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Nonparallel linear stability analysis of Long’s vortex
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A nonparallel linear stability analysis of a family of self-similar vortex cores which includes Long’s
vortex as a particular member is performed using parabolized stability equdf#&t. The
resulting streamwise variation of both the spatial growth rate and the axial wave number of the
different unstable modes is compared with the results from a local spatial stability analysis which
also takes into account the effects of viscosity and of the streamwise variation of the basic flow, so
that the effect of the history of the disturbances on their stability is quantified. It is shown that this
last effect is negligible for high Reynolds numbers, but becomes increasingly important as the
Reynolds number decreases, especially for very small growth rates. The marching method used to
solve the PSE is computationally much faster than the standard methods for solving the nonlinear
eigenvalue problem resulting from the local stability equations. As a new result, the local spatial
calculations reveal the existence of unstable counter-rotating spiral modes with negative group
velocities for Type Il Long’s vorticegthat is, vortices with negative streamwise velocity at the
axig), thus showing that these flows are subcritical in Benjamin’s sense. This kind of instability does
not appear for Type | vortices, which can only sustain non-axisymmetric convective instabilities,
and are therefore supercritical. Thus, the spatial stability analysis establishes a fundamental
distinction between Type | and Type Il Long’s vortices. 1®99 American Institute of Physics.
[S1070-663(199)00205-9

I. INTRODUCTION the nonparallelism of the flow is more important than viscos-
ity in the finite Reynolds behavior of the perturbations. The

simpl)_lzn?nz d\(/acl)r:z( hri]grf Igzsgoﬁi)ge:jrlxgg sg?tisclgir%? ;jo_?ocal nonparallelism of the basic flow and of the amplitude
Rf the perturbations, in addition to the effect of viscosity,

physical and engineering interest, mainly because it is a taken int ti lin Ref. 6. wh
exact solution to the near-axis approximation of the Navier—V/Er€ taken into account in general in Ref. ©, wheré new

Stokes equation which is nonparallel and consistently inPurely viscous and inviscid axisymmetric, unstable modes
were found for Type Il Long’s vortices. These last unstable

cludes a relatively important axial flow, both characteristics des h h h d ¢ tud
present in most real vortices of interest. In particular, irgmodes have growth rates more than an order of magnitude

stability has been analyzed by a number of authors usmamaller than the inviscid non-axisymmetric unstable modes.
different techniques and degrees of approximation, with the 1he last two cited works considered the nonparallel ef-
main objective of trying to elucidate and predict some of thef€€ts Of the basic floviocally, i.e., without the effect of the

interesting properties that highly swirling flows present inNistory of the perturbation, as it is convected by the basic

practice. Most of these previous works considered the temlOW, Upon its stability. The new terms accounting for this

poral stability (that is, with given real wave number and €ffect in the stability equations are, for high Reynolds num-
unknown complex frequengyf Long’s vortex using a par- bers, of the same or.der of magnltgde than the terms arising
allel flow approximation. Thus, Foster and Ddcknalyzed from the nonparallelism of the basic flow and from the vis-
the inviscid stability using a finite-difference method to solve€ous forceswhen the axial wavelength of the disturbances is
the resulting set of two ordinary differential equations. Theycomparable to the vortex core radiusience, they should be
found that the flow is unstable for non-axisymmetric, taken into account in a consistent analysis of the convective
counter-rotating 16<0) perturbations. This work was later Stability of Long’s vortex. However, we shall see that the
extended by Foster and Smitland by Ardalaret al.®> who  actual effect of these new terms is negligible except for rela-
made an asymptotic analysis of the inviscid stability in thetively small Reynold{Re) numbers when the growth rate is
limit of large flow force for Type Il and Type | Long’s vor- Very small.

tices, respectively. The viscous stability was considered by ~ To appropriately account for the effect of the history of
Khorrami and Trivedf, who, using a spectral collocation the disturbance on its stability, one has to considersee
method to solve the stability equations, obtained also asyntial, rather than theemporal stability of the flow; that is,
metric co-rotating §>0) inviscid unstable modes for Type with given real frequency look for the complex axial wave
Il vortices, previously found asymptotically in the limit of number. This kind of analysis is also the appropriate one to
large flow force by Foster and SmitiNonparallel effects study the spatial evolution of waves as they propagate from a
were considered locally by Foster and Jacghiinthe limit  given forced oscillation at a given location. In order to check
of large flow force and small axial wave number for Type Il the numerical procedures and results, a comparison is first
Long'’s vortices. They found that for these long-wave modesnade between the results of tleeal spatial stability equa-
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tions (without the terms accounting for the history of the vortex (m=1) shall be considered in this work, keeping in
disturbancesand the equivalent results from tliemporal  mind that the results can be extrapolated to the more inter-
stability analysis of Ref. 6(hereafter T using Gaster's esting cases witm slightly larger than unity. In fact, for the
relation’ for small growth rate§.1t is shown that the local sake of generality, the problem will be formulated for any
spatial analysis reproduces the results of the temporal instaalue of m, although results will be given only for Long’s
bility calculations when the group velocity is positigeon-  vortex.

vective instabilities However, new unstable counter- The vortex core has the self-similar structure

rotating spiral modes with negative group velocities are

found for Type Il vortices with the present spatial formula- V=vzi(), 2
tion which are not obtained with the temporal analysis. As vz P (v2)?
discussed in the last section, these new unstable modes es- V= %7(8, . 54—2),3(§), ©)

tablish a fundamental difference between Type | and Type I
Long’s vortices. Once the results from the spatial and temWhere¥ is the stream function for the meridional motion,
poral local eigenvalue problems have been checked witthrough which the axial and radial velocity components are
each other, they are compared with the nonlocal spatial re- 1 0¥ vz

sults of the linear stability equations with the additional W=——=5—=2f'(§),

terms describing the history of the disturbances. Retaining rar &)
terms up to order R&, these stability equations are equiva- 1 0¥ v
lent to those obtained with the assumptions made in the U:_FE:_F
parabolized stability equation®SB method, formulated by

