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A nonparallel linear stability analysis of a family of self-similar vortex cores which includes Long’s
vortex as a particular member is performed using parabolized stability equations~PSE!. The
resulting streamwise variation of both the spatial growth rate and the axial wave number of the
different unstable modes is compared with the results from a local spatial stability analysis which
also takes into account the effects of viscosity and of the streamwise variation of the basic flow, so
that the effect of the history of the disturbances on their stability is quantified. It is shown that this
last effect is negligible for high Reynolds numbers, but becomes increasingly important as the
Reynolds number decreases, especially for very small growth rates. The marching method used to
solve the PSE is computationally much faster than the standard methods for solving the nonlinear
eigenvalue problem resulting from the local stability equations. As a new result, the local spatial
calculations reveal the existence of unstable counter-rotating spiral modes with negative group
velocities for Type II Long’s vortices~that is, vortices with negative streamwise velocity at the
axis!, thus showing that these flows are subcritical in Benjamin’s sense. This kind of instability does
not appear for Type I vortices, which can only sustain non-axisymmetric convective instabilities,
and are therefore supercritical. Thus, the spatial stability analysis establishes a fundamental
distinction between Type I and Type II Long’s vortices. ©1999 American Institute of Physics.
@S1070-6631~99!00205-6#
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I. INTRODUCTION

Long’s vortex has been extensively considered a
simple model for high Reynolds number vortices of ge
physical and engineering interest, mainly because it is
exact solution to the near-axis approximation of the Navie
Stokes equation which is nonparallel and consistently
cludes a relatively important axial flow, both characterist
present in most real vortices of interest. In particular,
stability has been analyzed by a number of authors us
different techniques and degrees of approximation, with
main objective of trying to elucidate and predict some of
interesting properties that highly swirling flows present
practice. Most of these previous works considered the t
poral stability ~that is, with given real wave number an
unknown complex frequency! of Long’s vortex using a par-
allel flow approximation. Thus, Foster and Duck1 analyzed
the inviscid stability using a finite-difference method to sol
the resulting set of two ordinary differential equations. Th
found that the flow is unstable for non-axisymmetr
counter-rotating (n,0) perturbations. This work was late
extended by Foster and Smith,2 and by Ardalanet al.,3 who
made an asymptotic analysis of the inviscid stability in t
limit of large flow force for Type II and Type I Long’s vor
tices, respectively. The viscous stability was considered
Khorrami and Trivedi,4 who, using a spectral collocatio
method to solve the stability equations, obtained also as
metric co-rotating (n.0) inviscid unstable modes for Typ
II vortices, previously found asymptotically in the limit o
large flow force by Foster and Smith.2 Nonparallel effects
were considered locally by Foster and Jacqmin5 in the limit
of large flow force and small axial wave number for Type
Long’s vortices. They found that for these long-wave mod
1111070-6631/99/11(5)/1114/13/$15.00
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the nonparallelism of the flow is more important than visco
ity in the finite Reynolds behavior of the perturbations. T
local nonparallelism of the basic flow and of the amplitu
of the perturbations, in addition to the effect of viscosi
were taken into account in general in Ref. 6, where n
purely viscous and inviscid axisymmetric, unstable mod
were found for Type II Long’s vortices. These last unstab
modes have growth rates more than an order of magnit
smaller than the inviscid non-axisymmetric unstable mod

The last two cited works considered the nonparallel
fects of the basic flowlocally, i.e., without the effect of the
history of the perturbation, as it is convected by the ba
flow, upon its stability. The new terms accounting for th
effect in the stability equations are, for high Reynolds nu
bers, of the same order of magnitude than the terms ari
from the nonparallelism of the basic flow and from the v
cous forces~when the axial wavelength of the disturbances
comparable to the vortex core radius!. Hence, they should be
taken into account in a consistent analysis of the convec
stability of Long’s vortex. However, we shall see that t
actual effect of these new terms is negligible except for re
tively small Reynolds~Re! numbers when the growth rate
very small.

To appropriately account for the effect of the history
the disturbance on its stability, one has to consider thespa-
tial, rather than thetemporal, stability of the flow; that is,
with given real frequency look for the complex axial wav
number. This kind of analysis is also the appropriate one
study the spatial evolution of waves as they propagate fro
given forced oscillation at a given location. In order to che
the numerical procedures and results, a comparison is
made between the results of thelocal spatial stability equa-
4 © 1999 American Institute of Physics
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1115Phys. Fluids, Vol. 11, No. 5, May 1999 R. Fernandez-Feria
tions ~without the terms accounting for the history of th
disturbances! and the equivalent results from thetemporal
stability analysis of Ref. 6~hereafter T! using Gaster’s
relation7 for small growth rates.8 It is shown that the loca
spatial analysis reproduces the results of the temporal in
bility calculations when the group velocity is positive~con-
vective instabilities!. However, new unstable counte
rotating spiral modes with negative group velocities a
found for Type II vortices with the present spatial formul
tion which are not obtained with the temporal analysis.
discussed in the last section, these new unstable mode
tablish a fundamental difference between Type I and Typ
Long’s vortices. Once the results from the spatial and te
poral local eigenvalue problems have been checked w
each other, they are compared with the nonlocal spatia
sults of the linear stability equations with the addition
terms describing the history of the disturbances. Retain
terms up to order Re21, these stability equations are equiv
lent to those obtained with the assumptions made in
parabolized stability equations~PSE! method, formulated by
Bertolotti, Herbert, and Spalart9 for the Blasius boundary
layer problem~see also Refs. 10 and 11!. A marching tech-
nique in the streamwise direction, combined with a spec
collocation method in the radial direction, is used to so
the resulting PSE for the stability of Long’s vortex.

