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A spatial linear stability analysis of Biewadt’s self-similar solution for the rotating flow over a flat
plate is performed. In particular, considered is the stability of axisymmetric perturbations
propagating towards the axis of rotation, which are the most important ones observed
experimentally. Viscous and nonparallel effects on the stability of the perturbations are retained up
to the order of the inverse of the local Reynolds numBerThe resulting parabolic stability
equations are solved numerically using a spectral collocation method varying the nondimensional
frequencyq and R. The instability region on theq,R)-plane is discussed and compared with
existing experimental data and direct numerical simulation results. The circular waves observed
experimentally and in numerical simulations are shown to correspond to an inertial instability mode
which becomes stabilized &% decreases below a critical value. 00 American Institute of
Physics[S1070-663100)01307-§

I. INTRODUCTION flow is absolutely unstable above a critical Reynolds number
which agrees well with the experimental values. In the

The study of rotating flows over solid planes has beerpresent work, a nonparallel-flow approximation in the radial

considered extensively in the literature because of both thedirectionr is used to study the spatial stability of 8awadt’s

oretical and technological interest. Of particular significancesolution, identifying a particular axisymmetric unstable

is the early work of Bdewadt! who considered the flow mode as the one observed in the experiments and in the

produced over an infinite stationary plane in an incompressaumerical simulations. Although the thickness of

ible fluid rotating with uniform angular velocity at an infinite Bodewadt's self-similar layer is independent pfnonparal-

distance from the plane. Bewadt's flow constitutes an out- lel effects, that is the radial variation of the basic flow and of

standing example of an analyticédelf-simila) solution to  the amplitude of the perturbations, have to be considered in

the Navier—Stokes equatiorisee Sec. Il A analogous to the stability equations at the same level as the viscous ef-

that found earlier by von Kenan,? and generalized later by fects.

Batchelor’ Bodewadt's self-similar solution has been the

subject of controverdyand, probably due to the experimen-

tal Q|ﬁ|cult|e§ in creating a fluid in solid-body rotatlon OVera || EORMULATION OF THE PROBLEM

stationary disk, only recently has been studied both experi-

mentally and numerically=® In these works, quasisteady A. Basic flow

flows whose velocity profiles can be approximated to a high  ggdewadt's flow© is a self-similar solution to the

degree by Bdewadt's solution were originated in the inte- Nayier—Stokes equations for the stationary viscous flow over
rior of cylmder-s of several aspect ratios at dlfferer_ﬂ Reyn_oldsan infinite flat plate of an incompressible fluid rotating as a
numbers. Various types of instabilities propagating radlallyrigid body far from the plate. If) is the angular velocity of

inwards on the stationary disk were described. Notably, axithe rotating fluid over the plane, the viscous layer thickness
symmetric(circulan waves travelling towards the center of 5 of the order of

the disk were found. The conjecture was made that these

axisymmetric waves, which become stabilized below a criti- 5= /v/Q, (1)

cal local Reynolds number before reaching the center of the -

disk, represent a mode of instability of the dawadt flow. where v is the fluid kinematic viscosity. Btewadt found
However, no detailed stability analysis of @awadt's solu- that, in cylindrical polar coordinates (0,z), wherez is the
tion is available to compare with these experimental and nu@xial coordinate perpendicular to the plate, witk 0 the
merical results. The recent work by Lingwdodontains ~@xis of the rotating flow, the velocity fieldJ,V,W) on the
some scarce results on the stability ofd@evadt solution Plate can be written as

within a more general analysis of the absolute instability of a

family of self-similar solutions for the Ekman layer, which =0, V=rQg(f), W= W h(g), 2
includes Balewadt's flow as a particular case. This author,yhere
uses a parallel-flow approximation and finds thatlBeadt's
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FIG. 1. Functiond(¢), g(), h(¢), f'(¢), andg’({).

