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The development and stability of the boundary layer flow over a long thin cylinder aligned with the
main flow and which rotates around its axis is considered. Numerical results show that the
introduction of rotation has an important effect on the behavior of the basic flow. When the swirl
increases, the shear stress at the wall also increases due to the changes in the pressure distribution
along the cylinder surface. A nonparallel linear stability analysis of the basic flow is performed using
parabolized stability equations. Even at moderately low rotation, we find the existence of unstable
centrifugal modes, in addition to the shear ones found in previous stability analysis of the boundary
layer flow on a cylinder with no rotation. These centrifugal instabilities develop at Reynolds
numbers, based on the cylinder radius and external axial velocity, much smaller than those required
for the growing of the shear instabilities. Our analysis shows that nonparallel effects play a key role
in the onset and development of these instabilities, being the spiral mode with azimuthal
wavenumber n=1, the first to become unstable as the Reynolds number is increased in most cases
of interest. We characterize the critical Reynolds number for convective instability as a function of
the axial distance to the leading edge for several values of the swirl parameter. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2885330�

I. INTRODUCTION

The boundary layer flow over a long thin cylinder with
zero pressure gradient has been the subject of several
studies.1–5 This axisymmetric flow undergoes viscous insta-
bilities similar to the Tollmien–Schlichting waves in two-
dimensional boundary layers over a flat plate, which were
fully characterized recently by Tutty et al.6 Earlier stability
analyses were made by Morris and Byon,7 and by Kao and
Chow.8 As an important difference with Blasius flow, how-
ever, curvature effect makes several nonaxisymmetric modes
unstable at lower critical Reynolds numbers than axisymmet-
ric ones, but becomes stable again sufficiently far down-
stream.

Kao and Chow8 also considered the case of the boundary
layer flow on a rotating circular cylinder and found that the
flow becomes unstable at lower Reynolds numbers than in
the nonrotating case, shifting the onset of instability toward
the leading edge of the cylinder. These authors carried out a
temporal stability analysis employing a Chebyshev colloca-
tion spectral method, in one of the first instances that this
method was used for linear stability analyses, considering
only two low values of the swirl parameter.

In addition to its fundamental interest, the flow over a
long cylinder �with or without rotation� may be viewed as an
idealization of the general flow along a thin body of revolu-
tion �spinning or not�, for which it is of practical interest to
characterize the onset of instability. Several types of these
instabilities were experimentally visualized and discussed by
Mueller et al.9 As we shall see below, for slender cylinders,
nonparallel effects are very important to characterize the on-
set and development of these instabilities, especially for ro-
tating cylinders and for nonaxisymmetric perturbations, the

more so the larger the spinning rate and the thinner the cyl-
inder. For these reasons we undertake here a spatial, nonpar-
allel stability analysis of the boundary layer flow over a ro-
tating cylinder, characterizing the critical Reynolds numbers
and locations for the onset of the instabilities �both axisym-
metric and nonaxisymmetric� in a wide range of values of
the swirl parameter. Thus, the present work complements
those of Tutty et al.6 and Kao and Chow8 in a double way: it
supplies the frequencies for the unstable modes by using a
spatial analysis, which are more useful from a practical point
of view than the wavenumbers obtained by the temporal
analyses, and, more important, corrects the instability char-
acteristics by taking into account nonparallel effects. We pay
special attention to the rotating cylinder because nonparallel
effects are more important in that case, and because the work
by Kao and Chow for the rotating cylinder is quite less com-
plete than that by Tutty et al. for the nonrotating case. In
particular, Kao and Chow considered only very low values of
the rotation rate, and did not characterize the low wavenum-
ber �low frequency� limit, so that in these cases even our
parallel results are also new. In addition, the results of Kao
and Chow for the nonrotating cylinder are in clear disagree-
ment with those by Tutty et al.,6 probably due to the limita-
tions in the wavenumber of the perturbations. For these rea-
sons no comparison with the results by Kao and Chow is
given here. We shall see that our parallel stability results for
a nonrotating cylinder practically coincide with the results by
Tutty et al.,6 but these results are substantially modified
when nonparallel effects are taken into account. The nonpar-
allel stability code used in this work has been previously
tested with experimental results for the developing flow in a
rotating cylinder.10
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The general problem formulation and the numerical
method are described in Sec. II. Numerical results on the
flow stability are given and discussed in Sec. III. Finally,
a summary of the results and the conclusions are given in
Sec. IV.