Bertolotti, Herbert, and Spaldrfor the Blasius boundary The similarity variable¢ is defined in terms of the vortex
layer problem(see also Refs. 10 and YL1A marching tech- ~ core thicknessj(z):

nigue in the streamwise direction, combined with a spectral r myz\ 1m
collocation method in the radial direction, is used to solve  ¢=72, =——, 5(z)=(—)
the resulting PSE for the stability of Long’s vortex. a(2) Wo

261(9)

m

4
(é) }

©)

The functionsf, y, and 8 are governed by a set of three

nonlinear ordinary differential equations, which are solved in
Ref. 14 by shooting. For eaah, the swirl parametet is a

A. The basic vortex function of the nondimensional axial velocity at the axis,

Long’s vorteX?13is a similarity solution to the near-axis A1=f'(0), with —1#/2<A;<e. Except for the casen
boundary layer approximation of the steady, incompressible,:*l* this function is nonmonotonic, having an extremum
and axisymmetric Navier—Stokes equations, matching an ink (m), which is a minimum for Gm<1 and a maximum
viscid flow with axial and azimuthal velocities inversely pro- for 1<m<2 (see figures 2 and 3 in Ref. 14Thus, when
portional to the distance to the axis of symmetry. Long 0<M<1, two solutions exist fot >L*(m), and there is no
showed that there are two solutions fdr>M*, and none solution forL<L*(m); when 1<m<2, no solutions exist
for M<M*, whereM is the dimensionless flow force, and for L>L*(m), and there are two possible solutions for
M* is a critical value. It was shown in Ref. 14 that Long's <L”(m). For the special casen=1 (Long's vortey, L
vortex can be viewed as a particular member of a more gen= V2 for all values ofA, . In this case, the nondimensional
eral family of self-similar vortex cores matching an inviscid flow force parameteM, which is constant along the axis for
flow field proportional to a certain power of the distance toM=1 (see the Appendix for a discussion OflSt?E!S matter
the axis of symmetry; that is, vortices which in cylindrical Pl2ys a role somewhat analogousltdor m=1:™for M
polar co-ordinates r(6,z) match an inviscid velocity >M*=3.75 two solutions exist, denoted by Burggraf and

1. FORMULATION OF THE PROBLEM

(U,V,W) and pressur® fields given by Fostef® as Type | and Type Il solutions, and none fdr
<M*. For m>1, this classification of the solutions is ex-

W=Wor™™?,  U=0, V=*LWyr™m? trapolated to the two possible solutions forcL* (m). In

P (LW,)? terms_of the_n(_)ndi_mensional axial velocity at the aXs,

. mrz(m”), (1)  there is no distinction between=1 andm>1: All Type |

solutions have a positive axial velocity at the axis, with
wherep is the fluid density, &2m<2, andW, and the swirl  within the interval (A} (m),»), where A} =0.15 is almost
parametet are positive constantd) is not exactly zero, but independent ofm; most Type |l solutions have a negative
decays faster thaw or V for r —=).2* Long’s vortex corre- axial velocity at the axis, withA; in the interval (
sponds to the case=1. It was also argued in Ref. 14 that —1~#2,A7(m)) (see figures 1 and 2 in)TIn the limit of
vortices withm slightly larger than unity are the most inter- large A; (M large form=1 or L—0 for m>1), Type |
esting ones within the family to model real vortex flows. vortex has an intense positive axial flow near the axis, while
However, since it was shown in T that the temporal stabilityfor A;— —1A2 (againM large form=1 or L—0 for m
properties are qualitatively the same for=1 and form  >1), Type Il vortex has the form of a ring-jet with large
>1 if one uses the nondimensional axial velocity at the axigositive axial flow on the ring and negative axial flow in its
(parameterA; defined below instead ofM or L as the pa- interior (see Ref. 2 for asymptotic solutions in these two
rameter characterizing the different solutions, only Long’slimits whenm=1). Finally, it should be mentioned here that
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although Long’s vortexrp=1) is the only one in the family The nondimensional, order of unitpr smallej, axial wave
of self-similar solutions which has a constant, nonzero flonnumbera is defined as
force M, all the other solutions for €m<2 satisfy the

weaker conditior(see Appendix a(x)= Gok(x)= y(x) +ia(x), (15
and the imaginary par&(x) is the axial wave number. A

Kot g p which accounts for the fast, wave-like variation of the per-
lim f W2 )rdr—»O. (6) turbations. Its real pary(x) is the exponential growth rate,
K—ow J0

nondimensional, order of unity, frequenayis also defined:
B. Nonparallel linear stability formulation 08

The nonparallel parabolized stability equations are now  w= (16)
developed for the above family of swirling jets. The flow
variables, (,v,w) andp, are decomposed, as usual, into a  Substituting(12)—(16) into the incompressible Navier—

mean part, ,V,W) andP, and a small perturbation. After Stokes equations, and neglecting second-order terms in both

VZO )

(3) and(4), the small perturbations and the inverse of the local Reynolds
number,
Y2t +w V[ L
W= — w], u=—|—f+——+ U, S(z
0 ' m o A= —(Z ) =Ax'M1=Re !, 17

z (vz)®
o= By, B2

(8 which is assumed to be small within the boundary layer ap-
proximation(note that for Long’s vortexA = A is constant

where the perturbations along the flow, while form slightly larger than unity is a

9) slowly decreasing function of), the following set of linear
PSE results:

are, in general, functions of the four independent variablegontinuity:

(r,6,z,t). Since the mean flow depends on the similarity

s=[u,0,w,p]"

i i imensi iable i JH _AEF) G
variable ¢ [Eq. (5)], this nondimensional variable is used WAt
. . ) ) . ; XA 2i ————+ingp+a*H
instead ofr. A nondimensional axial coordinate is also X 9§ &
defined: N m— 2 2¢ oH| 19
, _ TH-Z=2
Z .
r-momentum:
wherez, is a characteristiéor initial) axial distance. The use 9F
of this axial scale length in addition to the radial character-_ ¢ xA—
istic length 6y, defined as the vortex thickness &{, &
= (mvzo/Wy)*™, allows the definition of the small param- 5°E
eter =—4Aé— PP 2A(f+2) —iw* +§T—+2f a*
8o
Ay =—<1 11 1+f+n% ' 4&f”
2 e +A( —+ ¢ (a*)?| |F
& m m
in terms of which one can derive the PSE from the complete
stability _equations ip a more consiste_nt way than the proce- +(2|—1,77+A )G—Z'gl’zﬂ; (19)
dure of just neglecting second- and higher-order streamwise 3 S 23
derivatives. .
The perturbationg9) are decomposed in the standard g-momentum:
form:® ple
—2f'xA (9_
S(X7§!01t)zs(xl§)x(xleyt)i (12) X
in di i is i 9*G 9G
where, as the main dlﬁergnce with the temporal analysis in —angl> 2A(f+2) o + a4 +2f a*
T, the complex eigenfunctions 9E? g
S(x,6)=[IF(x,£),G(x.6),Hx& M(x]", (13 +A(2<m—1>f,+n+1—f_(a*)z
are allowed to depend on the axial coordinatéendepen- §
dently to the radial one. The other part of the perturbation is m—2  2¢
an exponential that describes the wave-like nature of the dis- +| 2i (£Y2y)’ +A z F+A YT )
turbance,
1(x + 0 20
X(x,e,t)zexr{A—f a(x)H)dx' +i(ne—Qt)|. (14 g (20)
0 JXg
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Z-momentum: growth rate defined at a particular radial distaggee.g., the
point where the absolute vallie (x, )| reaches a maximum
for each axial locatiorx:

2f' A M A Il
o ax () =710 +iay(x)
2 H ny . (50(9W> ( )+m ZAO Ao
=— + —lw*+ —p+ =alx
ANE— Fr —2A(f+2)— g i w* gl 2f'a W 9z e m H(x &)
m-—2 4
alaM=2 ., 45, (a2 } L[ THOGE) 260 IH(X. &) 23
m m 3 X mx  9& |
. 2(m=2) 2§ o1l The other one is based on the physical growth rate defined in
12¢n * —
+4i g 'F+|ar +A }H A m 9¢’ (1) terms of the radial integral of the axial velocity perturbation:
Ax(X)=7y2(X) +iax(X)
where oc
_ JoW' (oWl az)dr
a* _axllm w* was‘/mfl‘ (22) -0 f§|W|2dr

B m—2 Ag
The above approximation, where tern@®(A2) and =a00+ m 7+A0

smaller are neglected, is consistent with the boundary layer

approximation of the basic flow, where ter@$A?) are also ng(HTlgl’Z)(aH/ax)dg

neglected? The retainedd(A) terms account for three dif- IHGIRGELE

ferent effects on the stability of the perturbatioris: the o 1201+

effect of viscosity (i) the effect of the nonparallelism of the _ 2;‘0 Jo&"H (9H/9§)d¢ (24)
basic flow and of the amplitude of the perturbations, &indl mx [y ([H|ZEP)de

the effect of the history, or convective evolution, of the per-
turbations. All these three effects are therefore negligible i
the limit of very high Reynolds numberd\(~0). The last

where T denotes the complex conjugate. In terms of these
Two complex, physically defined, wave numbersanda,,

i d effectiii) is d ibed by the st ise deri the two different normalization conditions used here can be
mentioned effecfiii) is described by the streamwise deriva- expressed a@;(x)=a(x) and ay(x)=a(x), respectively,

tives on the lefi-hand side of the stability equatidas)— for all x=X,. That is, at each axial step, all the terms on the

(21)'. Th‘?se terms are therefore the responsible ones for ﬂ} ght hand side of23) or (24), except for the first one, are set
partial differential(though paraboliccharacter of the equa- equal to zero, thus transferring the main part of the stream-

rilrc:n&r Ttha/”tare r:hf ?nlyft_?rrgs |¢18)—(t2h1) |gn<:]rr?dt|tr)1 the o wise variation of the perturbations to the exponential func-
ne? IS ﬁ] I 3(; 6:1 ?nysf (r)n ; Iec?ubs;ﬁt er): (I:a | owh|e r?php tion y. We shall see that both normalization conditions yield
priately included in a temporal stability analysis, which has, ;o “jgentical results, except whep| have several

to be .Iocal one f|xe§ a real .axu";d wave numhe(a*—l @) maxima, in which case the condition based @nis pre-
at a given axial locatiox (which is embedded ia* and¢), ferred

N ]
and .l.OOKS for 'Fhe. complex frequenay”. Here: a spatial The PSE with its normalization condition is solved with
stability analysis including the effect of the history of the
the radial boundary conditiorts:

disturbances will be performed by solving the above parabo-
lized equations by a marching technique. The integration i$—

started at a g@ven axial Iocatioxb_with a fixed regl fre- F=G=H=0: (25)
guency o, to find the corresponding complex axial wave _

numbersa(x). For given flow parameters and azimuthal &=0:

wave numbemn, an unstable mode appears at a locatidh F=G=0, dH/3&=0 (n=0), (26)
the real part ofa(x) becomes positive.