g
is the self-_similar variable,_ and th_e functi_orl’sq,h) ;atisfy W:rQ[Rflh(g)JrW], (12)
the following set of ordinary differential equations and
boundary conditiongprimes denote differentiation p 1., —
—==rQ1+p], (13
2f+h’'=0, (4) p 2
f24hf —g2+1—f"=0 (5) where the perturbations
2fg+hg’ —g"=0, (6) s=[u,v,w,p]" (14)
f(0)=g(0)=h(0)=0, f()=0, g(s)=1. @) are in general functions of the four independent variables

(r,6,z,t). Note that the ternO(R™2?) in the basic pressure
Equations(4)—-(6) come from the equations of continuity, field (8) has been neglected, which is consistent with the
r-momentum, and ¢-momentum, respectively. The stability analysis given below. Since the mean flow depends
zmomentum equation determines the pressure field, exceph the similarity variable’, this nondimensional variable is
for an arbitrary constant, as used instead of. Also, as nondimensional radial coordinate
we use the local Reynolds numbé3). The perturbations

P 1 1 .
o ErZQ2 1+ 2R‘2( h'— §h2> , (8)  (14) are decomposed in the standard form:
where p is the fluid density, an®R is the local Reynolds SR.EOH=SROX(R,0.1), (15
number, defined as where the complex amplitude
r F(R,
R=", © (R
5 G(R,{)
which will be assumed large. Figure 1 shows the profiles of SR.O= H(R,{) (16
f, g, h, f', andg’, which have been obtained using a standard (R, {)
finite difference method with deferred corrections to solve ’
the nonlinear problen@)—(7). depend on both the radial and the axial coordinates. The
other part of the perturbation is of exponential form that
B. Nonparallel linear stability formulation describes the wavelike nature of the disturbance,

To analyze the linear stability of the above basic flow, R o
the flow variables ,v,w) andp, are decomposed, as usual,  X(R.6,t)=ex fRa(R JAR' +i(nf—wt) |, 17
into their mean partsy,V,W) and P, and small perturba- '

tions. Following(2) and(8), where R; is an initial or reference Reynolds number. The
_ nondimensional, order of unity, complex radial wave number
u=rQ[f()+ul, (10 ajis defined, in terms of its dimensional valkeas
v=rQ[g({)+v], (11) a(R)=8k(R)=y(R)+ia(R). (18)
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The real party(R) is the local exponential growth rate, and 0 0 dla 0
the imaginary parte(R) is the local radial wave number. A 0o 0 f 0
nondimensional frequenayis also defined
w Li={0 0 ¢ 0o |, (22
=_. 19
=0 19 00 0 i
Finally, the azimuthal wave numberis equal to zero for
axisymmetric perturbations, and different from zero for spi- 100 0
ral perturbations.
Substituting(15)—(19) into the incompressible Navier— f 0 0 1/2
Stokes equations, and neglecting second-order terms in both L,=M=| o9 §f o o0 |,
the small perturbations arlR™ %, the following set of linear 00 f 0
parabolic stability equations results:
L-S+M &S—O 20 2
.S+M- R0, (20 0 0 0O
. ) 1 0 0 O
where the matrix operatots andM are defined as _
) ) La={0 1 0 of-
L=L,+al,+=Lz—a’=L,, (21 0 010
R R
2 in 0 0
—iq+2f+ing+D; —29 0 1
Ls= 29 —ig+2f+ing+Dy, 0 in/2 | - (24)
0 0 —ig+2f+ing+h’'+D, O
with
D,=hdla;— 13> (25

The above equations must be solved with the followingcant frequency values of the perturbations should be large

boundary conditions af=0 and/— : in relation toQ) (g/R cannot be very small for larg®), and
the stability results fon#0, |n|=0(1), should not differ
F(R,%)=G(R,*)=H(R,*)=0, much from the results fon=0. For this last reason, and

(26) because experimental observations show that the most inter-
esting instability waves of Biewadt flow are axisymmetric