II. FORMULATION OF THE PROBLEM

A. The basic vortex

Long’s vortex12,13is a similarity solution to the near-axi
boundary layer approximation of the steady, incompressi
and axisymmetric Navier–Stokes equations, matching an
viscid flow with axial and azimuthal velocities inversely pr
portional to the distancer to the axis of symmetry. Long
showed that there are two solutions forM.M* , and none
for M,M* , whereM is the dimensionless flow force, an
M* is a critical value. It was shown in Ref. 14 that Long
vortex can be viewed as a particular member of a more g
eral family of self-similar vortex cores matching an invisc
flow field proportional to a certain power of the distance
the axis of symmetry; that is, vortices which in cylindric
polar co-ordinates (r ,u,z) match an inviscid velocity
(U,V,W) and pressureP fields given by

W5W0r m22, U50, V56LW0r m22,

P

r
5

~LW0!2

2~m22!
r 2~m22!, ~1!

wherer is the fluid density, 0,m,2, andW0 and the swirl
parameterL are positive constants~U is not exactly zero, but
decays faster thanW or V for r→`!.14 Long’s vortex corre-
sponds to the casem51. It was also argued in Ref. 14 tha
vortices withm slightly larger than unity are the most inte
esting ones within the family to model real vortex flow
However, since it was shown in T that the temporal stabi
properties are qualitatively the same form51 and for m
.1 if one uses the nondimensional axial velocity at the a
~parameterA1 defined below! instead ofM or L as the pa-
rameter characterizing the different solutions, only Lon
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vortex (m51) shall be considered in this work, keeping
mind that the results can be extrapolated to the more in
esting cases withm slightly larger than unity. In fact, for the
sake of generality, the problem will be formulated for a
value of m, although results will be given only for Long’s
vortex.

The vortex core has the self-similar structure

C5nz f~j!, ~2!

V5
nz

d2~z!
g~j!,

P

r
5

~nz!2

d4~z!
b~j!, ~3!

whereC is the stream function for the meridional motio
through which the axial and radial velocity components a

W5
1

r

]C

]r
5

nz

d2~z!
2 f 8~j!,

~4!

U52
1

r

]C

]z
52

n

r F f ~j!2
2j f 8~j!

m G .
The similarity variablej is defined in terms of the vortex
core thicknessd(z):

j5h2, h5
r

d~z!
, d~z!5S mnz

W0
D 1/m

. ~5!

The functionsf, g, and b are governed by a set of thre
nonlinear ordinary differential equations, which are solved
Ref. 14 by shooting. For eachm, the swirl parameterL is a
function of the nondimensional axial velocity at the ax
A1[ f 8(0), with 21/&,A1,`. Except for the casem
51, this function is nonmonotonic, having an extremu
L* (m), which is a minimum for 0,m,1 and a maximum
for 1,m,2 ~see figures 2 and 3 in Ref. 14!. Thus, when
0,m,1, two solutions exist forL.L* (m), and there is no
solution for L,L* (m); when 1,m,2, no solutions exist
for L.L* (m), and there are two possible solutions forL
,L* (m). For the special casem51 ~Long’s vortex!, L
5& for all values ofA1 . In this case, the nondimension
flow force parameterM, which is constant along the axis fo
m51 ~see the Appendix for a discussion of this matte!,
plays a role somewhat analogous toL for mÞ1:13,15 for M
.M* .3.75 two solutions exist, denoted by Burggraf a
Foster15 as Type I and Type II solutions, and none forM
,M* . For m.1, this classification of the solutions is ex
trapolated to the two possible solutions forL,L* (m). In
terms of the nondimensional axial velocity at the axis,A1 ,
there is no distinction betweenm51 andm.1: All Type I
solutions have a positive axial velocity at the axis, withA1

within the interval„A1* (m),`…, whereA1* .0.15 is almost
independent ofm; most Type II solutions have a negativ
axial velocity at the axis, withA1 in the interval „
21/&,A1* (m)… ~see figures 1 and 2 in T!. In the limit of
large A1 ~M large for m51 or L→0 for m.1!, Type I
vortex has an intense positive axial flow near the axis, wh
for A1→21/& ~again M large for m51 or L→0 for m
.1!, Type II vortex has the form of a ring-jet with larg
positive axial flow on the ring and negative axial flow in i
interior ~see Ref. 2 for asymptotic solutions in these tw
limits whenm51!. Finally, it should be mentioned here th
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1116 Phys. Fluids, Vol. 11, No. 5, May 1999 R. Fernandez-Feria
although Long’s vortex (m51) is the only one in the family
of self-similar solutions which has a constant, nonzero fl
force M, all the other solutions for 0,m,2 satisfy the
weaker condition~see Appendix!

lim
K→`

E
0

Kd~z! ]

]z S W21
P

r D rdr→0. ~6!

B. Nonparallel linear stability formulation

The nonparallel parabolized stability equations are n
developed for the above family of swirling jets. The flo
variables, (u,v,w) and p, are decomposed, as usual, into
mean part, (U,V,W) andP, and a small perturbation. Afte
~3! and ~4!,

w5
nz

d2 @2 f 81w̄#, u5
n

r F2 f 1
2j f 8

m
1

rz

d2 ūG , ~7!

v5
nz

d2 @g1 v̄#,
p

r
5

~nz!2

d4 @b1 p̄#, ~8!

where the perturbations

s[@ ū,v̄,w̄,p̄#T ~9!

are, in general, functions of the four independent variab
(r ,u,z,t). Since the mean flow depends on the similar
variable j @Eq. ~5!#, this nondimensional variable is use
instead ofr. A nondimensional axial coordinatex is also
defined:

x5
z

z0
, ~10!

wherez0 is a characteristic~or initial! axial distance. The use
of this axial scale length in addition to the radial charact
istic length d0 , defined as the vortex thickness atz0 , d0

5(mnz0 /W0)1/m, allows the definition of the small param
eter

D05
d0

z0
!1, ~11!

in terms of which one can derive the PSE from the comp
stability equations in a more consistent way than the pro
dure of just neglecting second- and higher-order streamw
derivatives.

