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Axisymmetric instabilities of Bo ¨ dewadt flow
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A spatial linear stability analysis of Bo¨dewadt’s self-similar solution for the rotating flow over a flat
plate is performed. In particular, considered is the stability of axisymmetric perturbations
propagating towards the axis of rotation, which are the most important ones observed
experimentally. Viscous and nonparallel effects on the stability of the perturbations are retained up
to the order of the inverse of the local Reynolds numberR. The resulting parabolic stability
equations are solved numerically using a spectral collocation method varying the nondimensional
frequencyq and R. The instability region on the (q,R)-plane is discussed and compared with
existing experimental data and direct numerical simulation results. The circular waves observed
experimentally and in numerical simulations are shown to correspond to an inertial instability mode
which becomes stabilized asR decreases below a critical value. ©2000 American Institute of
Physics.@S1070-6631~00!01307-6#
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I. INTRODUCTION

The study of rotating flows over solid planes has be
considered extensively in the literature because of both
oretical and technological interest. Of particular significan
is the early work of Bo¨dewadt,1 who considered the flow
produced over an infinite stationary plane in an incompre
ible fluid rotating with uniform angular velocity at an infinit
distance from the plane. Bo¨dewadt’s flow constitutes an ou
standing example of an analytical~self-similar! solution to
the Navier–Stokes equations~see Sec. II A!, analogous to
that found earlier by von Ka´rmán,2 and generalized later b
Batchelor.3 Bödewadt’s self-similar solution has been th
subject of controversy4 and, probably due to the experime
tal difficulties in creating a fluid in solid-body rotation over
stationary disk, only recently has been studied both exp
mentally and numerically.5–8 In these works, quasistead
flows whose velocity profiles can be approximated to a h
degree by Bo¨dewadt’s solution were originated in the int
rior of cylinders of several aspect ratios at different Reyno
numbers. Various types of instabilities propagating radia
inwards on the stationary disk were described. Notably, a
symmetric~circular! waves travelling towards the center
the disk were found. The conjecture was made that th
axisymmetric waves, which become stabilized below a cr
cal local Reynolds number before reaching the center of
disk, represent a mode of instability of the Bo¨dewadt flow.
However, no detailed stability analysis of Bo¨dewadt’s solu-
tion is available to compare with these experimental and
merical results. The recent work by Lingwood9 contains
some scarce results on the stability of Bo¨dewadt solution
within a more general analysis of the absolute instability o
family of self-similar solutions for the Ekman layer, whic
includes Bo¨dewadt’s flow as a particular case. This auth
uses a parallel-flow approximation and finds that Bo¨dewadt’s
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flow is absolutely unstable above a critical Reynolds num
which agrees well with the experimental values. In t
present work, a nonparallel-flow approximation in the rad
directionr is used to study the spatial stability of Bo¨dewadt’s
solution, identifying a particular axisymmetric unstab
mode as the one observed in the experiments and in
numerical simulations. Although the thickness
Bödewadt’s self-similar layer is independent ofr, nonparal-
lel effects, that is the radial variation of the basic flow and
the amplitude of the perturbations, have to be considere
the stability equations at the same level as the viscous
fects.

II. FORMULATION OF THE PROBLEM

A. Basic flow

Bödewadt’s flow1,10 is a self-similar solution to the
Navier–Stokes equations for the stationary viscous flow o
an infinite flat plate of an incompressible fluid rotating as
rigid body far from the plate. IfV is the angular velocity of
the rotating fluid over the plane, the viscous layer thickn
is of the order of

d[An/V, ~1!

where n is the fluid kinematic viscosity. Bo¨dewadt found
that, in cylindrical polar coordinates (r ,u,z), wherez is the
axial coordinate perpendicular to the plate, withr 50 the
axis of the rotating flow, the velocity field (U,V,W) on the
plate can be written as

U5rV f ~z!, V5rVg~z!, W5AnV h~z!, ~2!

