLY={L,KL — 21}, (53)
which takes the (positive) extremal value
Ay = — {é,[} = — {é,l_(é}- (54)

Consequently, if A is evaluated by means of a trial function
L., where L, = L + ¢, which differs from the exact solution
L by the small quantity €, the resulting value of the func-
tional differs from the exact value by a quantity of order €

only:

AL + €] = A, + {e,Ke}. (55)

Furthermore, because the operator K is nonpositive,
{€,K€}<0, the extremal value of A is actually a maximum.
Accordingly, objects of the form {L,KL} may be evaluated
optimally by maximizing the functional A{l_,} above. In or-
der to exploit this feature for the computation of the trans-
port coefficients, we shall proceed to write them in terms of
such curly bracket integrals. This program has already been
initiated for the momentum and energy transfer terms A and
o', because the inner products {De¢,dc} and {E,e} entering in
Egs. (47) and (50b) have the desired form {Dc KDc} and
{E,KE}. The other mixed quantities {4,¢,cd} and {A .c.cd}

may / also be obtained optimally by noticing ‘the identity

2{L,KL>} ={L, + L,,K(L, + L,)}

- {é[,@é]} - {4271_({‘2}’ (56)

where each one of the three right-hand side terms may be
found variationally. Accordingly, we proceed to express all
remaining transport coefficients in terms of integrals of the
forms {L,KL} or {L,,KL,}.

A. Stress tensors

The stress P, of species i is given by P, = [m,¢;¢c;, f;] -
Here P; may be decomposed into an isotropic pressure p;I
(Iis the unit tensor) and a traceless viscous stress tensor I1;,
where

3pi=[mic, fi] = [mich, f&:] = 3n,kT, (57)
while
I, =[c,o¢,m; fo,,1 + D, ] = [e;oe;m; f5,,P; ]
=[coem; fo,,®; ], (58)

where the second-order corrections have been neglected in
the last equality above. Substituting Eq. (35) for P in the
expression for I1,, we obtain after writing the coc m; f,; func-
tions in terms of the & function of Eq. (37)
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Hi - {éicOc;cOcy§IVOU‘ + gzvoUz}kT/S (59)
Introducing the definitions for the four viscosity coefficients
I, = — 2u,VoU, — 2u,,VoU,, (60)

one obtains after identifving coefficients in Egs. (59) and
(60)

py= — {b,coe:coc,B, }kT /10, (61)
which from the symmetry of K (notice that
KB, coc = b;coc) satisfy

My = Hji- (62)

The sum of the four viscosity coefficients (61) is equal to the
viscosity p of the CE theory for binary mixtures [Ref. 7, Eq.
(8.42,1)]. Note that this sum may be written as

— [m, Jd%ﬁncoczcoc(B“ +B,)

+m, f d3c fy,e0c:coc(B, + B,y) ]/10,

while Eq. (8.42,1) of Ref. 7 reads
Su= 2n2kT{§,l_?}

=m, jd 3¢ coc:eocB, + m, j d’c coe:cocB,,

and their B, is equal to our — (B,, + B,;)/2. Thus in the
limit U, = U, = U, the mixture pressure tensor P may be
expressed as

P=P, +P,=pl—2uvVol,
with p = p, + p,, in accordance with the CE theory.

B. Heat fluxes and momentum transfer

In terms of the variable ¢ =u — U, rather than
¢, =u— U, it may be shown that the heat flux
Q. =[ Jm;Ju—U;|*(u—U,), f;] can be written as

Q, = kT [c(m;c? — SkT)f,,,®,]/2kT, (63)
with errors of order |U; — U|°. By means of the vector func-
tions g; defined in Eq. (38), Q; may be reexpressed as

Qi = kT{gic;q_)};
or, substituting ¢ from Eq. (35),

Q, =kT{g,c,4,cVInT, + 4,¢:VIn T, + De-A/kT}.

(65)

The linearity of Q; in the quantities Vin 7, and U, — U,
suggests defining the transport coefficients 4; and 4,
through

Qi=—A4, VI, —A,VT, + 4, (U, - U,),
with

=34, =kla,ctd4,;} + {Dc*a 34,

3/11'14 = {QICZ,Q}AU,
where the factor 7/7 in A, has been taken to be unity ac-
cording to our first-order theory and 4,,, 4, are given by Egs.