The perturbations~9! are decomposed in the standa
form:9

s~x,j,u,t !5S~x,j!x~x,u,t !, ~12!

where, as the main difference with the temporal analysis
T, the complex eigenfunctions

S~x,j![@ iF ~x,j!,G~x,j!,H~x,j!,P~x,j!#T, ~13!

are allowed to depend on the axial coordinatex indepen-
dently to the radial one. The other part of the perturbation
an exponential that describes the wave-like nature of the
turbance,

x~x,u,t !5expF 1

D0
E

x0

x

a~x8!dx81 i ~nu2Vt !G . ~14!
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The nondimensional, order of unity~or smaller!, axial wave
numbera is defined as

a~x![d0k~x![g~x!1 ia~x!, ~15!

which accounts for the fast, wave-like variation of the pe
turbations. Its real partg(x) is the exponential growth rate
and the imaginary parta(x) is the axial wave number. A
nondimensional, order of unity, frequencyv is also defined:

v[
Vd0

3

nz0
. ~16!

Substituting~12!–~16! into the incompressible Navier–
Stokes equations, and neglecting second-order terms in
the small perturbations and the inverse of the local Reyno
number,

D[
d~z!

z
5D0x1/m21[Re21, ~17!

which is assumed to be small within the boundary layer
proximation~note that for Long’s vortexD5D0 is constant
along the flow, while form slightly larger than unityD is a
slowly decreasing function ofx!, the following set of linear
PSE results:
continuity:

2xD
]H

]x
52i

]~j1/2F !

]j
1 in

G

j1/21a* H

1DFm22

m
H2

2j

m

]H

]j G ; ~18!

r-momentum:

22 f 8xD
]F

]x

524Dj
]2F

]j222D~ f 12!
]F

]j
1F2 iv* 1

ing

j1/212 f 8a*

1DS 11 f 1n2

j
2

f 8

m
1

4j f 9

m
2~a* !2D GF

1S 2ig

j1/2 1D
2n

j DG22i j1/2
]P

]j
; ~19!

u-momentum:

22 f 8xD
]G

]x

524Dj
]2G

]j2 22D~ f 12!
]G

]j
1F2 iv* 1

ing

j1/2 12 f 8a*

1DS 2~m21!

m
f 81

n2112 f

j
2~a* !2D GG

1F2i ~j1/2g!81D
2n

j GF1DS m22

m
g2

2j

m
g8DH

1
in

j1/2P; ~20!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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z-momentum:

22 f 8xD
]H

]x
2xD

]P

]x

524Dj
]2H

]j2 22D~ f 12!
]H

]j
1F2 iv* 1

ing

j1/2 12 f 8a*

1DS 4
~m22!

m
f 82

4j

m
f 91

n2

j
2~a* !2D GH

14i j1/2f 9F1Fa* 1D
2~m22!

m GP2D
2j

m

]P

]j
; ~21!

where

a* [ax1/m, v* [vx3/m21. ~22!

The above approximation, where termsO(D2) and
smaller are neglected, is consistent with the boundary la
approximation of the basic flow, where termsO(D2) are also
neglected.14 The retainedO(D) terms account for three dif
ferent effects on the stability of the perturbations:~i! the
effect of viscosity,~ii ! the effect of the nonparallelism of th
basic flow and of the amplitude of the perturbations, and~iii !
the effect of the history, or convective evolution, of the p
turbations. All these three effects are therefore negligible
the limit of very high Reynolds numbers (D→0). The last
mentioned effect~iii ! is described by the streamwise deriv
tives on the left-hand side of the stability equations~18!–
~21!. These terms are therefore the responsible ones for
partial differential~though parabolic! character of the equa
tions. They are the only terms in~18!–~21! ignored in the
linear stability analysis of T, because they cannot be app
priately included in a temporal stability analysis, which h
to be local: one fixes a real axial wave numbera (a* 5 ia)
at a given axial locationx ~which is embedded ina* andj!,
and looks for the complex frequencyv* . Here, a spatial
stability analysis including the effect of the history of th
disturbances will be performed by solving the above para
lized equations by a marching technique. The integratio
started at a given axial locationx0 with a fixed real fre-
quency v, to find the corresponding complex axial wav
numbersa(x). For given flow parameters and azimuth
wave numbern, an unstable mode appears at a locationx if
the real part ofa(x) becomes positive.

As it stands, there is some ambiguity in the partition
the perturbations~12! into two functions ofx. To close the
problem one has to enforce an additional condition wh
puts some restriction on the axial variation ofS.9,10 Basi-
cally, one uses a normalization condition that restricts ra
changes inx of S, in accordance with the slow axial variatio
of the basic flow. Thus, the growth rate and the axial si
soidal variation is represented by the exponential functionx.
Two such normalization conditions will be used here, bo
based on a physical growth rate and a wave number defi
in terms of the axial velocity perturbationw̃[(nz/d2)w̄
5(nz/d2)Hx. The first one makes use of the physic
Downloaded 08 Jun 2006 to 150.214.40.140. Redistribution subject to AI
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growth rate defined at a particular radial distancej0 , e.g., the
point where the absolute valueuH(x,j)u reaches a maximum
for each axial locationx:

ā1~x![ḡ1~x!1 i ā1~x!

[S d0

w̃

]w̃

]z D
j5j0

5a~x!1
m22

m

D0

x
1

D0

H~x,j0!

3F]H~x,j0!

]x
2

2j0

mx

]H~x,j0!

]j G . ~23!

The other one is based on the physical growth rate define
terms of the radial integral of the axial velocity perturbatio

ā2~x![ḡ2~x!1 i ā2~x!