II. FORMULATION OF THE PROBLEM
AND NUMERICAL TECHNIQUES

We consider the incompressible flow of a fluid of density
� and kinematic viscosity � over a semi-infinite circular cyl-
inder of radius R. We use cylindrical coordinates, �r ,� ,z�,
with the axial coordinate z along the axis of the cylinder and
the origin at its leading edge. The uniform external flow,
aligned along the cylinder axis, reaches the leading edge
with a uniform axial velocity W�. In addition, the cylinder
may rotate around its axis at an angular velocity �.

The velocity field u��u ,v ,w� is made dimensionless
with the freestream velocity W�, the radial coordinate r is
nondimensionalized with the radius of the cylinder R, while
a characteristic length L is used to render dimensionless the
axial coordinate z. Finally, time t is made dimensionless with
the characteristic time R /W�, and pressure p with �W�

2 . Con-
sequently, the problem is governed by three dimensionless
parameters: a Reynolds number based on the freestream ve-
locity and the radius of the cylinder,

Re =
W�R

�
, �1�

an aspect ratio

� =
R

L
, �2�

and a swirl parameter

S =
�R

W�

. �3�

We assume that the radius R of the cylinder is small relative
to the characteristic axial length L, ��1. Also, we assume
that the Reynolds number is large, in such a way that
Re R /L�O�1�, i.e., that L is the axial length over which
viscous effects develop along the cylinder. For simplicity, we
shall select L such that Re �=1, so that � �or Re� disappears
from the problem.

To study the evolution and stability of the flow, we rep-
resent the velocity and pressure fields as the sum of a steady
axisymmetric mean flow and a small unsteady perturbation,

�
u�r,�,z,t�
v�r,�,z,t�
w�r,�,z,t�
p�r,�,z,t�

� =�
�U�r,z�
V�r,z�
W�r,z�
P�r,z�

� +�
u��r,�,z,t�
v��r,�,z,t�
w��r,�,z,t�
p��r,�,z,t�

� , �4�

where capital letters are used for the basic flow, and primed
variables for the perturbations �of course, all the variables are
dimensionless�. Note that the radial component of the basic
flow has been rescaled with �, so that U in Eq. �4� is also

order unity, according to the continuity equation. Substitut-
ing Eq. �4� into the incompressible Navier–Stokes equations
we obtain separate equations for the basic flow and for the
perturbations.

A. Leading order mean flow equations

Neglecting terms O��2�, the mean basic flow is gov-
erned, at the leading order, by the boundary layer equations

1

r

�

�r
�rU� +

�W

�z
= 0, �5�

V2

r
=

�P

�r
, �6�

U

r

�

�r
�rV� + W

�V

�z
=

1

r2

�

�r
	r3 �

�r

V

r

 , �7�

U
�W

�r
+ W

�W

�z
= −

�P

�z
+

1

r

�

�r
	r

�W

�r

 . �8�

These equations are solved subjected to the following bound-
ary conditions: at the cylinder surface, r=1,

U�1,z� = W�1,z� = 0, V�1,z� = S; �9�

far away from the cylinder, r→�,

U�� ,z� = V�� ,z� = 0, W�� ,z� = 1; �10�

finally, at the cylinder edge, z=0, a uniform axial velocity
and zero azimuthal velocity are assumed,

W�r,0� = 1, V�r,0� = 0. �11�

To solve Eqs. �5�–�8� with boundary conditions �9�–�11�
we have used a standard explicit method of lines. For that
purpose, we have first eliminated the pressure in Eqs. �5�–�8�
by adding the result of taking derivatives with respect to z in
Eq. �6� to that obtained by taking derivatives with respect to
r in Eq. �8�. The resulting system of equations is then dis-
cretized in the radial direction using second order central
differences in a nonuniform mesh with N points which are
obtained by mapping the interval 1�r�rmax, where
rmax�1 is the radial distance where we imposed conditions
�10�, into the domain −1���1 using the algebraic transfor-
mation

ri = 1 +
c1�1 + �i�

c2 − �i
, i = 1, . . . ,N , �12�

where �i=−1+ �i−1� / �N−1�, i=1, . . . ,N. Here c1 is a free
constant and c2=1+2c1 / �rmax−1�. We have selected c1=5
and rmax=100 in all the cases computed in this work. With
this discretization, and after some algebra, one can obtain a
simple tridiagonal system to solve the values of the radial
velocity at the different lines, �Ui�i=1