An initial condition at some large value & s also needed ©ones(e.g., Sava8 and Gauthieet al?), only the case1=0
to solve (20). However, this last condition will not be used Will be considered in this work.

here because we shall look for local solutigbst retaining y o _
1R terms of the parabolized stability equatioisee next ~C. Stability definitions and numerical method

sectior). As it stands there is some ambiguity in the partition of
In the above approximation, tern®(R~?) and smaller  the perturbation$15) into two functions of the radial coor-
have been neglected. The retaif@(R ') terms account for ginateR. To close the problem one has to enforce an addi-
three different effects on the stability of the perturbatidiis:  tional normalization condition which puts some restriction
the effect of viscosity(ii) the effect of the nonparallelism of o the radial variation of the perturbation eigenfunctibn.
the basic flow and of the amplitude of the perturbations, andye shall perform here a local spatial stability analysis:
(i) the effect of the history, or convective evolution, of the Gjyen areal frequencyq and the azimuthal wave number
perturbations. This last effectii) is described by th&/dR  Eq. (20) and itsR derivative will be solved locally for each
terms of the stability equations, which are the ones responmgius R= R, with the normalization condition
sible for the partial differentialthough paraboliccharacter [O’)a/o’;R]R:RO:O_ This condition will restrict, as required,

of ‘h? e_quations. All three effects are there_fore n_egligible inthe downstream variation of the perturbation eigenfunction,
the limit R—e. Not_e that both the nondlmens_lonal fre- yielding, for eachR, the local growth rate and radial wave
quenqu and the alzllmuthal wave numbarenter |nt(_) th(_a number(or the phase speed of the disturbgnae functions
equations at ordeR™* (operatorlL ;). Therefore, the signifi- of the axial distance to the plate

The eigenfunctiors is expanded in a Taylor series about
Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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R=R,, where only two terms are retained to be consistentnote that the dimensional local phase speddrigimesc,).
with the approximations made in the preceding section:  Finally, to measure the global growth rate of the distur-
bances, it is convenient to define an integral growth rate,
IS(R,{)

JR | oo Jovd(ROIF(R,O)|dg
R YT TR RR O
=%()+(R=Ro)S(D). (27) which is more appropriate than the real part of the eigen-

This expansion is now substituted in20) and itsR deriva- ~ value, -, to characterize the amplification rate of the per-
tive to obtain two equations fdg, andS; (|S,|<|S|). Us-  turbations.

ing the local normalization conditiopsa(R)/dR]g-r =0, To solve(28)—(29) numerically, the/-dependence oX
one has is discretized using a staggered Chebyshev spectral colloca-

tion technique developed by KhorrafiiThis method has
L-Sy+M-S,=0, (280  the advantage of eliminating the need of two artificial pres-
sure boundary conditions g=0 and{=o, which are not

S(Rig):S(R01§)+(R_RO)

(35

iq , included in(26). The boundary conditions at infinity are ap-
ELW SpfL’-$=0, (29 plied at a truncated radial distan¢g,y, chosen large enough
to ensure that the results do not depend on that truncated
where the operatot. is now evaluated aR=R; and L’ distance(values of¢ ., between 20 and 140 were used in the