[d0

*0
`w̃†~]w̃/]z!dr

*0
`uw̃u2dr

5a~x!1
m22

m

D0

x
1D0

3
*0

`~H†/j1/2!~]H/]x!dj

*0
`~ uHu2/j1/2!dj

2
2D0

mx

*0
`j1/2H†~]H/]j!dj

*0
`~ uHu2/j1/2!dj

, ~24!

where † denotes the complex conjugate. In terms of th
two complex, physically defined, wave numbersā1 and ā2 ,
the two different normalization conditions used here can
expressed asā1(x)5a(x) and ā2(x)5a(x), respectively,
for all x>x0 . That is, at each axial step, all the terms on t
right-hand side of~23! or ~24!, except for the first one, are se
equal to zero, thus transferring the main part of the strea
wise variation of the perturbations to the exponential fun
tion x. We shall see that both normalization conditions yie
almost identical results, except whenuHu have several
maxima, in which case the condition based onā2 is pre-
ferred.

The PSE with its normalization condition is solved wi
the radial boundary conditions:16

j→`:

F5G5H50; ~25!

j50:

F5G50, ]H/]j50 ~n50!, ~26!

F6G50, ]F/]j50, H50 ~n561!, ~27!

F5G5H50 ~ unu.1!. ~28!

In addition, the eigenfunctionS5@ iF ,G,H,P#T and the
complex wave numbera have to be specified at the initia
axial locationx0 ~see below!.

C. Numerical method

Equations~18!–~21! can be written as

2xDM
]S

]x
5@L11aL21DL31a2DL4#S, ~29!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where M, L1 , L2 , L3 , and L4 are linear, order of unity,
complex operators which depend onx and j. L1 depends
linearly on the frequencyv and contains]/]j terms, whileL3

contains both]/]j and ]2/]j2 terms. To solve numerically
this equation, thej dependence ofS is discretized using a
staggered Chebyshev spectral collocation technique de
oped by Khorrami.17 This method has the advantage
eliminating the need of two artificial pressure boundary c
ditions at j50 and j5`, which for that reason are no
included in ~25!–~28!. The boundary conditions at infinity
~25! are applied at a truncated radial distancehmax

5rmax/d(z), chosen large enough to ensure that the results
not depend on that truncated distance. The computat
showed thathmax530(jmax5900) was sufficient for mos
profiles to obtain an accuracy of six significant figures. Sin
the value ofhmax does not affect to the computation tim
much, hmax550(jmax52500) was used in most of the re
ported computations. To implement the spectral numer
method, Eq.~29! is discretized by expandingS in terms of
truncated Chebyshev series. A nonuniform coordinate tra
formation is used to map the interval 0<j<jmax into the
Chebyshev polynomials domain21<s<1, j5c1(1
1s)/(c22s), wherec1 is a constant~c153 in all the com-
putations! andc25112c1 /jmax. This transformation allows
large values ofj to be taken into account with relatively few
basis functions.17

Thej domain is thus discretized inN points,N being the
number of Chebyshev polynomials in whichS
5@ iF ,G,H,P#T has been expanded. In the results presen
here,N ranged between 40 and 100. The streamwise der
tive ]S/]x is approximated by the finite difference form
(Sj 112Sj )/(Dx) j , where j is the step index in the axia
direction, and (Dx) j the step size. A marching technique
used to solve the 4N discretized equations resulting from
~29!, starting atx5x0 . Since the unknowna appears withS
on the right-hand side of~29!, it constitutes, with the normal
ization condition, a system of nonlinear equations forS and
a. Iteration is used to solve the nonlinear system of d
cretized algebraic equations at each axial stationj 11: one
starts with the results of the previous stationj, and uses~29!
with aj to obtain a first approximation forSj 11 ; these are
used in the normalization condition to yield a first appro
mation for aj 11 , which is again used to correctSj 11 ; the
iteration procedure is continued until the modifications in
real and imaginary parts ofa are both less than 1028. Usu-
ally, between two and six iterations were needed. The p
cess is repeated at the next marching step.

As the initial condition atx5x0 , the eigenvaluesa0 and
eigenvectorsS0 of the right-hand side of Eq.~29! equated to
zero are used:

05@L11a0L21DL31a0
2DL4#S0 . ~30!

The solution obtained with this local eigensolution as
initial condition presents a short transient region before c
verging to the solution of the PSE. As we shall see, t
transient region is so short that there is no need to refine
initial condition with the first term of a Taylor series aroun
x5x0 .9 The eigensolutions of~30! are equivalent to those
obtained in thetemporal stability analysis of T~see next
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section!. However, since in thespatialstability analysis per-
formed here one fixes the~real! frequencyv of the perturba-
tions to obtain the complex wave numbera ~spatial amplifi-
cation g and axial wave numbera!, ~30! constitutes a
nonlinear eigenvalue problem, instead of the linear one
the temporal analysis. This nonlinear eigenvalue problem
solved using the linear companion matrix method descri
by Bridges and Morris.18 The resulting~complex! linear ei-
genvalue problem of dimension 8N is solved with the IMSL
subroutineDGVCCG, which provides the entire eigenvalu
and eigenvector spectrum. Owing to nonlinearity, the size
the matrices in the spatial eigenvalue problem is thus tw
the size of the matrices in the temporal analysis for the sa
value ofN, and the computation time is much larger. Als
due to the large dimensions of the matrices in~30!, a rela-
tively large amount of spurious numerical eigenvalues w
very small wave numbers~large wavelengths! are produced
by the eigenvalue solver, particularly whenv* is also very
small. They are easily discarded, however, because the
responding growth rates increase without bound withN, in-
stead of rapidly converging to a finite value, as it happens
eigenvalues of physical modes. Thus, a minimum or cu
value ofa is used when looking for the most unstable mo
~highestg! for a given frequency and flow parameters. Th
lower limit is easily selected by just increasingN. Finally,
the axial step size (Dx) j is adjusted according to the loca
wavelength of the perturbation. A fractione of the local
wavelength, (Dx) j5eD0 /a j , is selected at each axial step
met a given tolerance.