N , for each z, in terms of
�Vi�i=1

N and �Wi�i=1
N . In this manner, one arrives at a system of

2N ordinary differential equations for ��V / �z�
i=1
N and

��W / �z�
i=1
N , which can be solved, for example, with a stan-

dard variable step-size fourth order Runge–Kutta method. In
this problem, we have considered N=250 lines, and a rela-
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tive error tolerance of 10−8 for the Runge–Kutta solver,
which allow for a very stable and accurate downstream inte-
gration of the boundary layer equations.

B. Parabolized stability equations

The perturbations s��u� ,v� ,w� , p��T are decomposed in
the standard form

s�r,�,z,t� = S�r,z�	�z,�,t� , �13�

where the complex amplitude

S�r,z� � �
iF�r,z�
G�r,z�
H�r,z�

�r,z�

� �14�

is allowed to depend on the axial coordinate z, in addition to
the radial one, to account for the nonparallelism of the basic
flow. The other part of the perturbation is an exponential that
describes the wavelike nature of the disturbances,

	�z,�,t� = exp� 1

�
�

z0

z

a�z��dz� + in� − i�t , �15�

where z0 is the axial point in which the disturbances are
introduced �e.g., z0=0�, a�z� is the nondimensional �com-
plex� axial wavenumber, n is the azimuthal wavenumber, and
� is the nondimensional frequency of the disturbances. a and
� are defined as

a � iRk̃ � � + i , �16�

� �
�̃R

W�

, �17�

where k̃ and �̃ are the dimensional axial wavenumber and
frequency, respectively. The real part of a�z�, ��z�, is the
exponential growth rate, and its imaginary part, �z�, is the
axial wavenumber. In the spatial stability analysis to be con-
sidered here, one fixes a real frequency � and looks for com-
plex values of a�z�. The flow is �convectively� unstable when
��z��0. Finally, the azimuthal wavenumber n is equal to
zero for axisymmetric perturbations, and different from zero
for nonaxisymmetric perturbations.

Substituting Eqs. �13� and �14� into the incompressible
Navier–Stokes equations, neglecting second-order terms in
the small perturbations �linear stability� and terms O��2�,
i.e., neglecting terms with second order axial derivatives,
which constitutes the basis of the parabolized stability equa-
tions �or PSE� technique,11,12 one obtains the following para-
bolic stability equation for S:

L · S + �M ·
�S

�z
= 0 , �18�

L � L1 + aL2 + �L3 + a2�L4, �19�

L1 =�
1

r
+

�

�r

in

r
0 0

i	nV

r
− �
 −

2V

r
0

�

�r

�V

�r
+

V

r
i	nV

r
− �
 0

in

r

�W

�r
0 i	nV

r
− �
 0

� , �20�

L2 = M =�
0 0 1 0

W 0 0 0

0 W 0 0

0 0 W 1
�,

�21�

L4 =�
0 0 0 0

− 1 0 0 0

0 − 1 0 0

0 0 − 1 0
� ,

L3 = L31 + L32, �22�

L31 =�
0 0 0 0

− Dr
2 +

n2 + 1

r2

2in

r2 0 0

−
2in

r2 − Dr
2 +

n2 + 1

r2 0 0

0 0 − Dr
2 +

n2

r2 0
�,

�23�

Dr
2 �

�2

�r2 +
1

r

�

�r
,

L32 =�
0 0 0 0

�U

�r
+ U

�

�r
0 0 0

0 U	1

r
+

�

�r

 �V

�z
0

0 0 	 �W

�z
+ U

�

�r

 0

� . �24�

The term corresponding to L3 has been decomposed into two
terms to account for the two different physical phenomena
involved: viscous effects �L31�, and nonparallelism of the
basic flow �L32�, both of order � �remember that �=Re−1�.
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This equation has to be solved with homogeneous
boundary conditions for the perturbation velocity �F=G=H
=0� at both r=1 and r→�. It also needs an initial condition
at z=z0. A convenient choice is the solution of the local
eigenvalue problem10,11,13