=L,+alL,—igL,/R. Note that termD(g/R?) have been computations reported belgwTo implement the spectral nu-
retained to allow for high values of the frequengy For  merical method, Eqs(28) and (29) are discretized by ex-
given g, n, and R=Ry, this constitutes a nonlinear eigen- pandingX in terms of truncated Chebyshev series. A non-
value problem for the complex eigenvala@and the complex uniform coordinate transformation is used to map the
eigenfunction interval 0< {<{,ax iNto the Chebyshev polynomial domain
—1l<s<1l: [=c;—CyIn(l+e—5), where c;=c,In(2+¢),
Co=Cmax/(IN(2+€)—In€) and e is a very small number ¢
S,/ =102 is used. This transformation allows large valuesof
) ] ] to be taken into account with relatively few basis functions.
Experlmental and numerical resﬁﬁgshow that the in- The ¢ domain is thus discretized X points,N being the
stability waves propagate towards the axis, i.e., in the samgmper of Chebyshev polynomials in whidhhas been ex-
direction as the bulk of the radial flogee Fig. 1 Thus, for panded. In the results presented héteanged between 40
a given positive value af, one is interested in modes whose 54 165, With this discretizaziori28) and (29) become an
eigenvaluea has both its real and imaginary parts negative gigepraic nonlinear eigenvalue problem which is solved us-
According to(17) and(18), this ensures that the perturbation ing the linear companion matrix method described by
grows exponentially as it propagates towards decreaRing grigges and Morrid® The resulting(complex linear eigen-
(y<0), with phase velocity directed towards the ati®., e problem is solved with double precision using an ei-
a<0). We are mostly interested in the evolutionRsle-  genyalue solver from the IMSL library, which provides the
creases of the most unstable modargest|y|) for given  gpire eigenvalue and eigenvector spectrum. Since the di-
values ofg andn=0, and in how this evolution depends on 1 ansion of the associated linear problem i&N16he com-

the distance/ to the plate. To that end we define a nondi-  \tation time increases very fast with the number of nodal

mensionalphysical growth ratey,, and a nondimensional intsN. Also, due to the large dimension of the matrices, a
physicalradial wave numbe, , based on the radial velocity rejatively large amount of spurious numerical eigenvalues

S
X(g)z( (30)

component of the perturbatiomQu): are produced by the eigenvalue solver, particularly wipen
very small. They are, however, easily discarded because the
a =—i_i(rQU) (31) corresponding growth rates change wildly [dsincreases,
Y rQu ar ' instead of rapidly converging to a finite value, as happens for

eigenvalues of the physical modes.

F1(§))
Fo(0))’

Fl(f))

F
olf) In order to gain a preliminary insight on the stability
where Fo({)=F(Ro.{) and Fi({)=[JdF(R.{)/IR]r-r,  properties of Bdewadt's flow, it is convenient to analyze the
(for simplicity, in the above expressions and in what followsinviscid and parallel solutions of the stability problem; that is
we write R for Ry). The nondimensional local phase speedto say, the limitR— . Neglecting term€O(R™1) in (20),

1
W(RO=R(ay)=~¥(R)~ 5~ m( (32

Ill. RESULTS AND DISCUSSION

ay(R,)=3(a,)= —a(R)—’J( (33) A Inviscid and parallel results

of the disturbances is defined in termscaf: one has
q (L1+aL2_iq*L4)'S=O, (36)
CRO=RaRD B9 where
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) axis whenR—o as functions of the local frequency

g*. They are numerically obtained witN=300 and
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q where the primes denote differentiation with respect{to
9 =g (37 (note that the eigenfunctions are now independerf, afx-

cept implicitly throughg*). This Rayleigh-type equation has
is thelocal frequency. The term proportional tgR has been  to be solved with the boundary conditions
retained because one is interested in how the spatial stability
properties change with the frequency. In addition, as we shall H(0)=H()=0. (39)
see, there is no eigenvalae~ 0 satisfying the above equa- The remaining eigenfunctions are relatedHdhrough
tion for g* =0, so that the term has to be retained. The azi-
muthal wave numben does not appear in this limR— o. H’ !