III. RESULTS

The results presented here are for a Long’s vortexm
51) with three different values of the nondimensional ax
velocity at the axis:A151.2, corresponding to a Type I so
lution with M.6.838; A1520.5, which corresponds to
Type II solution with M.5.76, andA150.15, which ap-
proximately corresponds to the minimum or folding value
the flow forceM5M* .3.75~see T for a plot of the velocity
profiles!. All the results are for the most unstable mod
~highest g!, for a selection of frequencies~v!, azimuthal
wave numbers~n!, and Reynolds numbers (D215D0

21) at
different axial locations. The azimuthal wave numbers co
sidered aren50 ~axisymmetric perturbations!, n521, and
n511. As shown in the references cited in Sec. I, these
modes withunu51 are the most relevant spiral modes. R
sults for n,21 and n.1 are qualitatively equivalent to
those forn521 andn511, respectively.

A. Local nonparallel results

As mentioned above, the eigenvalues and eigenfunct
of the local problem~30! are used as the initial condition fo
the PSE~29!. Before presenting some representative lo
results, it is convenient to check the numerical implemen
tion of the linear companion matrix method used to so
~30! by comparing these spatial results with those obtain
from the equivalent temporal stability analysis of T. Accor
ing to Gaster,7 given a perturbation of the form exp@i(ax
2vt)#, with complex wave numbera5a r1 ia i and complex
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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frequency v5v r1 iv i , the ratio between the tempora
v i(T), and spatial,2a i(S), growth rates is equal to th
group velocity,cg[]v r /]a r , provided that the growth rate
are small and that the frequencyv r and the wave numbera r

are both equal in the temporally and spatially increasing
turbances@~T! and ~S! denote results from the temporal an
spatial stability analysis, respectively#. In the notation of the
present work and of T, one has thatg(S)5v i(T)/cg(T),
provided thata(S)5a(T) and v r(T)5v(S), and x51 in
~S!. Table I compares the temporal and spatial stability
sults for a Type I vortex withA151.2 andD51023 when
non-axisymmetric disturbances withn521 and different
wave numbersa are present in the flow. One selects firs
value of a(T) and obtains from the analysis in Tv i(T),
v r(T), andcg(T)5]v r(T)/]a(T). Then,v(S) is set equal
to v r(T) in the present eigenvalue problem~30! with x51
to obtain the spatial growth rateg(S) and axial wave numbe
a(S). Taking into account the disparity of the methods us
to solve the linear~T! and the nonlinear~S! eigenvalue prob-
lems, and that the growth rates are not so small, the ag
ment is good.

Figures 1–3 show the local growth rates and axial wa
numbers for the most unstable modes atx51 as functions of
the frequency for the three selected basic flows and value

TABLE I. Comparison between temporal~T! and spatial~S! stability results
for A151.2,n521, D051023, and several values ofa. N540 in both~T!
and ~S!, andx51 in ~S!.

a(T) v r(T) v i(T) cg(T) v i(T)/cg(T) g(S) a(S)

0.340 0.170 0.178 1.371 0.130 0.132 0.33
0.480 0.428 0.242 1.832 0.132 0.136 0.47
0.770 1.039 0.193 2.265 0.0832 0.0880 0.77

FIG. 1. Local growth ratesg ~continuous lines! and axial wave numbersa
~dashed lines! for the most unstable modes with azimuthal wave numben
521 at x51 as functions of the frequency for a Type I flow withA1

51.2 and two Reynolds numbers:D51023 ~upper curves! and D51022

~lower curves!. N540.
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n. In agreement with T, flows corresponding to Type I so
tions are unstable only for non-axisymmetric disturban
with negative azimuthal wave numbers~n521 in Fig. 1!.
Type II flows are also unstable for non-axisymmetric dist
bances withn.0, and, more importantly, for axisymmetri
disturbances@Fig. 3~a! shows the results forn521, while
Fig. 3~b! those forn51 and n50#. Finally, flows corre-
sponding to the folding valueA150.15 are unstable for non
axisymmetric perturbations with negative and positive valu
of n ~n521 andn51 in Fig. 2!. The numberN of Cheby-
shev polynomials used in the computations increases f
Fig. 1 to 3 because, as shown in Fig. 4 forn521, the
number of local maxima and minima in the most unsta
eigenfunctions increases asA1 decreases; that is, the eige
functions for a Type II flow are more ‘‘complex’’ than for a
Type I flow, and a higher resolution in the radial direction
needed to obtain a comparable accuracy in the results~larger
radial truncation valuesjmax are also needed for the bas
flow!. One can observe in Figs. 1–3 that the most unsta
modes have usually a growth rateg with a maximum less
than 0.2 for a particular frequency, and an axial wave nu
ber a which increases almost linearly with the frequenc
Thus, the phase speedc5v/a and the group velocitycg

5]v/]a of these modes are both positive and almost f
quency independent. They therefore correspond to con
tive instabilities. However, this is not the case for the m
unstable modes withn521 in a Type II flow, whereg is
quite larger anda decreases asv increases@see Fig. 3~a!,
where also shown is the second most unstable mode, w
has a similar pattern to that of the most unstable modes
Type I flows#. The most remarkable feature of these high
unstable modes is their negative group velocity, which
plains why they were not found in the temporal stabil
analysis of T: the corresponding temporal growth ra
v i(T)5g(S)cg is also negative. Thus, the most unstab

FIG. 2. Local growth ratesg~v! ~continuous lines! and axial wave numbers
a~v! ~dashed lines! for the most unstable modes withn521 andn51 at
x51 for a flow with A150.15 andD51023. N560 for n521 and N
5100 for n51.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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temporal modes found in T forn,0 in a Type II flow cor-
respond to the spatial modes labelled with the subscript
Fig. 3~a!. The present computations show that the unsta
spiral modes with negative group velocities appear forA1

,0, with cg→02 for A1→02. Thus, most Type II Long’s
vortices ~those with negative axial velocity at the axis! are
subcritical in Benjamin’s sense:19 they sustain both
upstream- and downstream-traveling waves, that is, line
unstable modes with both negative and positive group
locities. Type I vortices aresupercritical because they can
sustain only downstream-traveling waves, that is, conv
tively unstable modes with positive group velocities.