where

z[
z

d
5zAV

n
, ~3!
0 © 2000 American Institute of Physics

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



1731Phys. Fluids, Vol. 12, No. 7, July 2000 Axisymmetric instabilities of Bödewadt flow
FIG. 1. Functionsf (z), g(z), h(z), f 8(z), andg8(z).
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is the self-similar variable, and the functions (f ,g,h) satisfy
the following set of ordinary differential equations an
boundary conditions~primes denote differentiation!:

2 f 1h850, ~4!

f 21h f82g2112 f 950, ~5!

2 f g1hg82g950, ~6!

f ~0!5g~0!5h~0!50, f~`!50, g~`!51. ~7!

Equations~4!–~6! come from the equations of continuity
r-momentum, and u-momentum, respectively. Th
z-momentum equation determines the pressure field, ex
for an arbitrary constant, as

P

r
5

1

2
r 2V2F112R22S h82

1

2
h2D G , ~8!

where r is the fluid density, andR is the local Reynolds
number, defined as

R[
r

d
, ~9!

which will be assumed large. Figure 1 shows the profiles
f, g, h, f 8, andg8, which have been obtained using a stand
finite difference method with deferred corrections to so
the nonlinear problem~4!–~7!.

B. Nonparallel linear stability formulation

To analyze the linear stability of the above basic flo
the flow variables (u,v,w) andp, are decomposed, as usua
into their mean parts (U,V,W) and P, and small perturba-
tions. Following~2! and ~8!,

u5rV@ f ~z!1ū#, ~10!

v5rV@g~z!1 v̄#, ~11!
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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w5rV@R21h~z!1w̄#, ~12!

p

r
5

1

2
r 2V2@11 p̄#, ~13!

where the perturbations

s[@ ū,v̄,w̄,p̄#T ~14!

are in general functions of the four independent variab
(r ,u,z,t). Note that the termO(R22) in the basic pressure
field ~8! has been neglected, which is consistent with
stability analysis given below. Since the mean flow depe
on the similarity variablez, this nondimensional variable i
used instead ofz. Also, as nondimensional radial coordina
we use the local Reynolds number~9!. The perturbations
~14! are decomposed in the standard form:

s~R,z,u,t !5S~R,z!x~R,u,t !, ~15!

where the complex amplitude

S~R,z![S F~R,z!

G~R,z!

H~R,z!

P~R,z!

D ~16!

depend on both the radial and the axial coordinates.
other part of the perturbation is of exponential form th
describes the wavelike nature of the disturbance,

x~R,u,t !5expF E
Ri

R

a~R8!dR81 i ~nu2vt !G , ~17!

where Ri is an initial or reference Reynolds number. Th
nondimensional, order of unity, complex radial wave numb
a is defined, in terms of its dimensional valuek, as

a~R![dk~R![g~R!1 ia~R! . ~18!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The real partg(R) is the local exponential growth rate, an
the imaginary parta(R) is the local radial wave number. A
nondimensional frequencyq is also defined

q[
v

V
. ~19!

Finally, the azimuthal wave numbern is equal to zero for
axisymmetric perturbations, and different from zero for s
ral perturbations.

Substituting~15!–~19! into the incompressible Navier–
Stokes equations, and neglecting second-order terms in
the small perturbations andR21, the following set of linear
parabolic stability equations results:

L•S1M•

]S

]R
50 , ~20!

where the matrix operatorsL andM are defined as

L[L11aL21
1

R
L32a2

1

R
L4 , ~21!
ing

d

f
n
e

o

i
-
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L15S 0 0 ]/]z 0

0 0 f 8 0

0 0 g8 0

0 0 0 1
2]/]z

D , ~22!

L25M5S 1 0 0 0

f 0 0 1/2

0 f 0 0

0 0 f 0
D ,

~23!