H
Equation(36) can be reduced to a single scalar equation for F=——-, G= ?‘7 II"=2H(ig* —af). (40
the axial componenit of S: iq* —af
Y For real frequencyg*, Egs.(38) and (39 constitute a
H”+H| a2— f ) =0, (39) cubic eigenvalue problem for the complex eigenvaduend
af—ig* the complex eigenfunctioH. Forg* =0, the problem has no
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FIG. 3. Real(a) and imaginary(b) parts of the eigen-
functions F(¢), G(¢), and H(¢) corresponding to
mode 2 in the limitR— for the most unstable fre-
quencyg* =q§=0.081.(c) |F({)| compared to the ra-
dial velocity profile f(£). The maximum oflF(¢)]| is
normalized to unity.
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FIG. 4. Dispersion relationa(q) of modes 1 and 2 for several Reynolds FIG. 5. Integral growth rates'(q) of modes 1(dashed linesand 2(con-
numbers. tinuous lineg for the same Reynolds numbers of Fig. 4.

solution, except for the trivial onea=0. For eachg* >0, if
H is an eigenfuction with eigenvalug then so too is—H'

with eigenvalue—a’, where t denotes the complex conju- Velocity of the perturbation. Hence, the most unstadigsi-
gate, for the samg*. Thus, to each mode with growth rate cal mode forg* <qg is mode 2, which in this frequency
y and wave numbet: there is a corresponding mode with range has phase and group velocities with the sérega-
growth rate— y and the same, i.e., the same phase veloc- tive) sign. Actually, both velocities almost coincide until
ity. If <0, the wave propagates towards the dgiscreas- 0*~0.06. As gq* approachesy;, the group velocity of
ing R), so that the mode withy<<0 is unstable, while the mode 2 becomes singular, and then changes its sigg*for
corresponding mode with>0 is stable. Conversely, far ~ >0g [dashed line in Fig. ®)], which clearly indicates that
>0, the mode withy>0 is unstable and its counterpart with this mode is no longer physically meaningful fot =qg .
v<0 is stable. As discussed in the preceding section, wdhat mode 2 is the physically relevant one at low frequencies
shall look for unstable modes propagating towards the axits also consistent with the fact that only mode 2 satig{&s
(<0 andy<0). in the limit g* —0 [ a»(0)= vy,(0)=0], while mode 1 pre-
The cubic eigenvalue problef38) and (39) is numeri-  sents a discontinuity ag* —0.
cally solved using the linear companion matrix metfdd. Conversely, althoughy,|>|y,| for g*>q§, mode 2
Previously, Eq.(398) is discretized inN nodes by a spectral has a positive group velocity in this frequency range and
collocation method, so that the associated linear eigenvalumust be physically discarded. This is corroborated by the

problem has dimensionN8 Figure Za) shows the real and fact that the growth rate, tends to a nonvanishing asymp-
imaginary parts of as functions ofy* corresponding to the

tote as the frequency increases, instead of going to zero like
two most unstable modéhkighest values dfy|) propagating vy, [Fig. 2@]. Consequently, the most unstable perturbation
towards the axis, i.e., with negative values of bgtand «. propagating towards the axis is that associated to mode 2 for
The growth ratesy; and y, of these two modes cross qt

g*<qg, and the one associated to mode 1 €gr>qg .
=gy =0.081. It must be noted here that there exists a thirdAccording to this, perturbations propagating towards the axis

unstable inviscid mode with higher values|of than modes are inviscidly unstable in the range of local frequencies 0
1 and 2 in part of the frequency range plotted in Fig) 2but ~ <g* <0.12, approximately, the most unstable frequency of
which is not considered here because it is associated to positich in this limit R— is g* =q5 =0.081. These frequen-
tive values ofa and, therefore, to perturbations with phasecies are in the range of the smaller experimental values of
velocity directed away from the axis. Sava$ corresponding to the higher Reynolds numbers con-
The most interesting feature of Fig(a? is that the slope sidered in his Fig. &). On the other hand, Fig.(& of
of the dispersion relationa;(q*) and a,(gq*) of the most  Sava$8 shows that the observed wave numberléoge Rey-
unstable modes 1 and 2 change their sign, and therefore tm®lds numbersR> 100, approximately; see also Fig. 7 be-
direction of their group velocities, at the same frequeqfy low) is about 0.2, thus indicating that mode 2 is the one
(approximately at which y;=v,. This can be better appre- observed experimentallyjnote from Fig. 2a) that the wave
ciated in Fig. 2b), where the local phase velocity /@, and  numbers of modes 1 and 2 @t =qg are — @;=~0.645 and
the local group velocityq*/da, are plotted as functions of — ay,=0.198, respectively The eigenfunctions correspond-
g*. Although|y4|>|v,| for g* <qgg , mode 1 has a positive ing to mode 2 atg*=qg in the present limitR— are
group velocity, that is in the opposite direction to the phaseshown in Fig. 3.
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02 FIG. 7. Continuous lines= ay(R) and — ag(R) at gg1(R) and qgx(R),
respectively]: experimental wave numbers reported by Sdvas
015 i modes, these frequency valugg(R) and qg(R) almost