L0 · S0 � �L1 + a0L2 + �L3 + a0
2�L4� · S0 = 0 , �25�

that provides the initial eigenvalue a0�a�z0�, and eigenfunc-
tion S0�r��S�r ,z0�, which will be used to start the axial
integration of Eq. �18� for a given set of nondimensional
parameters. Equation �25� accounts for the effect of the non-
parallelism of the basic flow, but neglects the effect of the
history or convective evolution of the perturbations. Its solu-
tion for different values of z�z0 will be compared with the
solution to the PSE �18� to measure the importance of this
last effect. This local solution will be termed near-parallel
�NP� solution. It will also be compared to the local parallel
�P� solution, which coincides with �25� except for the last
term proportional to �. In fact, these local and parallel re-
sults will be used as the reference ones to start the PSE
analysis �see Sec. III�.

C. Normalization condition and numerical method

As it stands, there is some ambiguity in the partition of
the perturbations �13� into two functions of z. To close the
problem one has to enforce an additional condition which
puts some restriction on the axial variation of S. Basically,
one uses a normalization condition that restricts rapid
changes in z of S, according to the slow axial variation of the
basic flow �small ��. Thus, the growth rate and the axial
sinusoidal variation are represented by the exponential func-
tion 	. Several types of normalization conditions can be
used.10–13 Here we will use an integral condition based on
the kinetic energy of the perturbations. Defining a physical
amplification rate a1 based on the axial variation of the ki-
netic energy of the perturbations,

a1�z� � �1�z� + i1�z�

� �

�
1

� �u�†�u�

�z
+ v�†�v�

�z
+ w�†�w�

�z
dr

�
1

�

��u��2 + �v��2 + �w��2�dr

= a�z�

+ �

�
1

� �F†�F

�z
+ G†�G

�z
+ H†�H

�z
dr

�
1

�

��F�2 + �G�2 + �H�2�dr

, �26�

where † denotes the complex conjugate, the normalization
condition used here can be expressed as a1�z�=a�z� for all
z�z0. That is, at each axial step in the integration of Eq.
�18�, the second term in the right-hand side of Eq. �26� �the
one multiplied by �� is set equal to zero, transferring the
main part of the streamwise variation of the perturbations to
the exponential function 	.

To numerically solve Eq. �18� together with its normal-
ization condition, the radial dependence of S is discretized

using a staggered Chebyshev spectral collocation technique
developed by Khorrami,14 where the three velocity compo-
nents and the three momentum equations are discretized at
the grid collocation points whereas the pressure and the con-
tinuity equation are enforced at the midgrid points. This
method has the advantage of eliminating the need for two
artificial pressure boundary conditions at r=1 and r→�. To
implement the spectral numerical method, Eq. �18� is dis-
cretized by expanding S in terms of a truncated Chebyshev
series. The boundary conditions at infinity are applied at a
truncated radial distance rmax, chosen large enough to ensure
that the results do not depend on that truncated distance. To
map the interval 1�r�rmax into the Chebyshev polynomials
domain −1�s�1, we use the same transformation Eq. �12�,
but substitute �i by the Gauss–Lobatto points si=cos��i /N�,
i=0, . . . ,N.15 Now c1 is a constant such that approximately
half of the nodes are concentrated in the interval 1�r�1
+c1. This transformation allows large values of r to be taken
into account with relatively few basis functions. We have
used c1 between 2 and 5, rmax=100, and N between 70 and
120 in the computations reported below.

The streamwise variation of Eq. �18� is solved numeri-
cally using an implicit finite difference scheme,