L45S 0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0
D ,
L35S 2 in 0 0

2 iq12 f 1 ing1Dz 22g 0 1

2g 2 iq12 f 1 ing1Dz 0 in/2

0 0 2 iq12 f 1 ing1h81Dz 0
D , ~24!

with

Dz[h]/]z2]2/]z2. ~25!
n

n

e
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The above equations must be solved with the follow
boundary conditions atz50 andz→`:

F~R,`!5G~R,`!5H~R,`!50,
~26!

F~R,0!5G~R,0!5H~R,0!50.

An initial condition at some large value ofR is also needed
to solve~20!. However, this last condition will not be use
here because we shall look for local solutions~but retaining
]/]R terms! of the parabolized stability equations~see next
section!.

In the above approximation, termsO(R22) and smaller
have been neglected. The retainedO(R21) terms account for
three different effects on the stability of the perturbations:~i!
the effect of viscosity,~ii ! the effect of the nonparallelism o
the basic flow and of the amplitude of the perturbations, a
~iii ! the effect of the history, or convective evolution, of th
perturbations. This last effect~iii ! is described by the]/]R
terms of the stability equations, which are the ones resp
sible for the partial differential~though parabolic! character
of the equations. All three effects are therefore negligible
the limit R→`. Note that both the nondimensional fre
quencyq and the azimuthal wave numbern enter into the
equations at orderR21 ~operatorL3). Therefore, the signifi-
ut
d

-

cant frequency valuesv of the perturbations should be larg
in relation toV (q/R cannot be very small for largeR), and
the stability results fornÞ0, unu5O(1), should not differ
much from the results forn50. For this last reason, an
because experimental observations show that the most i
esting instability waves of Bo¨dewadt flow are axisymmetric
ones~e.g., Savas¸,6 and Gauthieret al.8!, only the casen50
will be considered in this work.

C. Stability definitions and numerical method

As it stands there is some ambiguity in the partition
the perturbations~15! into two functions of the radial coor
dinateR. To close the problem one has to enforce an ad
tional normalization condition which puts some restricti
on the radial variation of the perturbation eigenfunction11

We shall perform here a local spatial stability analys
Given areal frequencyq and the azimuthal wave numbern,
Eq. ~20! and itsR derivative will be solved locally for each
radius R5R0 with the normalization condition
@]a/]R#R5R0

50. This condition will restrict, as required
the downstream variation of the perturbation eigenfuncti
yielding, for eachR, the local growth rate and radial wav
number~or the phase speed of the disturbance! as functions
of the axial distance to the platez.

The eigenfunctionS is expanded in a Taylor series abo
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R5R0, where only two terms are retained to be consist
with the approximations made in the preceding section:

S~R,z!.S~R0 ,z!1(R2R0)
]S~R,z!

]R U
R5R0

[S0~z!1~R2R0!S1~z!. ~27!

This expansion is now substituted into~20! and itsR deriva-
tive to obtain two equations forS0 andS1 (uS1u!uS0u). Us-
ing the local normalization condition@]a(R)/]R#R5R0

50,
one has

L•S01M•S150 , ~28!

iq

R2
L4•S01L 8•S150 , ~29!

where the operatorL is now evaluated atR5R0 and L 8
5L11aL22 iqL4 /R. Note that termsO(q/R2) have been
retained to allow for high values of the frequencyq. For
given q, n, and R5R0 , this constitutes a nonlinear eigen
value problem for the complex eigenvaluea and the complex
eigenfunction

X~z![S S0

S1
D . ~30!