FIG. 3. Localg~v! ~continuous lines! anda~v! ~dashed lines! at x51 for a
Type II flow with A1520.5 andD51023. ~a! n521. The two most un-
stable modes are shown with subscripts 1 and 2, respectively.~b! n51 and
n50 ~note that forn50 the plotted growth rate is multiplied by 10!. N
5100 in all cases.
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FIG. 4. Real and imaginary parts of the eigenfunctionsF ~full lines!, G
~dashed lines!, H ~dash-dot-dash lines!, and P ~dotted lines! for the most
unstable modes withn521 andv50.3 atx51. Also included along with
the real parts isuHu ~dash-dot-dot-dot lines!. ~a! A151.2, N540. ~b! A1

50.15,N580.
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As observed in Fig. 3~b!, the maximum growth rate is
also larger than 0.2 for non-axisymmetric disturbances w
n.0 in a Type II flow ~n511 in that figure!, reaching a
maximum asv→0, wherea~v! is no longer a linear func-
tion, but with the group velocity always positive. In the sam
figure it is also observed that the unstable axisymmetric
turbances have a growth rate more than an order of ma
tude smaller than the non-axisymmetric ones.

B. PSE results

The numerical integration of the PSE~29! is started at
some axial locationx0 using the eigenvalues and eigenfun
tions of Eq.~30! as the initial condition. To test the appro
priateness of this initial condition, Fig. 5 shows the ax
evolution of the growth rate and axial wave number of t
most unstable mode forA151.2, n521, and two values of
the Reynolds number, starting at two different axial loc
tions:x050.5 andx050.75. For the higher Reynolds numb
considered (D51023), the integration fromx50.75 cannot
be distinguished from that starting atx050.5, and both re-
sults are also indistinguishable from the local ones. For
lower Reynolds number (D51022), for which the differ-
ences with the local eigenvalues are larger, the results o
integration fromx050.75 with the local eigenvalue also co
incides practically with the ones fromx050.5 after a short
transient interval whose length is just a few axial steps of
numerical integration. This behavior is also observed for
the values ofA1 , n, andv considered.

Figure 5 compares also the PSE results obtained with
two different normalization conditions discussed in Sec. II

FIG. 5. Axial evolution of the growth rateg ~continuous lines! and axial
wave numbera ~dashed lines! of the most unstable mode withn521 for
A151.2, v50.3, and two Reynolds numbers corresponding toD051023

~upper curves! and D051022. These results are obtained from the PS
using the normalization condition based ona2 , while the dash-dot-dash
lines correspond to the same cases but using the normalization cond
based ona1 . In the first case, the PSE are integrated starting at bothx0

50.5 andx050.75. Finally, the dotted lines correspond to the eigenval
of ~30! at eachx. N550.
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Since for the Type I flow considered in that figureuHu has
only a maximum in the radial direction@see Fig. 4~a!#, both
results almost coincide. However, asA1 decreases, the num
ber of local maxima ofuHu increases@Fig. 4~b!#, and the
normalization condition based onā1 yields poorer results. In
particular, for Type II flows, the absolute maximum ofuHu
may shift at some axial location, producing an artificial jum
in the results. For this reason, all the results given below
obtained with the normalization condition based onā2 ,
which makes use of a physical growth rate defined in ter
of the radial integral of the axial velocity of the disturbance

One can see in Fig. 5 that the local results coincide w
the results from the PSE for high Reynolds numbers~e.g.,
D51023!. The differences increase withD, particularly for
small growth ratesg. Thus, forD51022 in Fig. 5, the axial
location whereg vanishes predicted by the local formulatio
is larger than the obtained from the PSE. However, exc
for these very small values ofg, the differences between
local and PSE results remain small. For non-axisymme
disturbances withn521 when A150.15 andA1520.5
~Figs. 6 and 7!, and forn51 whenA1520.5 ~Fig. 8!, the
differences are even smaller than in Fig. 5. In all these ca
the growth rateg decays axially from its starting value a
x050.5, until it eventually vanishes at some axial locatio
In addition ton and the basic flow (A1), the location where
g vanishes depends on the frequencyv, which in the re-
ported results is chosen such that this location is the fart
~approximately!. This pattern of the solution is less clear
Fig. 7, where the computations have to be stopped when
axial wave numbera becomes too small. However, this e
ceptional situation occurs only for the unstable modes w
negative group velocities corresponding ton521 in a Type
II flow with a two-cell pattern (A1,0). For these distur-
bances with negative group velocities, the streamw
marching of the PSE method is not physically appropria

ion

s

FIG. 6. g(x) ~continuous lines! and a(x) ~dashed lines! for the most un-
stable mode corresponding toA150.15,n521, v50.3, and two values of
Reynolds number:D051023 ~upper curve forg and lower one fora; N
550!, andD051022 (N560). Also included are the corresponding eige
values of~30! ~dotted lines!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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For disturbances withn511 in a flow with A150.15
~Fig. 9!, andn50 with A1520.5 ~Fig. 10!, the situation is
quite different. The flow is stable atx050.5, becoming un-
stable at some axial location, whereg becomes positive
Then,g reaches a maximum, and decreases until it vanis
at some further axial location. Thus, for these disturbanc
the corresponding Long’s vortices are convectively unsta
only in a definite axial region, rather than being unsta
‘‘until’’ some axial location, as it happens in all the othe
cases considered. This situation is more in accordance

FIG. 7. g(x) ~continuous lines! and a(x) ~dashed lines! for the most un-
stable modes corresponding toA1520.5,n521, v50.3, and three values
of the Reynolds number: from top to bottomD051022, 531023, and
1023. The dotted lines correspond to the eigenvalues of~30!, which practi-
cally coincide for the three Reynolds numbers.N560.