(47) and (48). In virtue of the symmetry of K, 4,, reduces to
—A;:

A= — 4.

w 1

(64)

(66)

(67)

(68)
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By substituting 4, from Eq. (48) and using the symmetry
properties of K, the thermal conductivity matrix 4, may be
reexpressed as

=34, =k{d,cKd,c}X — 1,{4,,dc*H4,, dc’}/3,  (69)
where its symmetry becomes manifest:
Ay =4, (70)

Let us compare these results with the CE theory for
binary mixtures. The first approximation of the total heat
flux may be written as

Q=[mec?/2, fi] + [myec?/2, £o]
~Q, + Q, + $T{n,(U, — U) + n,(U, — U)}
= — Ay +A)VT, — (A +A:)VT,
+ Ay, + 42,0 (U —Uy)
+ 5kT{n, (U, —U) +n,(U, - U)}/2.  (71)

Using the symmetry of K and the relations of Eqs. (47) and
(48) for 4, and 4,, the sum A of the four thermal conductiv-
ities (69) can be expressed as

30 = —k({(4, +4,)ca, +a,}
—A{De? (a, + a) ¥*/{Dc*,d}),

which is equal to the mixture thermal conductivity of the CE
theory for binary mixtures [Ref. 7, Eq. (8.41,4), noticing
the equivalence of functions and inner products described in
Sec. II]. Since, in addition, the mixture thermal diffusion
ratio k; of the CE theory is equal to our

(A + A2,)/nkT = n""{(a, + a,)*,D}/{Dc*d}

(72)

[Ref. 7, Eq. (8.4, 6) ], the total heat flux given by Eq. (71)
coincides with that in the CE theory in the limit
T, =T, = T [compare with Eq. (8.41, 3) of Ref. 7]. This
suggests the introduction of the coefficients k5,

kr=A,/nkT =n""a,c*,D}/{Dc*d}. (73)

Moreover, instead of the coefficient 4,, it is convenient to
use a new one A, defined by

p1pAy = —md, = — 3kTm,/{Dc’d}, (74)

which, as we shall see in the next section, depends on #, and
n, through the molar fractions x, =n,/n (the minus sign is
because 4, > 0). In terms of these coefficients, the expres-
sions for Q, and A become

Q, = — A, VT, — A, VT, +nkTk,, (U, —U,) (75)
and
A= —nkT(ks ViInT, + k;,VInT,)
— p1pA, (U —Uy)/m,. (76)

Finally, notice that the last expression coincides with the CE
equation for U, — U, [Ref. 7, Eq. (8.4, 7) ] if we identify the
vector d;, of the CE theory with A/p in the limit T, = T,
since by Eq. (74) and Eq. (8.4, 4) of Ref 7,
Ay = kT /(mnD,,), where D, is the binary diffusion coef-
ficient of the CE theory.
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1V. VARIATIONAL CALCULATION OF TRANSPORT
COEFFICIENTS

As explained at the beginning of Sec. III, the transport
coefficients may be obtained via variational principles as the
maxima of functionals of the form {I_,,I_(l_,}. In particular, we
define the functionals®

Ap [Epcoc] ={E,c00,KZc0c — 2bc0c}, i=12,
(77a)
Au[Esc]={8, e K5,c —2a,c}, i=12, (77b)
Ap[Epe]={Epc,KE ¢ — 2dc}, (77¢)
and
Ap[Ee) ={2:KE; — 2}, (77d)

which from Egs. (33), (34), and (36) have the following
absolute maxima:

A% =Ay[Beoc] = — {B,cocicoc,h}, i=1,2,
A% =Ay[de] = —{4,c2a), i=12,
A=A, [De] = —{Dc*d},
and
Ar=AL[E]l= —{E¢}. (78)

These quantities are non-negative in virtue of the nonpositiv-
ity of K and are related to the transport coefficients.
For the viscosities we have

p=kTA%, /10, p,, = kTAX, /10, (79)

whence ,u 11 and u,, are optimally calculated using the func-
tions £%, and £%, which maximize the functionals A, and
Ay, within the class of functions Ep. These two functions
also yield p,, optimally since the absolute maximum of the
functional

Ap[Epcoc] ={Z, c0c,KE5c0e — 2(b, + by)coct  (80)
18
A¥=Ay[(B, + B;)coc]
= —{(B, + B,)coc:coc,h, + by}
= 10u/kT. (81)

Thus using the same class of functions, the maximum of Ay
is reached with £%, + =%, and if i, u5,, and p are opti-
mally obtained, so is u,, because p = g1, + oy + 24815

Let us rewrite the transport coefficients appearing in the
heat flux and in the momentum transfer [Eqs. (67), (47),
(48), (73),and (74)] as