Experimental and numerical results6–8 show that the in-
stability waves propagate towards the axis, i.e., in the sa
direction as the bulk of the radial flow~see Fig. 1!. Thus, for
a given positive value ofq, one is interested in modes whos
eigenvaluea has both its real and imaginary parts negati
According to~17! and~18!, this ensures that the perturbatio
grows exponentially as it propagates towards decreasinR
(g,0), with phase velocity directed towards the axis~i.e.,
a,0). We are mostly interested in the evolution asR de-
creases of the most unstable mode~largest ugu) for given
values ofq andn50, and in how this evolution depends o
the distancez to the plate. To that end we define a nond
mensionalphysical growth rategu , and a nondimensiona
physicalradial wave numberau , based on the radial velocit
component of the perturbation (rVū):

au[2
d

rVū

]

]r
~rVū!, ~31!

gu~R,z![R~au!52g~R!2
1

R
2RS F1~z!

F0~z! D , ~32!

au~R,z![I~au!52a~R!2IS F1~z!

F0~z! D , ~33!

where F0(z)5F(R0 ,z) and F1(z)5@]F(R,z)/]R#R5R0

~for simplicity, in the above expressions and in what follow
we write R for R0). The nondimensional local phase spe
of the disturbances is defined in terms ofau :

cu~R,z![
q

R au~R,z!
~34!
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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~note that the dimensional local phase speed isVr timescu).
Finally, to measure the global growth rate of the distu
bances, it is convenient to define an integral growth rate

g I~R!5
*0

`gu~R,z!uF~R,z!udz

*0
`uF~R,z!udz

, ~35!

which is more appropriate than the real part of the eig
value,2g, to characterize the amplification rate of the pe
turbations.

To solve~28!–~29! numerically, thez-dependence ofX
is discretized using a staggered Chebyshev spectral coll
tion technique developed by Khorrami.12 This method has
the advantage of eliminating the need of two artificial pre
sure boundary conditions atz50 andz5`, which are not
included in~26!. The boundary conditions at infinity are ap
plied at a truncated radial distancezmax, chosen large enough
to ensure that the results do not depend on that trunc
distance~values ofzmax between 20 and 140 were used in t
computations reported below!. To implement the spectral nu
merical method, Eqs.~28! and ~29! are discretized by ex-
pandingX in terms of truncated Chebyshev series. A no
uniform coordinate transformation is used to map t
interval 0<z<zmax into the Chebyshev polynomial domai
21<s<1: z5c12c2 ln(11e2s), where c15c2 ln(21e),
c25zmax/(ln(21e)2ln e) and e is a very small number (e
51023 is used!. This transformation allows large values ofz
to be taken into account with relatively few basis function

Thez domain is thus discretized inN points,N being the
number of Chebyshev polynomials in whichX has been ex-
panded. In the results presented here,N ranged between 40
and 165. With this discretizazion,~28! and ~29! become an
algebraic nonlinear eigenvalue problem which is solved
ing the linear companion matrix method described
Bridges and Morris.13 The resulting~complex! linear eigen-
value problem is solved with double precision using an
genvalue solver from the IMSL library, which provides th
entire eigenvalue and eigenvector spectrum. Since the
mension of the associated linear problem is 16N, the com-
putation time increases very fast with the number of no
pointsN. Also, due to the large dimension of the matrices
relatively large amount of spurious numerical eigenvalu
are produced by the eigenvalue solver, particularly whenq is
very small. They are, however, easily discarded because
corresponding growth rates change wildly asN increases,
instead of rapidly converging to a finite value, as happens
eigenvalues of the physical modes.

III. RESULTS AND DISCUSSION

A. Inviscid and parallel results

In order to gain a preliminary insight on the stabili
properties of Bo¨dewadt’s flow, it is convenient to analyze th
inviscid and parallel solutions of the stability problem; that
to say, the limitR→`. Neglecting termsO(R21) in ~20!,
one has

~L11aL22 iq* L4!•S50 , ~36!

where
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. ~a! Real (g, continuous lines! and imaginary
(a, dashed lines! parts of the eigenvaluea for the two
most unstable modes~1 and 2! propagating towards the
axis whenR→` as functions of the local frequency
q* . They are numerically obtained withN5300 and
values ofzmax between 20 and 200.~b! Local phase
velocity q* /a ~continuous lines! and local group veloc-
ity ~dashed and dashed–dotted lines! of modes 1 and 2
as functions ofq* for R→`.
il
ha
-
z

fo

s

q* 5
q

R
, ~37!