FIG. 8. g(x) ~continuous lines! and a(x) ~dashed lines! for the most un-
stable modes corresponding toA1520.5, n511, v50.6, and two values
of Reynolds number:D051022 ~upper curves!, and 1023. Also included are
the corresponding eigenvalues of~30! ~dotted lines!. N560.
Downloaded 08 Jun 2006 to 150.214.40.140. Redistribution subject to AI
es
s,
le
e

ith

the convective instabilities found, for instance, in bounda
layer flows@but, in the present case, the local Reynolds nu
ber is constant along the flow,D(x)5D0 for m51#. The
differences between local and PSE results are also comp
tively larger than in the other cases considered. It must
also noted that these disturbances become stabilized by
cosity at higher Reynolds numbers than those shown in F
5–8, so that only the valueD51023 is plotted ~for D
51022 these two disturbances are stable, see below!.

Finally, in order to compare the streamwise variation
the most unstable modes for the different Long’s vortic
and azimuthal wave numbers considered, and their stabi
tion due to viscosity, it is instructive to represent the ax
evolution of the amplitude of the perturbations, with refe

FIG. 9. g(x) ~continuous line! anda(x) ~dashed line! for the most unstable
modes corresponding toA150.15, n511, v50.6, andD051023. The
dotted lines correspond to the eigenvalues of~30!. N560.

FIG. 10. 103g(x) ~continuous line! and a(x) ~dashed line! for the most
unstable modes corresponding toA1520.5, n50, v50.7, and D0

51023. The dotted lines correspond to the eigenvalues of~30!. N560.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 11. A(x) for, from top to bottom,D051023, 2.1531023, 4.6431023, and 1022, in the following cases:~a! A151.2, n521, v50.3 (N550); ~b!
A150.15, n521, v50.3 (N560); ~c! A1520.5, n521, v50.3 (N560); ~d! A1520.5, n511, v50.6 (N560); ~e! A150.15, n511, v50.6 (N
5100); and~f! A1520.5, n50, v50.7 (N580).
ig the
ed.
st
ces

m-
ence to the amplitude at a given location~x51, say!, for
each case at different Reynolds numbers. To that end, F
11~a!–11~f! show the logarithm of the amplificationA based
on the axial velocity of the perturbation,

A~x![RealF w̃~x!

w̃~x051!G5
1

D0
E

1

x

g~x8!dx8, ~31!
Downloaded 08 Jun 2006 to 150.214.40.140. Redistribution subject to AI
s.
for the different values ofA1 , n, andv considered, and for
decreasing values of the Reynolds number. In particular,
series Re5D0

215103, 464, 215, and 100 has been select
As expected from~31!, the amplification increases almo
linearly with Re. However, as Re decreases, the disturban
eventually become stabilized, as it is clear for an axisy
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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metric disturbance whenA1520.5 @Fig. 11~f!#, where only
the case Re5103 is unstable, and forn511, A150.15@Fig.
11~e!#, where the the disturbance is stable for Re5100. Note
that for the axisymmetric disturbance@Fig. 11~f!#, the plotted
amplitude starts at the beginning of the convective insta
ity, rather than atx051. For a given Re, the maximum am
plification depends not only on the magnitude of the am
fication rate g, but also on the axial location whereg
vanishes. Thus, although the values ofg at x51 for n5
21 andv50.3 are of the same order of magnitude for ba
flows with A151.2 andA150.15, the maximum amplifica
tion is about one order of magnitude larger in the former c
becauseg vanishes farther away@Figs. 11~a! and 11~b!#.
Note also that the results plotted in Fig. 11~c! for A1

520.5 andn521, corresponding to the highly unstab
modes with negative group velocity, show very large amp
fications becauseg, and the location whereg vanishes, are
both large.

IV. SUMMARY AND CONCLUSIONS

The spatial, nonparallel linear stability of Long’s vorte
has been analyzed using parabolized stability equati
These equations result naturally from the linear stability f
mulation of the high Reynolds number problem when o
retains terms up to order Re215D, which is the same degre
of approximation of the basic flow. The PSEs are solved w
a marching technique in the axial direction combined with
staggered Chebyshev spectral collocation method in the
dial direction. The results are compared with local ones fr
the eigenvalue problem of the local spatial stability formu
tion. Nonparallelism is partially included in this local formu
lation: it accounts for the effect of the streamwise variat
of the basic flow at the same order of magnitude as the ef
of viscosity on the stability of the flow. However, the loc
equations do not take into account the effect of the history
the disturbance on its stability, which is alsoO(D). The
comparison provides thus a quantification of this effect
the stability of an important class of vortices. It is shown th
the differences in the growth rate and the axial wave num
are, in general, very small even for moderately low Re (
;102), below which the unstable disturbances become u
ally stabilized by viscosity. The differences may, howev
be larger for small growth rates, which are better predic
from the PSE. Thus, the effect of the history of the dist
bances is important at low Re to accurately predict the a
location where an unstable mode becomes stabilized,
therefore to accurately obtain neutral curves of stability. F
the same reason, it is also important to accurately predict
onset of new convectively unstable modes, as shown
non-axisymmetric modes with positiven whenA1 is near the
folding value ofM, and, more importantly, for unstable ax
symmetric modes for Type II vortices, which have grow
rates more than an order of magnitude smaller than the h
cal modes. To these considerations one has to add the im
tant advantage of the PSE of being computationally m
faster to solve than the nonlinear eigenvalue problem of
local spatial stability analysis, particularly when a high rad
resolution, and therefore a high value ofN, is needed. How-
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ever, a local eigenvalue problem has to be solved alway
provide for the initial condition in the marching method us
to solve the PSE.