L j+1 · S j+1 + �M ·
S j+1 − S j

��z� j
= 0 , �27�

where j is the step index in the axial direction, and ��z� j the
step size. A marching technique is used to solve the 4N dis-
cretized equations resulting from Eq. �27�, starting at z=z0.
Since the unknown a appears with S, this equation consti-
tutes, together with the normalization condition, a system of
nonlinear equations for S and a. Iterations are used to solve
the nonlinear system of discretized algebraic equations at
each axial station j+1: one starts with the results of the pre-
vious station j, and uses Eq. �27� with aj to obtain a first
approximation for S j+1; these are used in the normalization
condition to yield a first approximation for aj+1, which is
again used to correct S j+1; the iteration procedure is contin-
ued until the modifications in the real and imaginary parts of
a are both less than a given tolerance �10−8�. Usually, be-
tween 2 and 4 iterations were needed �except in the first step
after z=z0, where more iterations are sometimes required�.
The process is repeated at the next marching step. Numerical
instability puts a lower limit to the axial step size ��z� j for
given values of the physical parameters and N. This limita-
tion strongly affects the axial accuracy of the function
a�z� obtained numerically. To have some control on the nu-
merical instability we have used the technique described by
Anderson et al.,16 which allows the use of smaller step sizes
�z in numerically stable schemes and, consequently, improv-
ing the axial accuracy of the solution. We have used values
of �z between 0.005 and 0.07. It is worth mentioning here
that a former version of the present PSE code was checked
against experimental results by Imao et al.17 for the develop-
ing flow in a rotating pipe.10

Finally, the nonlinear eigenvalue problem �25�, whose
solution is used as the initial condition of Eq. �18� and its
normalization condition at z=z0, is solved using the linear
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companion matrix method described by Bridges and
Morris,18 after discretizing the radial derivatives by the
Chebyshev spectral collocation method described above. The
resulting �complex� linear eigenvalue problem is solved with
double precision using an eigenvalue solver from the IMSL
library �subroutine DGVCCG�, which provides the entire ei-
genvalue and eigenvector spectrum. Spurious eigenvalues
are discarded by comparing the computed spectra for in-
creasing number N of collocation points.

III. RESULTS

The results presented here are mainly intended to char-
acterize the influence of rotation on the structure and stability
of the boundary layer flow over a long thin cylinder.

A. Boundary layer solution

At the leading order given by Eqs. �5�–�11�, the bound-
ary layer structure depends only on the swirl parameter S. To
characterize the results we use the dimensionless skin fric-
tion �, which in our formulation is given by

��z� = � �W

�r
�

r=1
. �28�

Another quantity of interest is the nondimensional boundary
layer thickness, ��z�, defined here as the distance form the
cylinder surface to the position where condition

W�r = ��z� − 1,z� = 0.99 �29�

is met.
First we compare our results with the nonspinning case

�S=0� considered by Tutty et al.6 These authors use an axial
coordinate x related to our z by x=z Re; their skin friction
and boundary layer thickness �denoted here with a subscript
T� are related to Eqs. �28� and �29� through

�T�x = Re z� =
��z�
�Re

, �T�x = Re z� = ��z��Re. �30�

Note that the Reynolds number, which does not appear in our
notation for the basic flow, act just as a scaling factor for the
axial coordinate and the flow properties. Figure 1 shows
these quantities as functions of x computed for Re=104.
They are in excellent agreement with the numerical results
by Tutty et al.6 �their Figs. 1 and 4�, in spite of the quite
different numerical methods used to compute the basic flow.

As noted by Tutty et al.,6 the skin friction and the boundary
layer thickness are both significantly different from those
computed from Blasius’ solution for a flat plate.

Our numerical results show that the skin friction in the
basic flow increases with the swirl parameter S. This can be
seen in Fig. 2�a�, where we have plotted ��z� for several
values of S. In addition, the introduction of swirl produces a
reduction of the boundary layer thickness � �Fig. 2�b��. This
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FIG. 2. Skin friction ��z� �a� and boundary layer thickness ��z� �b� for
different values of S: S=0 �solid lines�, S=1 �dashed lines�, and S=2 �dotted
lines�.
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behavior is due to the fact that the swirl induces a negative
pressure gradient along the cylinder surface. As a conse-
quence of this suction effect, the axial velocity increases near
the wall and, therefore, the skin friction increases and the
width of the boundary layer decreases. To show this, we can
take the axial derivative of the radial momentum equation �6�
and then integrate it with respect to r. Taking into account
that far away from the cylinder the axial pressure gradient is
zero, we have

�dP

dz
�

r=1
= − �

1

� 1

r

dV2

dz
dr � 0, �31�

since the axial derivative of V is positive due to the viscous
diffusion of the azimuthal momentum generated by the rotat-
ing cylinder �see Eq. �7��. Note also from Eq. �31� that the
larger the rotation rate of the cylinder, the larger the pressure
decay along the cylinder surface, since the viscous diffusion
of the azimuthal momentum is proportional to the rotation
rate.

