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Nonlinear instabilities in a vertical pipe flow discharging
from a cylindrical container
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We report results from three-dimensional numerical simulations of the incompressible flow in a
vertical pipe of circular cross-section discharging from a cylindrical container. Natural Coriolis
forces due to Earth rotation trigger the instability of the axisymmetric flow, and nonlinear spiral
waves with azimuthal wave number �n�=3 are formed above a critical Reynolds number based on
the pipe flow rate �ReQ�. We characterize this critical Reynolds number as a function of the Coriolis
parameter �F�, that is proportional to the square of the radius of the container. As a difference with
previous numerical works on nonlinear instabilities and transition in a pipe flow, here the nonlinear
disturbances needed to trigger the instabilities are not artificially introduced inside the pipe flow, but
naturally produced by Coriolis forces, the amplitude of these disturbances being characterized by a
nondimensional Coriolis parameter. We find that the pipe flow can be unstable for ReQ as low as 300
for the largest value of F considered. We also discuss the relevance of the residual swirl introduced
by natural Coriolis forces in triggering the nonlinear traveling waves. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2168445�
I. INTRODUCTION

Recent theoretical, numerical, and experimental works
have reported the existence of nonlinear traveling waves in
pipe flow at relatively low Reynolds numbers, and their sig-
nificance to the transition to turbulent pipe flow.1–3 To gen-
erate the instabilities that produces such nonlinear waves
and, at the end, a turbulent flow, both in experiments and in
numerical simulations, several disturbance generators and
their numerical counterparts have been envisaged down-
stream the pipe inlet.4–7 In this work we add further knowl-
edge to the formation on nonlinear traveling waves in a pipe
flow by direct numerical simulation of the flow in a vertical
pipe discharging from a container without the use of any
artifact to generate and introduce the nonlinear disturbances
into the flow. The instabilities are triggered by natural Cori-
olis forces, whose intensity at the pipe inlet is controlled by
varying the size of the container. In addition, as a difference
with other numerical simulations,4,7 no damping zone near
the pipe outlet is required to impose the outflow boundary
condition because no velocity boundary conditions are
needed in the numerical method used here: the flow evolves
freely from a given pressure difference between the inlet
surface at the container and the pipe outlet, without any other
constraint at the outflow boundary.8 This numerical tech-
nique has been successfully used recently to describe nonlin-
ear traveling waves in a rotating pipe.9 Here the tank-pipe
system does not rotate, though a swirl velocity component is
introduced locally at the pipe inlet by natural Coriolis forces,
whose intensity is proportional to the square of the radius of
the tank. We discuss in the last section the significance of

this residual swirl in triggering the nonlinear instabilities.
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II. FORMULATION OF THE PROBLEM

We solve numerically the three-dimensional, incom-
pressible Navier-Stokes equations, including natural Coriolis
body forces due to Earth rotation, which in dimensionless
form can be written as

� · v = 0, �1�

�v

�t
+ v · �v = − �p +

1

Re
��2v − Fez ∧ v� , �2�

in the domain depicted in Fig. 1, which consists on a pipe of
length l and diameter d discharging from a coaxial cylindri-
cal container of radius R. The axes of both the pipe and the
container are parallel to the vertical axis ez, and we have
selected a pipe length l=20d. Cylindrical-polar coordinates
�r ,� ,z�, with velocity field v= �u ,v ,w�, are used. The flow is
FIG. 1. Nondimensional integration domain and coordinates.
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produced by a pressure difference �pc, which includes grav-
ity forces �p is the nondimensional reduced pressure�, be-
tween some height H above the base of the container and the
pipe exit. Accordingly, we define a characteristic velocity
based on this pressure difference, Vc���pc /�, where � is
the fluid density, which, together with the length scale R, are
used to nondimensionalize the equations and boundary con-
ditions. Thus, the Reynolds number Re and the Coriolis pa-
rameter F in Eq. �2� are defined as

Re =
��pc/�R

�
, F =

fR2

�
, �3�

where � is the kinematic viscosity of the fluid and f
�2� sin � is the Coriolis frequency at the given latitude �.
The nondimensional boundary conditions are the following
�see Fig. 1�: zero velocity at the solid walls,

v = 0 at � r = 1, 0 � z � � , � �
H

R
,

�/2 � r � 1, z = 0, � �
d

R
,

r = �/2, − 20� � z � 0;
	 �4�

and given pressure at the center of the inlet and outlet
sections,

p = 1 at r = 0, z = � ,

�5�
p = 0 at r = 0, z = − 20� .