As it stands, there is some ambiguity in the partiton of F*G=0, dF/9§=0, H=0 (n=*1), (27)
the perturbationg12) into two functions ofx. To close the F=G=H=0 (|n|>1). (29)
problem one has to enforce an additional condltlon which
puts some restriction on the axial variation 81° Basi- In addition, the eigenfunctior=[iF,G,H,IT]" and the

cally, one uses a normalization condition that restricts rapi¢omplex wave numbea have to be specified at the initial
changes i of S, in accordance with the slow axial variation @xial locationx, (see below

of the basic flow. Thus, the growth rate and the axial sinu-

soidal variation is represented by the exponential function C. Numerical method

Two such normalization conditions will be used here, both
based on a physical growth rate and a wave number defined
in terms of the axial velocity perturbatioW=(vz/5%)w
=(vz/ 8*)Hy. The first one makes use of the physical

Equations(18)—(21) can be written as

9S
—XAM &=[L1+aL2+AL3+azAL4]S, (29
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whereM, Lq, L,, L3, andL, are linear, order of unity, section. However, since in thepatial stability analysis per-
complex operators which depend anand & L, depends formed here one fixes theea) frequencyw of the perturba-
linearly on the frequency and containg/d¢ terms, whileL;  tions to obtain the complex wave numke(spatial amplifi-
contains bothd/g¢ and 9%/9&? terms. To solve numerically cation y and axial wave numbewr), (30) constitutes a
this equation, the& dependence 08 is discretized using a nonlinear eigenvalue problem, instead of the linear one of
staggered Chebyshev spectral collocation technique develhe temporal analysis. This nonlinear eigenvalue problem is
oped by Khorramt/ This method has the advantage of solved using the linear companion matrix method described
eliminating the need of two artificial pressure boundary conby Bridges and Morrig® The resulting(complex linear ei-
ditions at é=0 and é=o0, which for that reason are not genvalue problem of dimensio\Bis solved with the IMSL
included in (25—(28). The boundary conditions at infinity subroutinebGvccg, which provides the entire eigenvalue
(25 are applied at a truncated radial distaneg,,,  and eigenvector spectrum. Owing to nonlinearity, the size of
=I'max! 8(2), chosen large enough to ensure that the results dthe matrices in the spatial eigenvalue problem is thus twice
not depend on that truncated distance. The computatiorthe size of the matrices in the temporal analysis for the same
showed that#,.,=30(¢ma=900) was sufficient for most value of N, and the computation time is much larger. Also,
profiles to obtain an accuracy of six significant figures. Sincedue to the large dimensions of the matriceg30), a rela-
the value of 5. does not affect to the computation time tively large amount of spurious numerical eigenvalues with
much, 752,=50(émax=2500) was used in most of the re- very small wave number8arge wavelengthsare produced
ported computations. To implement the spectral numericaby the eigenvalue solver, particularly wherf is also very
method, Eq(29) is discretized by expanding in terms of  small. They are easily discarded, however, because the cor-
truncated Chebyshev series. A nonuniform coordinate trangesponding growth rates increase without bound Wthn-
formation is used to map the intervak@<¢,,,, into the  stead of rapidly converging to a finite value, as it happens for
Chebyshev polynomials domain—1<s<1, &=c (1 eigenvalues of physical modes. Thus, a minimum or cutoff
+s)/(c,—s), wherec, is a constanfc;=3 in all the com- value of« is used when looking for the most unstable mode
putationg andc,=1+2c,/&nax. This transformation allows (highesty) for a given frequency and flow parameters. This
large values of to be taken into account with relatively few lower limit is easily selected by just increasiiy Finally,
basis functions!’ the axial step sizeAXx); is adjusted according to the local
The £ domain is thus discretized M points,N being the  wavelength of the perturbation. A fractiom of the local
number of Chebyshev polynomials in whichS  wavelength, Ax);=eA,/«;, is selected at each axial step to
=[iF,G,H,II]" has been expanded. In the results presentedhet a given tolerance.
here,N ranged between 40 and 100. The streamwise deriva-
tive 9S/9x is approximated by the finite difference form
(S+1—§)/(Ax);, wherej is the step index in the axial
direction, and Ax); the step size. A marching technique is  The results presented here are for a Long’s vortex (
used to solve the M discretized equations resulting from =1) with three different values of the nondimensional axial
(29), starting atx=Xx,. Since the unknowa appears witl5  velocity at the axisA;=1.2, corresponding to a Type | so-
on the right-hand side @R9), it constitutes, with the normal- |ytion with M =6.838: A;=—0.5, which corresponds to a
ization condition, a system of nonlinear equations3cand  Type Il solution with M=5.76, andA;=0.15, which ap-
a. Iteration is used to solve the nonlinear system of disproximately corresponds to the minimum or folding value of
cretized algebraic equations at each axial stajitri: one  the flow forceM = M* =3.75(see T for a plot of the velocity
starts with the results of the previous statjpand use$29)  profiles. All the results are for the most unstable modes
with a; to obtain a first approximation fo; . ;; these are (highest y), for a selection of frequencie&w), azimuthal
used in the normalization condition to yield a first approxi- wave numbergn), and Reynolds numberg;(leal) at
mation fora;,,, which is again used to corre§ . ; the different axial locations. The azimuthal wave numbers con-
iteration procedure is continued until the modifications in thesidered arev=0 (axisymmetric perturbatiopsn=—1, and
real and imaginary parts @f are both less than I6. Usu-  n=+1. As shown in the references cited in Sec. I, these last
ally, between two and six iterations were needed. The promodes with|n|=1 are the most relevant spiral modes. Re-
cess is repeated at the next marching step. sults forn<—1 andn>1 are qualitatively equivalent to
As the initial condition ak=Xxg, the eigenvalueay and  those forn=—1 andn=+1, respectively.
eigenvectorss, of the right-hand side of Eq29) equated to
zero are used:

0=[L;+agl,+ALz+a3AL,]S,. (30)