B. Stability results for S=0

Before undertaking the study of the effect of the swirl on
the stability of the boundary layer flow, we have considered
the stability of the nonspinning case, S=0. This case has
been thoroughly investigated, but using a parallel-flow ap-
proximation and a temporal stability analysis, by Tutty et al.6

We use these previous stability results to check our numeri-
cal techniques and to characterize the nonparallel effects on
the stability of the flow.

More precisely, we consider in this work three different
sets of �spatial� stability results. First, those coming from the
parallel-flow approximation, which are obtained from Eq.
�25�, but neglecting nonparallel effects of the basic flow; i.e.,
neglecting the “�-term” proportional to the matrix L32 �24�.
These results will be denoted by “P,” and they take into
account viscous effects, which are also proportional to � in
Eq. �25� �terms associated with L31 and L4�. These parallel
results are equivalent to those obtained by Tutty et al.6 for
the nonspinning case but from a temporal stability analysis.
Second, near-parallel stability results coming from Eq. �25�,
denoted by “NP,” and, finally, nonparallel stability results

coming from the full parabolized stability equation �18�, de-
noted by “PSE.” It must be noted that the NP results do not
constitute a rigorous approximation intermediate between the
P and the PSE results, but they are retained here indepen-
dently of P and PSE results because they are appropriate
initial conditions in Eq. �18� to obtain the PSE results.10,13

In the case S=0 the only physical mechanism for insta-
bility is the shear of the flow, similarly to the Blasius bound-
ary layer. For sufficiently large Reynolds numbers, the flow
becomes convectively unstable ���0 and group velocity
cg=�� /��0� within a certain region relatively close to the
leading edge of the cylinder. We define the critical Reynolds
number at each z-station, Re*�z�, as the minimum Reynolds
number for which the shear mode becomes neutrally stable
��=0� at a certain frequency �*�z� �the critical frequency�
and axial wavenumber *�z� �the critical wavenumber�. Fig-

TABLE I. Critical Reynolds numbers Rec at z=zc for S=0, n=0, and n=1
obtained from P, NP, and PSE approximations compared to the results by
Tutty et al. �Ref. 6� �denoted by T�. Also given are the corresponding critical
frequencies �c and axial wavenumbers c.

n=1 Rec zc �c c

T 1060 0.512 0.069 0.125

P 1054 0.51 0.069 0.1253

NP 880 0.65 0.0627 0.1087

PSE 1275 0.435 0.072 0.135

n=0 Rec zc �c c

T 12439 0.00378 0.865 2.73

P 12628 0.00374 0.842 2.682

NP 12548 0.00375 0.848 2.687
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FIG. 4. As in Fig. 3 but for n=0. No PSE results are shown.
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ure 3 shows the variations of the critical Reynolds number,
critical frequency, and critical wavenumber with z for the
nonaxisymmetric �spiral� mode with n=1, which is the mode
that first becomes unstable as the Reynolds number is in-
creased for each z. We show the results obtained from the P,
NP, and PSE approximations. The critical Reynolds number
Re*�z� has a minimum value, which we denote by Rec, at an
axial location zc. The values of Rec, zc, together with the
corresponding �c and c, obtained with the three different
approximations, are given in Table I. We also include the
values computed by Tutty et al.6 �see Table I in that refer-
ence, but using the present notation with z=x /Re�.

The first thing that one may observe is that the temporal
stability results by Tutty et al. �denoted by T� practically
coincide with our parallel �P� spatial stability results, as in-
dicated by the numerical values given in Table I for n=1, and
by the star symbols plotted in Fig. 3, corresponding to Rec,
�c, and c. The second significant feature in Fig. 3 and Table
I is that nonparallel effects for this most unstable mode with
n=1 are very important indeed. For instance, Rec computed
with the P-approximation, which practically coincide with
the results by Tutty et al., is 1054; those that compute with
the NP-approximation is significantly lower �880�, and those
that are obtained with the full PSE approximation turns out
to be significantly higher �1275�. That is to say, nonparallel
effects that also take into account the history or evolution of
the perturbations as they move downstream notably raise the
critical Reynolds number. They also reduce the axial extent
of the instability region, as seen in Fig. 3�a�. These are sig-
nificantly new results that would be interesting to check ex-
perimentally. However, no such experimental data are avail-
able, to our knowledge, in the literature.