is thelocal frequency. The term proportional toq/R has been
retained because one is interested in how the spatial stab
properties change with the frequency. In addition, as we s
see, there is no eigenvalueaÞ0 satisfying the above equa
tion for q* 50, so that the term has to be retained. The a
muthal wave numbern does not appear in this limitR→`.
Equation~36! can be reduced to a single scalar equation
the axial componentH of S:

H91HS a22
a f9

a f2 iq*
D 50, ~38!
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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where the primes denote differentiation with respect toz
~note that the eigenfunctions are now independent ofR, ex-
cept implicitly throughq* ). This Rayleigh-type equation ha
to be solved with the boundary conditions

H~0!5H~`!50. ~39!

The remaining eigenfunctions are related toH through

F52
H8

a
, G5

g8H

iq* 2a f
, P852H~ iq* 2a f ! . ~40!

For real frequencyq* , Eqs. ~38! and ~39! constitute a
cubic eigenvalue problem for the complex eigenvaluea and
the complex eigenfunctionH. Forq* 50, the problem has no
FIG. 3. Real~a! and imaginary~b! parts of the eigen-
functions F(z), G(z), and H(z) corresponding to
mode 2 in the limitR→` for the most unstable fre-
quencyq* 5q0* .0.081. ~c! uF(z)u compared to the ra-
dial velocity profile f (z). The maximum ofuF(z)u is
normalized to unity.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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solution, except for the trivial onea50. For eachq* .0, if
H is an eigenfuction with eigenvaluea, then so too is2H†

with eigenvalue2a†, where † denotes the complex conj
gate, for the sameq* . Thus, to each mode with growth ra
g and wave numbera there is a corresponding mode wi
growth rate2g and the samea, i.e., the same phase velo
ity. If a,0, the wave propagates towards the axis~decreas-
ing R), so that the mode withg,0 is unstable, while the
corresponding mode withg.0 is stable. Conversely, fora
.0, the mode withg.0 is unstable and its counterpart wi
g,0 is stable. As discussed in the preceding section,
shall look for unstable modes propagating towards the a
(a,0 andg,0).

The cubic eigenvalue problem~38! and ~39! is numeri-
cally solved using the linear companion matrix method13

Previously, Eq.~38! is discretized inN nodes by a spectra
collocation method, so that the associated linear eigenv
problem has dimension 3N. Figure 2~a! shows the real and
imaginary parts ofa as functions ofq* corresponding to the
two most unstable modes~highest values ofugu) propagating
towards the axis, i.e., with negative values of bothg anda.
The growth ratesg1 and g2 of these two modes cross atq
5q0* .0.081. It must be noted here that there exists a th
unstable inviscid mode with higher values ofugu than modes
1 and 2 in part of the frequency range plotted in Fig. 2~a!, but
which is not considered here because it is associated to p
tive values ofa and, therefore, to perturbations with pha
velocity directed away from the axis.

The most interesting feature of Fig. 2~a! is that the slope
of the dispersion relationsa1(q* ) and a2(q* ) of the most
unstable modes 1 and 2 change their sign, and therefore
direction of their group velocities, at the same frequencyq0*
~approximately! at whichg15g2 . This can be better appre
ciated in Fig. 2~b!, where the local phase velocityq* /a, and
the local group velocity]q* /]a, are plotted as functions o
q* . Although ug1u.ug2u for q* ,q0* , mode 1 has a positive
group velocity, that is in the opposite direction to the pha