Ill. RESULTS

A. Local nonparallel results

As mentioned above, the eigenvalues and eigenfunctions
of the local problem(30) are used as the initial condition for
The solution obtained with this local eigensolution as thethe PSE(29). Before presenting some representative local
initial condition presents a short transient region before conresults, it is convenient to check the numerical implementa-
verging to the solution of the PSE. As we shall see, thigion of the linear companion matrix method used to solve
transient region is so short that there is no need to refine thg80) by comparing these spatial results with those obtained
initial condition with the first term of a Taylor series around from the equivalent temporal stability analysis of T. Accord-
x=X,.% The eigensolutions of30) are equivalent to those ing to Gaster, given a perturbation of the form epifx
obtained in thetemporal stability analysis of T(see next —wt)], with complex wave numbet= a,+i«; and complex
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TABLE I. Comparison between tempordl) and spatialS) stability results 0.8
for A;=1.2,n=—1,A,=10"3, and several values af. N=40 in both(T) | /
and(S), andx=1 in (S). I /

a(M) oM  wi(T) (M)  wi(Micg(T)  nS) a9 06 | ’ ,
0.340 0170 0.178 1371 0.130 0.132  0.339 i ‘ !
0.480 0428 0242 1.832 0.132 0.136  0.478 I /! !
0770 1.039  0.193 2.265 0.0832 0.0880 0.771 | ‘ '

04 !

T, @

frequency w=w, +iw;, the ratio between the temporal, Fy '
wi(T), and spatial,— «;(S), growth rates is equal to the P :
group velocity,c,=dw, / da, , provided that the growth rates 02 Fpopeey ;
are small and that the frequeney and the wave number, 5 /Son=+1
are both equal in the temporally and spatially increasing dis- /_\ /
turbanced(T) and (S denote results from the temporal and I » %
spatial stability analysis, respectivélyn the notation of the 0 0z 04 o6 o8
present work and of T, one has tha(S) = w;(T)/cy(T),

provided thata(S)=«a(T) and o,(T)=w(S), andx=1 in w

(S. Table | compares the temporal and spatial stability reg. 2. Local growth rates(«) (continuous linesand axial wave numbers
sults for a Type | vortex withA;=1.2 andA= 10 2 when  a(w) (dashed linesfor the most unstable modes with= —1 andn=1 at
non-axisymmetric disturbances with=—1 and different x=1 for a flow with A;=0.15 andA=10"%. N=60 for n=—1 andN
wave numbersy are present in the flow. One selects first a =100 forn=1.

value of «(T) and obtains from the analysis in &;(T),
o((T), andcy(T) =dw,(T)/da(T). Then,w(S) is set equal

) ! , n. In agreement with T, flows corresponding to Type | solu-
to ((T) in the present eigenvalue proble0) with x=1 " ,ns are unstable only for non-axisymmetric disturbances
to obtain the spatial growth ratg S) and axial wave number with negative azimuthal wave numbefis=—1 in Fig. 1
a(S). Taklng_ into account the dls_parlty of_the methods USEEOIType Il flows are also unstable for non-axisymmetric distur-
to solve the lineatT) and the nonlineafS eigenvalue prob- 2o withn>0, and, more importantly, for axisymmetric
lems, and that the growth rates are not so small, the agre%’lsturbances{Fig 3(a) shows the results fon=—1, while

ment is good. _ Fig. 3(b) those forn=1 and n=0]. Finally, flows corre-
Figures 1-3 show the local growth rates and axial waveyyoning to the folding valud, =0.15 are unstable for non-
numbers for the most unstable modes afl as functions of  yicummetric perturbations with negative and positive values
the frequency for the three selected basic flows and values %ff n(h=—1 andn=1 in Fig. 2. The numbeN of Cheby-
shev polynomials used in the computations increases from
Fig. 1 to 3 because, as shown in Fig. 4 for —1, the
number of local maxima and minima in the most unstable
eigenfunctions increases As decreases; that is, the eigen-
functions for a Type Il flow are more “complex” than for a
038 2 Type | flow, and a higher resolution in the radial direction is
i 57 needed to obtain a comparable accuracy in the refatiger
I 7 radial truncation valueg,,,x are also needed for the basic
0.6 7 flow). One can observe in Figs. 1-3 that the most unstable
I ’ modes have usually a growth rajewith a maximum less
I / than 0.2 for a particular frequency, and an axial wave num-
04 g : - ber @ which increases almost linearly with the frequency.

I s Thus, the phase speed=w/a and the group velocityc,
o =Jdwl/da of these modes are both positive and almost fre-
02 quency independent. They therefore correspond to convec-
SN tive instabilities. However, this is not the case for the most
I — unstable modes witmh=—1 in a Type Il flow, wherey is

o Lol i quite larger andwx decreases a® increasegsee Fig. 8a),
0 02 04 06 08 1 12 14 16 where also shown is the second most unstable mode, which
® has a similar pattern to that of the most unstable modes for
Type | flows]. The most remarkable feature of these highly
FIG. 1. Local growth rates (continuous linesand axial wave numbers unstable modes is their negative group velocity, which ex-

(dashed linesfor the most unstable modes with azimuthal wave nuntber lains why thev were not found in the temporal stabilit
=—1 atx=1 as functions of the frequency for a Type | flow witky P y y P y