The stability results for nonaxisymmetric perturbations
with n=2,3 , . . . are qualitatively similar, but with higher �in-
creasing with n� critical Reynolds numbers Re*�z� than for
the mode n=1. For this reason they are not shown here. For
axisymmetric perturbations �n=0�, the critical Reynolds
numbers are much higher �more than one order of magni-

tude� than for n=1. They are computed and shown in Fig. 4
and Table I because the axisymmetric instabilities are quali-
tatively different from the nonaxisymmetric ones. First be-
cause the critical frequencies and wavenumbers are much
higher than for the nonaxisymmetric modes. Second, and
more important, because this mode becomes unstable just in
a narrow pocket located very close to the leading edge of the
cylinder �note that the axial scale in Fig. 4 is much smaller
than in Fig. 3�. For this last reason, the critical Reynolds
numbers cannot be accurately obtained from the PSE, so that
Fig. 4 and Table I only show results obtained from the P and
the NP approximations, which are practically coincident in
this case n=0.

To understand why the PSE results are not reliable for
n=0, we show in Fig. 5 how the PSE results are obtained for
the case n=1 in Fig. 3. In particular, we consider the case
with Re=950 and �=0.066, and show the axial evolution of
the growth rate and axial wavenumber of this spiral shear
mode computed from the numerical integration of Eq. �18�.
We use different �z, and start the integration at different axial
locations z0 with the eigenvalues and eigenfunctions of the
NP approximation �25� as the initial condition. In the figure
we also show ��z� and �z� obtained with the NP approxi-
mation �dashed lines�. Although there is an initial transient of
the PSE results that depends on the starting axial location z0

and on �z, eventually all the curves collapse to yield, ap-
proximately, the same critical values, corresponding to �=0.
In all the reported PSE computations we have varied z0 and
�z to ensure that the results do not depend on these numeri-
cal parameters. In the inset of Fig. 5�a� we also observe the
important differences in the critical values given in Fig. 3.
For the particular case considered, the flow is unstable in the
interval 0.5�z�0.65, according to the NP approximation,
while it is stable for all the values of z according to the PSE.
Thus, nonparallel effects associated with the development of
the perturbation along the cylinder play a crucial role and are
even more important than nonparallel effects associated with
the basic flow itself. On the other hand, it is seen that the
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PSE transient behavior is very important near the leading
edge of the cylinder, where the axial gradients of the bound-
ary layer flow are the greatest. Therefore, when the flow
becomes unstable at very small values of z, it occurs for the
axisymmetric shear mode, and the PSE cannot capture accu-
rately the critical values of the parameters. However, we
have seen that the results from both the P and the NP ap-
proximations are very close to each other when n=0 �Fig. 4�,
in contrast to the results for the mode n=1 �Fig. 3�, so that it
is expected that the PSE will not differ much from these
results either.

C. Stability results for S>0

The stability of the flow is substantially altered when the
cylinder rotates, even for very small rotation rates, owing to
the appearance of new centrifugal modes that become con-

vectively unstable at much lower Reynolds numbers than the
shear modes. This is a well known fact in some other related
stability problems such as the flow inside a rotating
pipe,10,19–22 or the swirling boundary layer flow inside a sta-
tionary pipe,23 when compared to the stability of their non-
rotating or nonswirling counterparts. In the present problem,
Fig. 6�a� shows that for a small value of the swirl parameter
such as S=0.1, centrifugal instabilities with n=1 becomes
unstable at Reynolds numbers of the order of 20, if z is large
enough, while the minimum value of Re* for S=0, where
only the shear modes were present, was near 1300 �from PSE
in Fig. 3�a��. Another qualitative difference between the
shear modes for S=0 and the centrifugal ones for S�0 is
that the minimum value of Re*�z�, Rec, reached at a finite,
relatively small, axial location zc for S=0 �zc�0.435 from
PSE in Fig. 3�a��, is now zc→� for S�0; i.e., Re* tends
asymptotically to a minimum value as z→� for S�0 �see
Fig. 6�a��. To better appreciate the differences between shear
and centrifugally unstable modes, Fig. 7 compares the eigen-
functions of the most unstable modes with n=1 for S=0 and
S=0.1 near the critical values of Re and � corresponding to
z=0.5, when computed with the parallel approximation.
Apart from the greater radial extent of the velocity perturba-
tions in the case with swirl, which is just due to the much
lower Reynolds number, the main difference resides in the
pressure perturbation, which for the centrifugal mode is
much more concentrated near the axis and, what is more
relevant for the centrifugal instability, decays almost linearly
near the axis, so that the pressure gradient of the perturbation
cannot support its associated centrifugal force near the axis.