FIG. 4. Dispersion relationsa(q) of modes 1 and 2 for several Reynold
numbers.
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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velocity of the perturbation. Hence, the most unstablephysi-
cal mode for q* ,q0* is mode 2, which in this frequency
range has phase and group velocities with the same~nega-
tive! sign. Actually, both velocities almost coincide un
q* '0.06. As q* approachesq0* , the group velocity of
mode 2 becomes singular, and then changes its sign foq*
.q0* @dashed line in Fig. 2~b!#, which clearly indicates tha
this mode is no longer physically meaningful forq* >q0* .
That mode 2 is the physically relevant one at low frequenc
is also consistent with the fact that only mode 2 satisfies~38!
in the limit q* →0 @a2(0)5g2(0)50#, while mode 1 pre-
sents a discontinuity asq* →0.

Conversely, althoughug2u.ug1u for q* .q0* , mode 2
has a positive group velocity in this frequency range a
must be physically discarded. This is corroborated by
fact that the growth rateg2 tends to a nonvanishing asymp
tote as the frequency increases, instead of going to zero
g1 @Fig. 2~a!#. Consequently, the most unstable perturbat
propagating towards the axis is that associated to mode 2
q* ,q0* , and the one associated to mode 1 forq* .q0* .
According to this, perturbations propagating towards the a
are inviscidly unstable in the range of local frequencies
,q* ,0.12, approximately, the most unstable frequency
which in this limit R→` is q* 5q0* .0.081. These frequen
cies are in the range of the smaller experimental values
Savas¸6 corresponding to the higher Reynolds numbers c
sidered in his Fig. 8~b!. On the other hand, Fig. 8~a! of
Savas¸6 shows that the observed wave number forlarge Rey-
nolds numbers (R.100, approximately; see also Fig. 7 b
low! is about 0.2, thus indicating that mode 2 is the o
observed experimentally@note from Fig. 2~a! that the wave
numbers of modes 1 and 2 atq* 5q0* are2a01.0.645 and
2a02.0.198, respectively#. The eigenfunctions correspond
ing to mode 2 atq* 5q0* in the present limitR→` are
shown in Fig. 3.

FIG. 5. Integral growth ratesg I(q) of modes 1~dashed lines! and 2~con-
tinuous lines! for the same Reynolds numbers of Fig. 4.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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B. Nonparallel and viscous results for nÄ0

In this section we present the results for finite, but lar
Reynolds numbersR, thus accounting for the viscous an
nonparallel effects on the stability of the perturbations.
particular, we shall give the results for the most unsta
axisymmetric (n50) perturbations propagating towards t
axis, which, according to the results of the previous sect
correspond to the inviscid mode 2 for low frequencies, and
the inviscid mode 1 for high frequencies. More precise
mode 2 is the most unstable physical mode forq,q02(R),
whereq02(R) is the frequency at which the group velocity
mode 2 becomes singular and then changes its sign for
Reynolds numberR @i.e., wherea2(q) has its minimum for
eachR]. Mode 1 is the most unstable forq.q01(R), being
q01(R) the frequency at whicha1(q) has its maximum for
each R. As it happened with the corresponding invisc

FIG. 6. ~a! q0(R) ~continuous line!, q01(R) ~dashed line!, and q02(R)
~dashed–dotted line!. ~b! g2

I for q5q0(R).
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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modes, these frequency valuesq01(R) and q02(R) almost
coincide with each other and with the frequencyq0(R)
where the integral growth ratesg I of modes 1 and 2 cros
@note that in the limitR→`, gu(R,z) does not depend onz,
so thatg I52g]. Figure 4 showsa1(q) anda2(q) for sev-
eral values ofR. It is observed that the maxima and th
minima of these functionsa(q) become sharper asR de-
creases. Figure 5 showsg1