=1.2 and two Reynolds number&:=10"2 (upper curvesandA=102  analysis of T: the corresponding temporal growth rate
(lower curvey. N=40. oi(T)=7y(S)cy is also negative. Thus, the most unstable

v, @
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FIG. 3. Localy(w) (continuous linesand a(w) (dashed linegsatx=1 for a
Type Il flow with A;=—0.5 andA=10 3. (a) n=—1. The two most un- SF T ] T T '

stable modes are shown with subscripts 1 and 2, respectif@lp=1 and [ C ?
n=0 (note that forn=0 the plotted growth rate is multiplied by 10N
=100 in all cases. é L

o]

temporal modes found in T far<<0 in a Type Il flow cor-
respond to the spatial modes labelled with the subscript 2 in
Fig. 3(@. The present computations show that the unstable
spiral modes with negative group velocities appear Agr
<0, with ¢;—0~ for A;—0". Thus, most Type Il Long’s
vortices (those with negative axial velocity at the axere (b)

subcritical in Benjamin’s sens&? they sustain both

upstream- and downstream-traveling waves, that is, linearly

unstable modes with both negative and positive group ve|50'|G-h4-d '?eal znddimﬁgén?fé’ pﬁr}_s of thg r(fig;ntfturﬁ@ﬁ?“ ImeS). Gt
ociies. Type I vortices arsupercriical because they can (%215 Ine (s dotdash Inssan 1 cated nes o e most
sustain only downstream-traveling waves, that is, CONVeCme real parts igH| (dash-dot-dot-dot linds (@) A;=1.2, N=40. (b) A,
tively unstable modes with positive group velocities. =0.15,N=80.

0 5 10 15 20 25
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FIG. 5. Axial evolution of the growth rate (continuous linesand axial FIG. 6. y(x) (continuous linesand a(x) (dashed linesfor the most un-
wave numberx (dashed linesof the most unstable mode with= —1 for stable mode corresponding £g=0.15,n= -1, »=0.3, and two values of
A;=1.2, »=0.3, and two Reynolds numbers corresponding\te=10"3 Reynolds numberA,=10"2 (upper curve fory and lower one fora; N
(upper curvesand Aq=102. These results are obtained from the PSE =50), andA,=10"2 (N=60). Also included are the corresponding eigen-
using the normalization condition based ap, while the dash-dot-dash values of(30) (dotted lines.

lines correspond to the same cases but using the normalization condition

. In the fir he PSE are integr in h . . . .
T e e oL M Since for the Type | flow considered in tha figu#d has
of (30) at eachx. N=50. only a maximum in the radial directidrsee Fig. 4a)], both
results almost coincide. However, As decreases, the num-
ber of local maxima oflH| increaseqFig. 4(b)], and the

As observed in Fig. ®), the maximum growth rate is normalization condition based @, yields poorer results. In
also larger than 0.2 for non-axisymmetric disturbances wittparticular, for Type Il flows, the absolute maximum [bf]
n>0 in a Type Il flow(n=+1 in that figure, reaching a may shift at some axial location, producing an artificial jump
maximum asw— 0, wherea(w) is no longer a linear func- in the results. For this reason, all the results given below are
tion, but with the group velocity always positive. In the sameobtained with the normalization condition based ap,
figure it is also observed that the unstable axisymmetric diswhich makes use of a physical growth rate defined in terms
turbances have a growth rate more than an order of magnéf the radial integral of the axial velocity of the disturbances.
tude smaller than the non-axisymmetric ones. One can see in Fig. 5 that the local results coincide with
the results from the PSE for high Reynolds numbrg.,
A=10"3). The differences increase with, particularly for
small growth ratesy. Thus, forA=10 2 in Fig. 5, the axial

The numerical integration of the PSB9) is started at location wherey vanishes predicted by the local formulation
some axial locatiorx, using the eigenvalues and eigenfunc-is larger than the obtained from the PSE. However, except
tions of Eq.(30) as the initial condition. To test the appro- for these very small values of, the differences between
priateness of this initial condition, Fig. 5 shows the axiallocal and PSE results remain small. For non-axisymmetric
evolution of the growth rate and axial wave number of thedisturbances withn=—-1 when A;=0.15 andA;=-0.5
most unstable mode fok;=1.2,n=—1, and two values of (Figs. 6 and ¥, and forn=1 whenA;=—0.5 (Fig. 8), the
the Reynolds number, starting at two different axial loca-differences are even smaller than in Fig. 5. In all these cases,
tions:xy= 0.5 andxy=0.75. For the higher Reynolds number the growth ratey decays axially from its starting value at
considered £ =10 %), the integration fromx=0.75 cannot x,=0.5, until it eventually vanishes at some axial location.
be distinguished from that starting »§=0.5, and both re- In addition ton and the basic flow4,), the location where
sults are also indistinguishable from the local ones. For they vanishes depends on the frequensywhich in the re-
lower Reynolds numberX=102), for which the differ- ported results is chosen such that this location is the farthest
ences with the local eigenvalues are larger, the results of th@pproximately. This pattern of the solution is less clear in
integration fromx,=0.75 with the local eigenvalue also co- Fig. 7, where the computations have to be stopped when the
incides practically with the ones fromy,=0.5 after a short axial wave number becomes too small. However, this ex-
transient interval whose length is just a few axial steps of theeptional situation occurs only for the unstable modes with
numerical integration. This behavior is also observed for alhegative group velocities correspondingte —1 in a Type
the values ofA;, n, andw considered. Il flow with a two-cell pattern A;<0). For these distur-

Figure 5 compares also the PSE results obtained with theances with negative group velocities, the streamwise
two different normalization conditions discussed in Sec. Il B.marching of the PSE method is not physically appropriate.

B. PSE results
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FIG. 9. y(x) (continuous linganda(x) (dashed lingfor the most unstable
modes corresponding t8;=0.15, n=+1, 0=0.6, andA,=10"3. The
dotted lines correspond to the eigenvalue$3fl. N=60.