coincide with each other and with the frequengy(R)
where the integral growth rateg of modes 1 and 2 cross
| [note that in the limiR—«, y,(R,Z) does not depend af)
. 01| so thaty'= —y]. Figure 4 showsy,(q) and a,(q) for sev-

- eral values ofR. It is observed that the maxima and the
minima of these functiong(q) become sharper aR de-
I creases. Figure 5 showé(q) and y'z(q) for the same values
005 | of R. The shaded areas correspond toghgsicalvalues for
I which phase and group velocities have the sdnegative
sign. The frequenciegy(R), qo1(R), andggx(R) are plotted
in Fig. 6(a). These frequencies are in the range of the experi-

L T T T mental values reported by Safasote that his Fig. &)
b plots the local frequency* =q/R instead ofqg). For 20
(b) R <R<100, qo(R) can be approximated by the linear function
FIG. 6. (8 qo(R) (continuous ling qoy(R) (dashed ling and qoy(R) qO(R)20'18_+ 0.091R. Figure Eib? shows the maximum Vlal'
(dashed—dotted line(b) v} for q=qq(R). ues of the integral growth ratg’ [at q=0qo(R), wherey;

=45] as a function ofR. The nondimensional radial wave
numbersag;(R) and agy(R) of modes 1 and 2 aiy;(R) and
dox(R), respectively, are plotted in Fig. 7. As discussed
above, they correspond, approximately, to the wave numbers
In this section we present the results for finite, but largeof modes 1 and 2 at the frequencies whete=y,. Also
Reynolds number®, thus accounting for the viscous and plotted in Fig. 7 are the experimental values reported by
nonparallel effects on the stability of the perturbations. InSava$ [his Fig. 8a)], which are in good agreement with
particular, we shall give the results for the most unstable- «,, indicating again that mode 2, which is the most un-
axisymmetric (=0) perturbations propagating towards the stable one at low frequencies, corresponds to the observed
axis, which, according to the results of the previous sectionaxisymmetric instabilities propagating towards the axis.
correspond to the inviscid mode 2 for low frequencies, and to  Finally, Fig. 8 summarizes some of the above results,
the inviscid mode 1 for high frequencies. More precisely,showing the instability region in theg(R) plane (it corre-
mode 2 is the most unstable physical mode derqg(R), sponds to the shaded areas in Fig.Ehe upper curve is the
whereqg,(R) is the frequency at which the group velocity of neutral instability curve for mode 1, while the lower one is
mode 2 becomes singular and then changes its sign for eathe neutral curve for mode 2. The dashed line corresponds to
Reynolds numbeR [i.e., wherea,(q) has its minimum for the most unstable perturbationg=qy(R), Fig. 6a)], with
eachR]. Mode 1 is the most unstable for>qg(R), being  corresponding growth rates plotted in Figbp All these
Jo1(R) the frequency at whicla,(q) has its maximum for curves cross at the critical Reynolds numligr=19.8 and
each R As it happened with the corresponding inviscid frequencyq.=2.1, corresponding to @node 2 wave num-

B. Nonparallel and viscous results for  n=0
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FIG. 8. Instability region in thed,R) plane for axisymmetric perturbations.
The dashed line corresponds to the most unstable perturbafigns
=do(R)].

ber —a,=0.482. Thus, Bdewadt's flow is stable for axi-

symmetric perturbations for Reynolds numbers belRw
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propagating radially inwards. On the other hand, the critical
values ofR; and « found here are in good agreement with
those obtained by Lingwoddor the onset of absolute insta-
bility.