I (q) andg2
I (q) for the same values

of R. The shaded areas correspond to thephysicalvalues for
which phase and group velocities have the same~negative!
sign. The frequenciesq0(R), q01(R), andq02(R) are plotted
in Fig. 6~a!. These frequencies are in the range of the exp
mental values reported by Savas¸6 ~note that his Fig. 8~b!
plots the local frequencyq* 5q/R instead ofq). For 20
,R,100, q0(R) can be approximated by the linear functio
q0(R).0.1810.091R. Figure 6~b! shows the maximum val-
ues of the integral growth rateg I @at q5q0(R), whereg1

I

5g2
I ] as a function ofR. The nondimensional radial wav

numbersa01(R) anda02(R) of modes 1 and 2 atq01(R) and
q02(R), respectively, are plotted in Fig. 7. As discuss
above, they correspond, approximately, to the wave numb
of modes 1 and 2 at the frequencies whereg1

I 5g2
I . Also

plotted in Fig. 7 are the experimental values reported
Savas¸6 @his Fig. 8~a!#, which are in good agreement with
2a02, indicating again that mode 2, which is the most u
stable one at low frequencies, corresponds to the obse
axisymmetric instabilities propagating towards the axis.

Finally, Fig. 8 summarizes some of the above resu
showing the instability region in the (q,R) plane ~it corre-
sponds to the shaded areas in Fig. 5!. The upper curve is the
neutral instability curve for mode 1, while the lower one
the neutral curve for mode 2. The dashed line correspond
the most unstable perturbations@q5q0(R), Fig. 6~a!#, with
corresponding growth rates plotted in Fig. 6~b!. All these
curves cross at the critical Reynolds numberRc.19.8 and
frequencyqc.2.1, corresponding to a~mode 2! wave num-

FIG. 7. Continuous lines:2a01(R) and 2a02(R) at q01(R) and q02(R),
respectively.h: experimental wave numbers reported by Savas¸.6
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ber 2ac.0.482. Thus, Bo¨dewadt’s flow is stable for axi-
symmetric perturbations for Reynolds numbers belowRc .
This critical Reynolds number is lower than the experimen
result Rc'24.5 of Savas¸,6 and the direct numerical simula
tion results of Lopez and Weidman7 (Rc between 25 and 30!.
The discrepancies may be due, apart from numerical
experimental indeterminacies, to the finite aspect ratio of
cylinders used in the experiments and in the numerical si
lations, in contrast to the infinite domain of the self-simil
solution. This is corroborated by the fact that the expe
ments performed by Gauthieret al.8 with a cylinder of much
larger aspect ratio~ratio between the radius and the height
the cylinder equal to 20.9! yield a minimum Reynolds num
ber as high as 140 for the observation of circular wa

FIG. 8. Instability region in the (q,R) plane for axisymmetric perturbations
The dashed line corresponds to the most unstable perturbation@q
5q0(R)#.
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propagating radially inwards. On the other hand, the criti
values ofRc andac found here are in good agreement wi
those obtained by Lingwood9 for the onset of absolute insta
bility.

As commented on in Sec. II C, the present method yie
not only global or integral stability results, but also the var
tion of the stability properties of the perturbations across
boundary layer. Figures 9 and 10 show the physical gro
rate gu and the physical wave numberau of mode 2 as
functions of z for two Reynolds numbers,R5100 andR
530, at their corresponding most unstable frequencyq0(R).
Also plotted is the absolute value of the radial eigenfuncti
uF(z)u, and the eigenvalues,2g and2a. It is observed that
the variation across the boundary layer ofgu and au be-
comes more important as the local Reynolds number
creases, which otherwise is evident from their definitio
~32! and ~33!. Consequently, larger values of bothN and
zmax are needed to obtain numerically the eigenfunctions
eigenvalues asR decreases, increasing considerably the co
putation time and computer memory~as R approachedRc ,
N5165 was used, which is the highest number ofz nodes
that can reasonably be managed by our computer, a Sil
Graphics Origin 2000, using 512 Mb of shared RAM!. On
the other hand, the computed values ofgu andau fail at the
wall due to the fact that bothF1 and F0 vanish atz50,
appearing a singularity in~32! and ~33!. The singularity is
more important asR decreases because of the increasing
curacy needed to obtain the eigenfunctions. The compu
integral growth rates~and, of course, the eigenvalues! are
not, however, affected by this singularity, converging ve
rapidly asN increases~they can be very accurately compute
using values ofN much lower than 165 even forR nearRc).