Ap = — (k/3)({4,c%a,} — {Dq,}7{Dc?d}),
i=1.2, (82)
A=Ay = — (k/3)({4,c%a,}
—{Dc*a,H{Dc* a,}/{Dc* d}), (83)
Ay = —3kT /p,n,{Dc*d}, (84)
kr ={Dc%a,}/n{Dc*d}, i=12. (85)

Notice that 1,, A,,, and 4,, are non-negative (1, can be
written as — k{T;c%,}/3 with T, =4, — D{Da,}/
{Dc*,d} andKT,c = ¢, ¢). Clearly, A, is optlmally calculated
by the function & =5, which makes the functional A, a maxi-

2069 Phys. Fiuids, Vol. 30, No. 7, July 1987

mum. Once we have fixed D = E%, k;, and kr, are fixed
and A, and A,, are optlmally calculated by the functions
=% and E%, that maximize the functionals A,, and A ,,,
respectively. By a similar argument to that used for u,,,
these functions also determine optimally A, since the mix-
ture thermal conductivity 4 [which is also non-negative
sinced = — {(T + Tz)c2 (#; + t,) }; see Eq. (72)] is opti-
mally obtained with %, + Z%, (for D fixed and within the
class of functions =, ).

Finally, for the transfer of energy it is convenient to
introduce the coefficient o, defined as

o= —n*o (T, —T,) (86)
or, from Eqgs. (50b) and (78),
n‘or = —k/{Ee}=k/A}. (87)

This coefficient has the advantage of depending on the densi-
ties n; only through the molar fractions x;. Using the vari-
ational principle, maximizing A yields o optimally.

For calculation purposes it is usual to take Sonine poly-
nomial expansions as trial functions (for a brief description
of the Sonine polynomials see, for instance, Ref. 7, p. 127).
Thus we choose the functions

al Sl()n)

ai S|’ (88)
withv =3, 3 3, and | for Ep, E4 and Ep, and Eg, respec-
tively, because of the special orthogonality properties for
each one of the particular cases. Introducing these functions
in Egs. (77), we are led to the optimal functions

N

=2

n=20

11}

1 {n)
— Nolb, Ssh .
E’B,» = E b2 S(n) s 1= 112) (89)
n=0 ni 5/2
1 (n)
Nolan S35
=3, i=12 (90)
—=A4; T 2 (n) » — Ly&s
o la, S
1 (n)
—_ i dn S3/2 (91)
=p = 2 ’
n=20 dn Sl(i;%
1 (n)
—x Nole, Sin (92)
SE = 2 S(n) ’
n=0 1€, 172

with the coefficients given by the solution of the linear alge-
braic equations
N

T (bLLM +b2,L2)=15,,

m=0

(93a)

2 (bm1L2] +b %n)=ln1612;
m=0
z (amx 1}n +a3mQ:3n =qni5il7
"o (93b)
Z (30 Qi + @i Qi) = qui0n;
N
z (d +d Qnrn “'pn’
m=0 (93c¢)
N
3 (@dnQin +dL00) =pis
N
Z (eLEL, +eLE ) =€,
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N

S (enEl, +eE2)=¢€, n=0,12,.N.

" (93d)
In these equations 6, is the Kronecker delta,

Lo, = [S$hcoc, (K, + K 15)S {Peoe]

L, =L, =[S{coc,K,Seoe], (94a)

L2 = [S§/2c0c ,(K22 + K,)S JYeoc]

and similarly Q7 ,EY  with S;,, cand S, /2, Tespectively;

lm' = lonikT/mi’ n =O’ lni = 07 n#oy
Gni = — 15n,kT/2m;, n=1, q, =0, n#l,
; 1 . (94b)
Pn=(—=1)"3kT/m;,, n=0, p, =0, n#0,
€, =(—1" n=1, € =0, n=0.

Notice that Egs. (93b)—(93d) should be completed with the
constraints given by Eqgs. (51), since the matrices Q and £
are singular. The transport coefficients calculated with these
functions are

py = —kTlob,/10,

Ay =5k?n,T(a};, —d'al,/d})/2m,,
kpp = —5Moxx,d | /2x,d ), (95a)
kpy =5Mx,x,d?/2x,d 32,

Ay = —(n,d{)7},

where M; =m,/(m, + m,) and x,= M x, + M,x,. The
coefficients LY, , Q% , and EY  may be expressed in
terms of the “bracket integrals.” For example, in the nota-
tion of Ferziger and Kaper’s [, 1, [, 15, [, 1{,,and [, 1%