As commented on in Sec. Il C, the present method yields
not only global or integral stability results, but also the varia-
tion of the stability properties of the perturbations across the
boundary layer. Figures 9 and 10 show the physical growth
rate y, and the physical wave number, of mode 2 as
functions of ¢ for two Reynolds numbersdR=100 andR
=30, at their corresponding most unstable frequenyir).
Also plotted is the absolute value of the radial eigenfunction,
[F(2)|, and the eigenvalues; y and— «. It is observed that
the variation across the boundary layer gf and «, be-
comes more important as the local Reynolds number de-
creases, which otherwise is evident from their definitions
(32) and (33). Consequently, larger values of bokh and
{max @re needed to obtain numerically the eigenfunctions and
eigenvalues aR decreases, increasing considerably the com-
putation time and computer memo(gs R approached,,
N=165 was used, which is the highest numberaiodes
that can reasonably be managed by our computer, a Silicon
Graphics Origin 2000, using 512 Mb of shared RANDN
the other hand, the computed valuesygfand «,, fail at the
wall due to the fact that botl,; and F, vanish at{=0,

This critical Reynolds number is lower than the experimentagppearing a singularity i032) and (33). The singularity is
result R,~24.5 of Sava$ and the direct numerical simula- more important aR decreases because of the increasing ac-

tion results of Lopez and WeidmA(R, between 25 and 30

curacy needed to obtain the eigenfunctions. The computed

The discrepancies may be due, apart from numerical anthtegral growth rategand, of course, the eigenvaljiesre
experimental indeterminacies, to the finite aspect ratio of theot, however, affected by this singularity, converging very
cylinders used in the experiments and in the numerical simurapidly asN increasesthey can be very accurately computed
lations, in contrast to the infinite domain of the self-similar using values oN much lower than 165 even fét nearR,).
solution. This is corroborated by the fact that the experi- The physical growth rate,({) is smaller than the ei-
ments performed by Gauthiet al® with a cylinder of much  genvalue— y [Figs. 9b) and 1@b)], except very close to the
larger aspect rati¢ratio between the radius and the height of wall (where, as stated above, it is not very accurately com-
the cylinder equal to 20)9ield a minimum Reynolds num- puted and other discrete locations where the amplit{fle

ber as high as 140 for the observation of circular wave®f the perturbation is zero or has a local minimum. On the
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A FIG. 9. Eigenfunction, physical growth rate, and wave
number, as functions of{, for R=100 and q

=(o(100)=9.3 (mode 2. (a) |F(¢)| with its maximum
value normalized to unity(b) y,(¢); the dashed line
(b) corresponds to-y. (¢) a,(¢); the dashed line corre-
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sponds to—a. (N=90 and{,.,=40.)
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FIG. 10. As in Fig. 9 but forR=30 andq=(,(30)
=2.9. (N=165 and{,,,=80.)

other hand, a local minimum of,, is located near the value phase speed are in the range of the ones obtained by Lopez
of £ where|F| has a maximum. Consequently, the integraland Weidmahin their numerical simulations, which range
growth ratey' is always smaller thar- y. The wave number between 0.2 and 0.55, approximatéhote that to obtain the

«a, is also smaller thar- « for the most significant values of actual local phase speeds one has to multighpy Q r).