The present spatial stability analysis confirms, forcon-
vectiveinstabilities, the linear stability pattern of Long’s vo
tex found with the temporal stability analysis of T: Bo
Type I (A1* .0.15,A1,`) and Type II (21/&,A1

,A1* ) Long’s vortices are unstable to non-axisymmetric d
turbances withn,0, while only Type II flows are convec
tively unstable for axisymmetric disturbances in certain f
quency ranges and axial locations. These axisymme
unstable modes have growth rates much smaller than
non-axisymmetric ones. Helical disturbances withn.0 be-
come unstable whenA1 decreases below a certain value
little larger thanA1* . For a given axial locationx, all these
inviscid instabilities become stable as Re decreases belo
critical value which depends on the basic flow (A1) and on
the perturbation~n andv!, except for Type II flows withA1

near its minimum value~ring-jet vortex!, for which purely
viscous unstable modes may appear below a certain valu
Re ~see T!.

The local spatial analysis reveals, however, the existe
of new helical, counter-rotating, unstable modes for Type
flows which are not found with the temporal computatio
owing to their negative group velocities. These new unsta
modes, which have a much larger spatial growth rate than
other inviscid convectively unstable modes, show that Ty
II and I flows are fundamentally different from a stabilit
point of view not only because the former ones are conv
tively unstable to axisymmetric (n50) disturbances, bu
also because only Type II flows can sustain upstrea
traveling waves~with n521!. Therefore, Type II Long’s
vortices are subcritical in Benjamin’s sense, or absolut
unstable for disturbances withn521, to use the more recen
concepts of absolute/convective instabilities,20 which have
been very recently applied to the stability analysis of Bat
elor’s vortex.21 Type I vortices are just convectively unstab
for non-axisymmetric disturbances~mainly with negative
azimuthal wave numbers, except very close to the fold
value of the flow force!, and, therefore, they are supercritic
swirling flows. Actually, the transition between supercritic
and subcritical Long’s vortices takes place atA150, rather
than atA15A1* .0.15, i.e., when the axial velocity at th
axis becomes zero, in qualitative agreement with Benjam
theory on vortex breakdown.19

The present spatial stability analysis is also more app
priate than the temporal counterpart to study the convec
instabilities of Long’s vortex because it provides natura
the streamwise evolution of the disturbances, this being
with independence of the fact that the effect of the history
the perturbations on their stability cannot be correctly tak
into account in a temporal stability analysis. From the resu
one observes that all the inviscid unstable modes eventu
become stable at a downstream axial location which depe
on the basic flow and on the upstream perturbation con
ered, a consequence of the nonparallelism of the basic fl
with a vortex core radius increasing withx. At the axial
location where the growth rateg vanishes for a given pertur
bation, the amplitudeA reaches a maximum and then deca
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~Fig. 11!. However, the maximum of the amplitude is usua
so large that one would have to consider nonlinear effe
before reaching that axial location to correctly predict t
subsequent streamwise evolution of the linearly unstable
turbation.
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APPENDIX

Some considerations about the integrated axial mom
tum flux of the basic vortex are made in this appendix.

Multiplying the axial momentum equation

U
]W

]r
1W

]W

]z
1

]P/r

]z
5

n

r

]

]r S r
]W

]r D
by r, integrating across the vortex, and making use of co
nuity, one obtains

E
0

Kd~z! ]

]z S W21
P

r D rdr

5nF r
]W

]r G
r 5Kd~z!

2~rUW!r 5Kd~z! , ~A1!

whereK is a large positive constant andd(z) is the boundary
layer thickness ~5!. Taking into account that14 f (j)
;(Cj)m/2@11Qjl2# for j5K2@1, whereC andQ are in-
tegration constants andl2 is the negative root ofl21(m
21)l1m221(m21)L2/250, according to~4! and ~5!,
the right-hand side terms in~A1! vanishes asKm22 and
K2(m211l2), respectively~note that form51, l2521, and
the last term goes to zero asK22!. Therefore, the integral on
the left-hand side of~A1! vanishes forK→`. Performing
the differentiation and substituting~3! and ~4!, one finds

E
0

Kd~z! ]

]z S W21
P

r D rdr

5
d

dzE0

Kd~z!S W21
P

r D rdr 2K2d8~z!d~z!

3S W21
P

r D
r 5Kd~z!

5
d

dz S nz2

2d2D E
0

K2

~4 f 821b!dj

2K2
n2z

md2 @4 f 821b#j5K2→0 as K→`.

Thus, on using~5! and the large-j behaviors off andb,14 this
last expression becomes
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n-
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S W0

m D 2/m

n~nz!122/mFm21

m E
0

K2

~4 f 821b!dj

2mCmS 12
L2

2~22m! DK2~m21!G→0, K→`. ~A2!

Since the first term vanishes form51 ~Long’s vortex!, this
constraint can be satisfied only ifL5&, as it was shown
from a first integral of the self-similar axial momentum equ
tion in Ref. 14, and it is also found numerically. Note th
if L5&, the pressure term cancels theW2 term at large
j, and the integral in~A2! becomes bounded asK→` for
m51. Thus, the nondimensional flow force, defined
M [ 2p*0

`(W21P/r)rdr /(W0mLCm/2)25p*0
`(4 f 821b)/

(mLCm/2)2, is finite for Long’s vortex.13 For 1,m,2, that
integral is unbounded, but the constraint~A2! is satisfied
because constantC is such that this infinity cancels with th
also unbounded second term inside the square brackets.
is shown in Ref. 14, this cancellation is only possible f
values ofL below a critical valueL* (m), which is smaller
than& for 1,m,2. For 0,m,1, the second term in~A2!
becomes zero, and so must be the integral asK→`, thus
selecting the value ofC. This is shown to be possible forL
abovea critical valueL* (m).&.

It is worth noticing that the flow force is an invariant o
the motion for 0,m<1:

d

dzE0

`S W21
P

r D rdr 50 for 0,m<1.

In fact, the flow force is a nonvanishing constant only f
m51 ~Long’s vortex!: for 0,m,1 it is zero, while for 1
,m,2 it is infinity. In general, for 0,m,2, the solution
satisfies the more general integral constraint

lim
K→`

E
0

Kd~z! ]

]z S W21
P

r D rdr→0. ~A3!
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