We start with the fluid at rest �v=0 at t=0�. The pressure
difference between the inlet section at z=� and the pipe
outlet, z=−20�, sets the fluid into motion without any other
constraint on these sections, so that the fluid velocity evolves
freely at the pipe outlet. For details on the numerical tech-
nique, see Refs. 8 and 9. In the computations we have se-
lected �=0.04, �=1.5, and a nonuniform grid with nr=114

FIG. 2. �a� Req�t� for ReQ=508 �Re=20 000� and F=1000. �b� v�r=� /4 ,�=
as indicated �ReQ=508, F=1000�.
	n�=10	nz=351 nodes concentrated near the pipe inlet
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�z=0, 0�r�� /2�. Second-order finite-differences both in
space and time �time step �t=2	10−4� are used on the non-
uniform mesh.10

Though in the computations we use the Reynolds num-
ber �3� based on the pressure difference, the results given
below are presented in terms of the usual Reynolds number
based on the flow rate Q, and the pipe diameter d, ReQ

=4Q / �
d��. To obtain it, we compute the flow rate at the
pipe exit at each instant of time. In nondimensional form,

Req�t� = Re
4


�



0

2
 

0

�/2

�rw�z=−20� drd� . �6�

This quantity tends to ReQ if a steady state is reached. Oth-
erwise, we use the maximum value reached by Req before
nonlinear traveling waves are developed in the pipe flow.

III. RESULTS

For a given value of the Coriolis parameter F �a given
value of the radius of the cylindrical container R, say�, we
increase ReQ �i.e., we increase the pressure difference
through Re�. For low Reynolds numbers, the flow evolves in
time until an axisymmetric steady state is reached. However,
above a critical Reynolds number, which depends on F,
ReQ

c �F�, the flow becomes unstable somewhere inside the
pipe at some instant of time, and nonaxisymmetric traveling
waves are formed. This situation is illustrated here for F
=1000 �for water in middle latitudes, this value of F corre-
sponds to a container of about 4m of radius�. We find that the
flow remains axisymmetric throughout the domain up to
ReQ

c �1000��490. Above this Reynolds number, the flow be-
comes unstable inside the pipe just after the nominal flow
rate is reached. For instance, for Re=20 000, the nominal
flow rate, corresponding to ReQ=508, is reached at about t
=2.5 �Fig. 2�a��. Just after that, at t between 8 and 8.5, the
flow becomes unstable to nonaxisymmetric perturbations in-

−v�r=� /4 ,�=
 ,z� as function of t for different values of z inside the pipe,
0,z�
side the pipe, first at z�−5�, as it can be seen in Fig. 2�b�,
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where we plot the difference between the azimuthal veloci-
ties at �=0 and at �=
 for several values of z as a function
of time. It is observed that the perturbations grow exponen-

FIG. 3. Contour lines of the circulation vr in four r� sections of the pipe
�z=−�, z=−5�, z=−10�, and z=−20�� for ReQ=508, F=1000, and three
instants of time t at �a� 28, �b� 36, and �c� 44.
tially in time at each axial location and travel downstream.
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For t=28, the amplitude of these perturbations are still too
small for being appreciated in a contour map of the azi-
muthal velocity �see Fig. 3�a�, where we plot the contour
lines of the circulation vr; note that the amplitude of the
nonaxisymmetric waves in Fig. 2�b� is very small, of the
order of 10−9�. However, at t=36, the amplitude of the non-
linear waves has grown enough to be already appreciable at
the central sections of the pipe �see Fig. 3�b��. Later, at t
=44, they can be observed all along the pipe �Fig. 3�c��. This
is better appreciated in Fig. 4, where the isosurfaces corre-
sponding to v=0.15 are plotted inside the pipe.

It is observed that the nonlinear wave formed after the
instability of the flow inside the pipe corresponds to a spiral
wave with azimuthal wave number �n�=3. The waves are
counter-rotating �n=−3� in relation to the inlet �z=0� mean
flow, which has a positive azimuthal velocity �see Fig. 5�c��,
in accordance with the Coriolis forces in the northern hemi-
sphere. Also plotted in Fig. 5 are, for reference sake, the

FIG. 4. Three-dimensional view of the isosurfaces v=0.15 in the pipe for
ReQ=508 and F=1000 at two instants of time t at �a� 28 and �b� 44.

FIG. 5. Axial �w� and azimuthal �v� radial velocity profiles for �=0 at the
pipe inlet �z=0� and at the middle of the pipe �z=−10�� for two instants of

time, as indicated. ReQ=508, F=1000.
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radial profile of the axial velocity at the pipe inlet, and both
the axial and the azimuthal radial velocity profiles at the mid
section of the pipe. It is observed that the profile of the axial
velocity is almost flat at the pipe inlet �Fig. 5�a��, becoming
parabolic inside �Fig. 5�b��. The magnitude of the azimuthal
velocity at the pipe inlet is about four times smaller than the
axial velocity for the values F=1000 and ReQ=508 consid-
ered. The differences in the azimuthal velocities for the two
instants of time plotted are due to the nonlinear traveling
waves formed inside the pipe.