FIG. 7. y(x) (continuous linesand a(x) (dashed linesfor the most un-
stable modes correspondingA@=—0.5,n=—1, »=0.3, and three values
of the Reynolds number: from top to bottofy,=10"2, 5x10 3, and
10" 3. The dotted lines correspond to the eigenvalueg6f, which practi-
cally coincide for the three Reynolds numbelis= 60. the convective instabilities found, for instance, in boundary
layer flows[but, in the present case, the local Reynolds num-
ber is constant along the flowA(x)=A, for m=1]. The
differences between local and PSE results are also compara-
tively larger than in the other cases considered. It must be
, - . also noted that these disturbances become stabilized by vis-
stable at some axial I_ocatlon, whene becomes _p_05|t|vg. cosity at higher Reynolds numbers than those shown in Figs.
Then, y reaches a maximum, and decreases until it vanlsheg_& so that only the valu&=10"2 is plotted (for A

at some further axial location. Thus, for these disturbances. ;4-2 these two disturbances are stable, see below

the corresponding Long'’s vortices are convectively unstable Finally, in order to compare the streamwise variation of
only_ in a definit.e axial .region, _rather than- being unStabIethe most unstable modes for the different Long’s vortices
“until” Some axial Ioc-at|o-n, as It _happens_ in all the other. nd azimuthal wave numbers considered, and their stabiliza-
cases considered. This situation is more in accordance W'tﬁon due to viscosity, it is instructive to represent the axial

evolution of the amplitude of the perturbations, with refer-

For disturbances witm=+1 in a flow with A;=0.15
(Fig. 9, andn=0 with A;=—0.5 (Fig. 10, the situation is
quite different. The flow is stable a=0.5, becoming un-

12
06 | e
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02 | \l [ -
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FIG. 8. y(x) (continuous linesand a(x) (dashed linesfor the most un-

stable modes correspondingAg=—0.5,n=+1, »=0.6, and two values
of Reynolds number ,=10"2 (upper curvel and 10°3. Also included are
the corresponding eigenvalues (@80) (dotted lines. N=60.

FIG. 10. 10< y(x) (continuous ling and «(x) (dashed ling for the most
unstable modes corresponding #,=-0.5, n=0, »=0.7, and A,
=103, The dotted lines correspond to the eigenvalue&36f. N=60.
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FIG. 11. A(x) for, from top to bottomA,=10"3, 2.15x10 3, 4.64x 103, and 102, in the following casesta) A;=1.2,n=—1, ©=0.3 (N=50); (b)
A;=0.15,n=—1, ©=0.3 (N=60); (c) A;=—0.5,n=—1, ©=0.3 (N=60); (d) A,=—0.5,n=+1, ©=0.6 (N=60); (€) A;=0.15,n=+1, ©=0.6 (N
=100); and(f) A,=—0.5,n=0, @=0.7 (N=80).

ence to the amplitude at a given locatiéa=1, say, for  for the different values ofA;, n, and w considered, and for
each case at different Reynolds numbers. To that end, Figgecreasing values of the Reynolds number. In particular, the
11(a)-11(f) show the logarithm of the amplificatiohbased  series Re=A,'=10°, 464, 215, and 100 has been selected.

on the axial velocity of the perturbation, As expected from(31), the amplification increases almost
W(x) 1 linearly with Re. However, as Re decreases, the disturbances
A(x)=Rea Wxo=1)| A_ojl y(x")dx’, (8D eventually become stabilized, as it is clear for an axisym-
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metric disturbance wheA;=—0.5[Fig. 11(f)], where only  ever, a local eigenvalue problem has to be solved always to
the case Re10® is unstable, and fon=+1, A;=0.15[Fig.  provide for the initial condition in the marching method used
11(e)], where the the disturbance is stable for-R€0. Note  to solve the PSE.

that for the axisymmetric disturbangig. 11(f)], the plotted The present spatial stability analysis confirms, éon-
amplitude starts at the beginning of the convective instabilvectiveinstabilities, the linear stability pattern of Long'’s vor-
ity, rather than ak,=1. For a given Re, the maximum am- tex found with the temporal stability analysis of T: Both
plification depends not only on the magnitude of the ampli-Type | (A} =0.15<A;<x) and Type Il 1WV2<A,
fication rate y, but also on the axial location wherg  <AY) Long's vortices are unstable to non-axisymmetric dis-
vanishes. Thus, although the values pfat x=1 for n= turbances withh<0, while only Type Il flows are convec-
—1 andw=0.3 are of the same order of magnitude for basictively unstable for axisymmetric disturbances in certain fre-
flows with A;=1.2 andA;=0.15, the maximum amplifica- quency ranges and axial locations. These axisymmetric
tion is about one order of magnitude larger in the former casenstable modes have growth rates much smaller than the
becausey vanishes farther awajfigs. 1¥a) and 11b)].  non-axisymmetric ones. Helical disturbances witk 0 be-
Note also that the results plotted in Fig. (81 for A;  come unstable wheA, decreases below a certain value a
=—0.5 andn=—1, corresponding to the highly unstable little larger thanA’ . For a given axial locatior, all these
modes with negative group velocity, show very large ampli-inviscid instabilities become stable as Re decreases below a
fications because, and the location wherg vanishes, are critical value which depends on the basic floA;] and on
both large. the perturbationin and w), except for Type Il flows withA;

near its minimum valudring-jet vortex, for which purely
viscous unstable modes may appear below a certain value of
Re (see 7.