(Ref. 10, Secs. 7.1 and 7.2),

or = kx,/n’e},

Zr]uln = — ”% [Sl()n)zl!sl()'n)zl ] 1 nln2[S(n)Z]’S (M)Zz] 12
(95b)

Z52 = —nlnz[Si")zl,ng’zz]jé, (95¢)

Zifn = — ”% [SLE")ZZsz(;m)Zz]z —nn; [Slsn)zl’sl()m)zz] 12
(95d)

where Z stands for L, Q, and E [with v = 3 3, 1 and z,
= §;9k,, &, 1, respectively; g,.:c,.(m,./sz)”z]. Some of
these bracket integrals for L and Q are tabulated in terms of
the ) integrals (see, i.e., Ref. 10, Sec 7.2). However, the
bracket integrals corresponding to E '/ do not appear in the
CE theory for binary mixtures, and have to be calculated. Up

to n = m = 2, the following values are obtained:
El,=EJ =E¥ =0,
El=EZ = _E?=_F = _ 16n,n,M M,Q45,
E}=E}

= 16nn,M M,[5(M, — 1)QV/2 + M,Q02T,
E}, =E}} = 16n,n,M M? [5Q;V72 -],
EJ =E3 =16n,n,M? M,[503"/72 - Q27 ,
E}—F3

= 16mmMM[5(M, — QY /2 + M Q0>
Ej =ni (37Q{"0/4 — 2032)
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— 16m,m,M M, [(1 + 53(M, — 1)%/2)Q (LD
+ SM,(M, — DAGY + M2Q>

+ M M, Q5%],
Ejp=E3 = — tonn,MiM3[ — 53041 /32
+ SQ(I,Z) . Q(I,S) + 9(2,2)] ,

EF = n3 (370501 /4 — 2082)
— 16m,m, MM, [(1 + 53(M 2 — 1)2/2Q1D)
+5M (M, — DALY + MIQLY + M MQ22].

These integrals have been calculated using the method of
Ref. 10, Appendix B.

From Eqs. (95) and (94a), to obtain the first approxi-
mation of the transport coefficients we have to retain one
term in Eq. (93a) (that is, set N = 1)}, and two terms in the
remaining equations (93b)—(93d) (N =2). We obtain

(el = [x% G+MA,/M,) +x1szl/2#2]/Q1,
(1] = [x; G+ MA4,/M) +x1szl/2ﬂ1]/Q1’
(2] = (1], =xx(3—4))/0,,

(A1 ]y = (75x,k°T /64m,Q,) (P, — PP/P),

[A2:]1 = (75x,k °T /64m,Q,) (P, — PP,/P;),

(Al =[4y], = - (75x2k2T/64m2Q2)(P3 + PP,/ Ps),
[le Ji=— SMx x,Pe/2x,Ps,

[k ]1 = — 5SM X3 P./2x,P;,

[Ao]o= — 16M,Q,/3x,P;,

[or] = 16kM M x x, Q")

with

Qi =x1G+MA/M)/u, +x2CG+ MA,/M, )/t
+ XX, (B/2p1,\u5 + 44,/3B M, M,),
M1 =SkT /8Q(*®, p, = SkT /80>?,
A4, =Q37/500", B, =kT/8M M,Q(",
Q> = BMx,P, + (x,E + M,x,C)P, + M?M,x,GP,,
Py =M”M3*B(x,F/xM, + D — M?G),
Py=M""x,[M,(M2B?_— AD)/x, —AF /x,],
Py = (M\M,)**(4G — B?)x,/x,,
Py=M""x[M,(M2B? — AC)/x, —AE /x,],
Py = M'"?[(x,E /x, + M,C) (x,F /x, + M,D)
-MiM3G?],
Po= —M"'?x,B [M,F /x, + M\M,(D — MiG)/x,],
P, =M”2xOB [Ex,M\/x, + M M,(C — M2G)]/x,,
4=0{", B=50UV/2 ﬂfé’”,
=5(6M7% +5M3)Q{IV/4 — 5M2Q0D
+M3Q07 + 2M M0,
D=5(6M3 +5M})Q30/4 — 5M2Q0D
+M3Q457 + 2M M,03%,
E=QPY/2, F=Q2/2,
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FIG. 1. Experimental data of Bowler'* on sound absorption in He~Xe mix-
tures compared to the results from the standard Chapman-Enskog theory
(CE curves) and those of the present two-fluid theory (tf curves). The
curve tf diff on Fig. 1 (d) corresponds to a second, highly damped, diffusion
mode arising in the two-fluid theory (see Ref. 11). The vertical axis repre-
sents the dimensionless absorption parameter ac, /f, where c, is the equilib-
rium sound speed of the mixture and f is the frequency. The condition
Kn, ~M corresponds, roughly, to f/p~ 160 x; MHz/Atm, where x, is the
He molar fraction (this explains why the frequency range of validity of the
standard CE theory increases with x,).
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G =550 /4 — 5002 4 Q0P — 203,
X0 :‘lel +x2M2y
M=M/M,.