For higher Reynolds numbers, the evolution of the flow
is qualitatively similar. The main differences are, as shown in
Figs. 6–9 for ReQ=2050 �Re=60 000�, that the instability
develops earlier in time, and that the nonlinear traveling
waves are quite more intense. But these traveling waves are
still spiral waves with azimuthal wave number �n�=3 �no
other value of the azimuthal wave number have been ob-
served in the present numerical simulations�. Another differ-
ence is that the flow rate �i.e., ReQ� decreases more, and
undergoes more accused oscillations, than in the previous
case after the formation of the nonlinear waves �compare
Fig. 2�a� with 6�a��. This is obviously due to the enhanced
friction produced by the traveling waves, that reduces the
flow rate for the given �fixed� pressure difference.

We have repeated the computations for several values of
F and have characterized the critical Reynolds number at
which the pipe flow becomes unstable as a function of F.
The results are summarized in Fig. 10. We have been able to
pursue the computations up to ReQ�3200, and up to F
=4000. The logarithmic plot in Fig. 10�b� shows that the
critical amplitude of the perturbations �F� for instability do
not follow an unique power law of the type Re−� in the range
of Re considered. It is observed that the flow becomes un-
stable for relatively small values of ReQ if F is large enough
�ReQ

c �300 for F=4000�, and that for F→0 the critical value

FIG. 6. As in Fig. 2, but
of ReQ tends to infinity.
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IV. CONCLUSION

We have shown that Coriolis forces may trigger insta-
bilities and the formation of nonlinear traveling waves in a
pipe flow discharging from a cylindrical container at rela-
tively low Reynolds numbers. The critical Reynolds numbers
for the onset of these waves have been characterized as a
function of the Coriolis parameter F in a wide range of F.

These results may be compared with the recent stability
results by Herrada et al.11 for a swirling flow decaying in a
circular pipe. These authors consider the spatial stability, at
the entrance region of a pipe, of the flow developing from an
uniform axial velocity together with a Burgers-like vortex of
variable swirl strength and core radius at the pipe inlet.
These inlet flows have certain similarities with those de-
picted in Figs. 5�a�, 5�c�, 9�a�, and 9�c� at the pipe inlet in the
present numerical simulations. However, the stability results
in Ref. 11 show that the most unstable perturbations are
counter-rotating ones with azimuthal wave number n=−1,
becoming unstable at a critical Reynolds number of a few
hundreds, depending on the swirl strength and the core ra-
dius of the inlet Burgers vortex. In our numerical simulations
we have searched for nonaxisymmetric instabilities in every
section of the pipe and at every instant of time, and we have
only detected instabilities with azimuthal wave number �n�
=3. This qualitative discrepancy may be due �in addition to
the obvious quantitative differences between the inlet flows�
to the fact that the centrifugal linear instabilities reported in
Ref. 11 are quite localized near the pipe inlet, whereas the
nonlinear instabilities found here develop several pipe diam-
eters downstream.

Helical waves in a circular pipe have also been numeri-
cally searched by Landman,12 who looked for helically sym-
metric solutions to the Navier-Stokes equations, finding also
that a residual swirl may generate these waves. But, in con-
sonance with linear stability analyses of pipe flow with a
superposed swirling core,11,12 �or even with a rotating pipe

13

eQ=2050 �Re=60 000�.
flow, see, e.g., Mackrodt�, the waves found by this author
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have azimuthal wave number �n�=1 �or �n�=2 in some cases�.
Thus, we tentatively conclude that the nonlinear traveling
waves reported here from a full numerical experiment in a
pipe flow discharging from a tank are more connected to

FIG. 7. As in Fig. 3, but for ReQ=2050, and for t at �a� 7, �b� 8, and �c� 10.
those recently described for pipe Poiseuille flow at relatively
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low Reynolds numbers1–3 than to linear instabilities of a pipe
flow with superposed swirl. The instabilities are triggered
here by the nonlinear disturbances introduced into the pipe
flow by natural Coriolis forces, which are particularly intense
near the pipe inlet as F increases. The �n=3� waves persist
along the pipe �exiting from it� if the Reynolds number is
high enough. Though we have checked this result using a
longer pipe than that reported here, with l=30d and even
40d, more definitive results would require a much longer
pipe, which is presently unreachable with our present com-
puter facilities. What is definitely independent of the pipe
length is the neutral curve depicted in Fig. 10 for a wide
range of F, and the azimuthal wave number �n�=3 of the
nonlinear waves.

FIG. 8. As in Fig. 4, but for ReQ=2050, for v=0.125, and for t at �a� 7 and
�b� 10.
FIG. 9. As in Fig. 5, but for ReQ=2050.
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