The spatial, nonparallel linear stability of Long’s vortex The local spatial analysis reveals, however, the existence
has been analyzed using parabolized stability equation®f new helical, counter-rotating, unstable modes for Type Il
These equations result naturally from the linear stability for-flows which are not found with the temporal computations
mulation of the high Reynolds number problem when oneowing to their negative group velocities. These new unstable
retains terms up to order RE=A, which is the same degree modes, which have a much larger spatial growth rate than the
of approximation of the basic flow. The PSEs are solved withother inviscid convectively unstable modes, show that Types
a marching technique in the axial direction combined with all and | flows are fundamentally different from a stability
staggered Chebyshev spectral collocation method in the rgoint of view not only because the former ones are convec-
dial direction. The results are compared with local ones frontively unstable to axisymmetricnE0) disturbances, but
the eigenvalue problem of the local spatial stability formula-also because only Type Il flows can sustain upstream-
tion. Nonparallelism is partially included in this local formu- traveling waves(with n=—1). Therefore, Type Il Long’'s
lation: it accounts for the effect of the streamwise variationvortices are subcritical in Benjamin’s sense, or absolutely
of the basic flow at the same order of magnitude as the effeatnstable for disturbances with= — 1, to use the more recent
of viscosity on the stability of the flow. However, the local concepts of absolute/convective instabilit@syhich have
equations do not take into account the effect of the history obeen very recently applied to the stability analysis of Batch-
the disturbance on its stability, which is al€@(A). The elor's vortex?! Type | vortices are just convectively unstable
comparison provides thus a quantification of this effect orfor non-axisymmetric disturbance@nainly with negative
the stability of an important class of vortices. It is shown thatazimuthal wave numbers, except very close to the folding
the differences in the growth rate and the axial wave numbevalue of the flow forcg and, therefore, they are supercritical
are, in general, very small even for moderately low Re (Reswirling flows. Actually, the transition between supercritical
~10?), below which the unstable disturbances become usuand subcritical Long’s vortices takes placefat=0, rather
ally stabilized by viscosity. The differences may, however,than atA;=A}=0.15, i.e., when the axial velocity at the
be larger for small growth rates, which are better predictedixis becomes zero, in qualitative agreement with Benjamin’s
from the PSE. Thus, the effect of the history of the distur-theory on vortex breakdowiy.
bances is important at low Re to accurately predict the axial The present spatial stability analysis is also more appro-
location where an unstable mode becomes stabilized, angtiate than the temporal counterpart to study the convective
therefore to accurately obtain neutral curves of stability. Foiinstabilities of Long’s vortex because it provides naturally
the same reason, it is also important to accurately predict thihe streamwise evolution of the disturbances, this being so
onset of new convectively unstable modes, as shown fowith independence of the fact that the effect of the history of
non-axisymmetric modes with positivewhenA; is near the the perturbations on their stability cannot be correctly taken
folding value ofM, and, more importantly, for unstable axi- into account in a temporal stability analysis. From the results
symmetric modes for Type |l vortices, which have growthone observes that all the inviscid unstable modes eventually
rates more than an order of magnitude smaller than the helbecome stable at a downstream axial location which depends
cal modes. To these considerations one has to add the impayn the basic flow and on the upstream perturbation consid-
tant advantage of the PSE of being computationally muctered, a consequence of the nonparallelism of the basic flow,
faster to solve than the nonlinear eigenvalue problem of thavith a vortex core radius increasing with At the axial
local spatial stability analysis, particularly when a high radiallocation where the growth ratgvanishes for a given pertur-
resolution, and therefore a high valueMfis needed. How- bation, the amplitudé reaches a maximum and then decays

IV. SUMMARY AND CONCLUSIONS
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(Fig. 11). However, the maximum of the amplitude is usually [/, 2m m—1 (k2

. . 0 1-2/m K 152
so large that one would have to consider nonlinear effects7-| ~ ¥(¥2) m o (4f'°+p)d¢
before reaching that axial location to correctly predict the

subsequent streamwise evolution of the linearly unstable per- L?
turbation. -mC" 1- 22-m) K2m=D] 0, K—owo.  (A2)

Since the first term vanishes far=1 (Long’s vortey, this
ACKNOWLEDGMENTS constraint can be satisfied only lif=v2, as it was shown
from a first integral of the self-similar axial momentum equa-
This research has been carried out with the support ofion in Ref. 14, and it is also found numerically. Note that
the Ministerio de Educacioy Cultura of Spain, Grant No. if L=v2, the pressure term cancels th¢* term at large
PB96-0679-C02-01, and of a NATO Collaborative Researct¥, and the integral ifA2) becomes bounded d6— for
Grant, CRG 950368. The author is grateful to Dr. I. G.m=1. Thus, the nondimensional flow force, defined as
Loscertales for checking the equations. M = 27 [5(W2+ P/p)rdr/(WomLC™2)2= 7[5 (4f'2+ B)/
(mLC™?)?, is finite for Long’s vortext® For 1<m<2, that
integral is unbounded, but the constrai#t2) is satisfied
APPENDIX because constaf is such that this infinity cancels with the
also unbounded second term inside the square brackets. As it
Some considerations about the integrated axial momens shown in Ref. 14, this cancellation is only possible for
tum flux of the basic vortex are made in this appendix. values ofL belowa critical valueL* (m), which is smaller

Multiplying the axial momentum equation thanv?2 for L<m<2. For 0<m<1, the second term ifA2)
OW AW dPlp v 9| oW becomes zero, and so must be the integraKas, thus
U a_r+WE+ 57 T &_r( r a_r) selecting the value of. This is shown to be possible fdar
abovea critical valueL* (m)>v2.
by r, integrating across the vortex, and making use of conti- It is worth noticing that the flow force is an invariant of
nuity, one obtains the motion for G<m=1:
K&(2) P d (= P
f — | W2+ —|rdr —J W2+ —|rdr=0 for O<ms<1.
0 Jz P dz 0 p
IW In fact, the flow force is a nonvanishing constant only for
kAT " )_(VUW)r:Kﬁ(zw (A m=1 (Long’s vortey: for 0<m<1 it is zero, while for 1
r= z

<m<2 it is infinity. In general, for BZm<2, the solution
whereK is a large positive constant a@§z) is the boundary  satisfies the more general integral constraint

layer thickness (5). Taking into account th&t f(¢)

~(CEM™1+ Q&M for é=K?>1, whereC andQ are in- lim fK‘s(z)i
tegration constants anxl_ is the negative root of?+(m Koo dJo  0Z
—1)A+m—2+(m—1)L?/2=0, according to(4) and (5),
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