Notice that the second rather than the first approximation of
A, has been given. This is because two terms in the matrix
Q7  are needed in order to obtain the first approximations
of 1; and k;, while with these two terms the second approx-
imation of A, is obtained [see Eq. (95a) ]. The first approxi-
mation of A, is

[A5]) = 16M,4 /3.

In the limit M <1 (M, <1, M,~1) and n,/n, = O(1),

the above transport coefficients coincide with the those cal-
calculated in Ref. 6 using an expansion of the Boltzmann
equation in the small parameter M. (Notice that the coeffi-
cient A, of this work is — 1,4, of Ref. 6.) Also, it is easy to
verify that [u,;]; + (#2211 + 2[e£12], coincides with the
expression of [1], given by Chapman and Cowling [Ref. 7,
Eq. (9.84,2)] and that [1, ], is equal to kT /nm,[D,,], of
Ref. 7 [Eq. (9.81,1)]. For the thermal conductivity and
the thermal diffusion coefficients we have not made the di-
rect comparison of [4,,], + [A5,], + 2[41,], and [k ],
+ [k, ], with [4], and [k ], of Chapman and Cowling
because of the complexity of the corresponding expressions.
However, this check has been made numerically for a
number of noble gases binary mixtures with perfect
agreement. The first approximation of o is related to the
first approximation of D,, through [o], = 3k *Txx,/
n(m, + m,)[D,,], [Ref. 7, Eq. (9.81,1) ], which coincides
with the exact expression for the case of molecules interact-
ing with Maxwellian potentials (i.e., Ref. 3).

With the coefficients £ 7, given above and the bracket
integrals tabulated in Ref. 10, Sec. 7.2 [after using the rela-
tions (95) ], the second approximations of the transport co-
efficients can be obtained without much additional work by
solving Egs. (93).

M, =m;/(m, + my),

V. COMPARISON WITH EXPERIMENTS ON SOUND
ABSORPTION IN He-Xe MIXTURES

The two-fluid CE theory previously developed has been
recently applied to the acoustic problem, and its results are
compared in Ref. 11 with available experimental data'>!* on
absorption and dispersion of sound in He-Xe mixtures
(M =0.03). In this section we present an additional com-
parison of the two-fluid results and those of the standard
Navier—Stokes equations with experimental data of Bowl-
er'® on absorption of sound in He—Xe mixtures.

Figures 1(a)-1(g) illustrate the frequency range
(Knudsen number range) of validity of the standard Chap-
man-Enskog theory and that of the present two-fluid theory
for disparate-mass mixtures. At low frequencies (Kn<M)
both theories predict the same values for the absorption
(Kohler expressions for low frequencies, e.g., Ref. 11), and
the agreement with the experiments is excellent. However,
as the frequency increases, the predictions of the standard
CE theory become poor for most concentrations, while the
two-fluid theory agrees reasonably well with the experi-
ments. The agreement of the two-fluid theory with experi-
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mental data'>!3

Ref. 11.

on dispersion is also excellent, as shown in
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APPENDIX: HYDRODYNAMIC EQUATIONS
From Egs. (11)-(13),

dp;
L Ve(p,U) =0,
£ + V(p,U;)
do, U, )
L4V [pU +P] = (= D',
dp;(e; + UY2)
[P ( ot ] + V'[PiUi(ei + U?/Z) + P U, + Q.]
=(—1D"" (=12),
where

pie, =3P 1=3p,/2=3n,kT,/2.

To first order, these equations may be closed in terms of the
two fluid hydrodynamic quantities by means of Eqs. (57),
(60), (75), (76), and (86):

P, = kT X — 21, VU, — 20, V'U,,

Q = —A VT, — A, VT, + nkTk,, (U, — U,),

A= —nkT(k; VInT,+k;,VInT,)
—pp2h, (U —Uy)/m,,

o= —n*o (T, —T,).

The expressions for the transport coefficients u;, 4, &,
Ay, and o, in the first approximation of the Sonine polyno-
mial expansion, are given at the end of Sec. IV.
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