The physical growth rategu(z) is smaller than the ei-
genvalue2g @Figs. 9~b! and 10~b!#, except very close to the
wall ~where, as stated above, it is not very accurately co
puted! and other discrete locations where the amplitudeuFu
of the perturbation is zero or has a local minimum. On t
e
FIG. 9. Eigenfunction, physical growth rate, and wav
number, as functions ofz, for R5100 and q
5q0(100).9.3 ~mode 2!. ~a! uF(z)u with its maximum
value normalized to unity.~b! gu(z); the dashed line
corresponds to2g. ~c! au(z); the dashed line corre-
sponds to2a. (N590 andzmax540.)
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 10. As in Fig. 9 but forR530 andq5q0(30)
.2.9. (N5165 andzmax580.)
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the
other hand, a local minimum ofgu is located near the valu
of z where uFu has a maximum. Consequently, the integ
growth rateg I is always smaller than2g. The wave number
au is also smaller than2a for the most significant values o
z where uFu is not nearly zero@Figs. 9~c! and 10~c!#. This
means that the local phase speed of the perturbation
larger, for most values ofz, than that obtained using th
imaginary parta of the eigenvalue. This is clear in Fig. 11
where the phase speed based on the eigenvaluea for q
5q0(R) is compared to the phase speedcu evaluated accord
ing to ~34! at z52.5 ~where the amplitude of the perturbatio
uFu has its maximum, approximately, for allR) for distur-
bances corresponding to mode 2. These last values of

FIG. 11. Local phase speed of the perturbationscu corresponding to mode 2
at z52.5 ~continuous line! as function ofR for q5q0(R). The dashed line
represents the phase speed based on the eigenvaluea for the same values of
q andR, i.e., 2q/@R a2(q0)#.
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP
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phase speed are in the range of the ones obtained by L
and Weidman7 in their numerical simulations, which rang
between 0.2 and 0.55, approximately~note that to obtain the
actual local phase speeds one has to multiplycu by V r ).

IV. CONCLUSIONS

A linear spatial stability analysis of Bo¨dewadt’s self-
similar solution has shown that the circular waves obser
experimentally, and in numerical simulations, in the boun
ary layer over the stationary endwall of a cylinder with
fluid in solid body rotation correspond to a particular ins
bility mode of that self-similar solution~termed here as
‘‘mode 2’’ !. Since this unstable mode is present at infin
Reynolds numbers, it corresponds to an inertial instability
is the most unstable one at low frequencies, up to the lo
frequencyq/R5q0* .0.081, at which the local group veloc
ity of the perturbations becomes unbounded, and t
changes its sign for largerq/R. Thus, forq/R.q0* , the most
unstable physical mode shifts from mode 2 to another o
termed here as ‘‘mode 1,’’ which is not observed in t
experiments and in the numerical simulations. In this h
Reynolds number limit, the most unstable frequency a
wave number found here areq/R.0.081 anduau.0.2, re-
spectively. AsR decreases, viscous and nonparallel effec
which areO(R21), become increasingly more important
the stability properties of the flow, increasing slowly both t
local frequency and the wave number of the most unsta
perturbations. Eventually, the circular waves travelling ra
ally inwards are stabilized by these effects, and no axisy
metric perturbation is unstable below a critical local Re
nolds numberRc'20, corresponding toqc'2.1 and uacu
'0.48. The discrepancies between these critical values
the reported ones from experiments and numerical sim
tions are probably due to the finite height and radius of
cylinders where they are performed.
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