{ where|F| is not nearly zerdFigs. 9c) and 1@c)]. This

means that the local phase speed of the perturbations is

!arger, for most values .of, than that. optamed using the V. CONCLUSIONS

imaginary parte of the eigenvalue. This is clear in Fig. 11,

where the phase speed based on the eigenvalder q A linear spatial stability analysis of Bewadt's self-
=0o(R) is compared to the phase spexcevaluated accord-  similar solution has shown that the circular waves observed
ing to (34) at{= 2.5 (where the amplitude of the perturbation experimentally, and in numerical simulations, in the bound-
|F| has its maximum, approximately, for &) for distur-  ary layer over the stationary endwall of a cylinder with a
bances corresponding to mode 2. These last values of thgiid in solid body rotation correspond to a particular insta-
bility mode of that self-similar solutiontermed here as
“mode 2"”). Since this unstable mode is present at infinite

08 Reynolds numbers, it corresponds to an inertial instability. It
07 3 is the most unstable one at low frequencies, up to the local
i frequencyq/R=qg =0.081, at which the local group veloc-
o6 L ity of the perturbations becomes unbounded, and then
[ changes its sign for largey R. Thus, forg/R>qg , the most
o 05 a unstable physical mode shifts from mode 2 to another one,
o . termed here as “mode 1,” which is not observed in the
& s | experiments and in the numerical simulations. In this high
% : Reynolds number limit, the most unstable frequency and
S 03 [ wave number found here aggR=0.081 and «|=0.2, re-
e i . spectively. AsR decreases, viscous and nonparallel effects,
02 | which areO(R™ 1), become increasingly more important in
i the stability properties of the flow, increasing slowly both the
o1 | local frequency and the wave number of the most unstable
C perturbations. Eventually, the circular waves travelling radi-
0 0 10“5(])”'5([)”'46”'56'“66”"'/6”'&6”‘56'“160 ally inwards are stabilized by these effects, and no axisym-

metric perturbation is unstable below a critical local Rey-
R nolds numberR.~20, corresponding t@.~2.1 and|a,|
) ) ~0.48. The discrepancies between these critical values and
FIG. 11. Local phase speed of the perturbatiopsorresponding to mode 2 the reported ones from experiments and numerical simula-
at {=2.5 (continuous ling as function ofR for g=qy(R). The dashed line . p p . . .
represents the phase speed based on the eigenvétiighe same values of t|0'j‘5 are probably due to the finite height and radius of the
gandR, i.e., —q/[R ax(qo)]- cylinders where they are performed.

Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 12, No. 7, July 2000 Axisymmetric instabilities of Bodewadt flow 1739

ACKNOWLEDGMENTS “H. Greenspan;The Theory of Rotating Fluid¢Cambridge University

This research has been supported by the DGES of Spaiggr'e;’\/;;g:s??ﬁdiézgg 3445(1983.

(Grant No. PB96-0679-C02-01l have benefitted from com- 65 sayasJ. Fluid Mech.183 77 (1987.
ments by Professor John Lopez. Acknowledgment is alsSoj. Lopez and P. Weidman, J. Fluid Me&26, 373 (1996.
due to Professor O. Savder providing his experimental 2G. Gauthier, P. Gondert, and M. Rabaud, J. Fluid M&&8, 105(1999.

data pIotted in Fig. 7. °R. Lingwood, J. Fluid Mech331, 405 (1997.

10H. Schlichting,Boundary Layer TheoryMcGraw-Hill, New York, 1987.
1y, Bodewadt, Z. Angew. Math. Mecl20, 241 (1940. 'F. Bertolotti, T. Herbert, and P. Spalart, J. Fluid Me242, 441(1992.
2T, v, Karman, Z. Angew. Math. Mechi, 233(1921). 2M. Khorrami, Int. J. Numer. Methods Fluids2, 825 (1997).
3G. Batchelor, Q. J. Mech. Appl. MatH, 29 (1951). 13T, Bridges and P. Morris, J. Comput. Ph¥&, 437 (1984.

Downloaded 07 Jun 2006 to 150.214.43.19. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