It must be noted that, unlike the case S=0, n=1 is not
always the first mode to become unstable as Re increases for
any z. Figure 8�a� shows that, for S=0.1, n=1 is actually the
mode that first become unstable as Re increases for most
values of z. However, for very small z, particularly, for z
�z12�S=0.1��0.09, the azimuthal mode n=2 is the first to
become unstable as Re increases. This value is so close to
z=0 to be hardly relevant. Note also in Fig. 8�a� that the
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with the different approximations, P, NP, and PSE, as indicated.
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curves Re*�z� corresponding to n=1 and n=2 cross each
other at Re12�S=0.1��113, which is a relatively high value
of Re compared to the minimum value of Re*, which tends
to approximately 20 for large z. Therefore, instabilities with
n=2 are not physically relevant in this case, except if they
are expressly excited by some artificial mean. This behavior
is qualitatively similar for all the values of the swirl param-
eter S considered here �see Figs. 8�b� and 8�c�, where z12�S�
and Re12�S� are plotted for 0�S�1�. In fact, z12�S� has a
maximum at S�0.1 �Fig. 8�b��, so that for other values of S
the mode n=2 is the first to become unstable only at smaller
values of z than for S=0.1. The curves Re*�z� for n�2 never
cross the curves Re*�z� for n=1, so that they always become
unstable at larger Reynolds numbers. On the other hand, the
axisymmetric mode �n=0�, and asymmetric modes with

n�0, remain of the shear type for S�0, becoming unstable
at much higher Reynolds numbers, comparable to the critical
Reynolds numbers for S=0 given in the previous section. For
all these reasons, only the instability results for n=1 are re-
ported here.

In relation to the three different approximations, P, NP,
and PSE, Fig. 6�a� shows that the stability predictions from
PSE are between those from P and those from NP: for a
given z, Re* from PSE is between the Re* computed from
the parallel and near-parallel approximations. The difference
in the computed values of Re*�z� decreases as z increases,
but are significant for z around unity, and become very im-
portant as z goes to zero. On the other hand, for a given Re,
the axial location where the flow becomes unstable, z*�Re�,
are quite different when computed from the three different
approximations, the more so the higher z: z*�Re� from the
PSE is much smaller than z* from the parallel approxima-
tion, but it is much larger than that computed from the NP
approximation for the same Re.

Figures 6�b� and 6�c� show that �*�z� and *�z� from
PSE are both larger than the P and the NP counterparts. A
curious feature of these figures is that the most unstable
mode computed from the parallel approximation changes at
z�1.5, producing a jump in �* and *, but without appre-
ciable effect in Re*. This mode switching is not observed
when nonparallel effects are considered in the stability for-
mulation, neither in the NP nor in the PSE approximations.

As the swirl parameter S increases, the stability picture is
qualitatively similar to that just described for S=0.1, with the
mode n=1 the first to become �centrifugally� unstable as Re
increases for a given z �except for very small values of z; see
Fig. 8�b��. Globally, Re*�z� decreases as S increases. For
S=1, Fig. 9�a� shows that Re* is around 10 for z=1, decreas-
ing below 10 as z increases. The asymptote of Re* as
z→�, which is practically the same from the three approxi-
mations, is now between 3 and 4 �it was around 20 for
S=0.1�. For these relatively low values of the Reynolds num-
ber, the present boundary layer and PSE approximations be-
come poor, and one has to be cautious about these stability
results for large z. But for z of order unity or smaller, Re* is
sufficiently large, even for large S, to be confident in the PSE
approximation �remember also that z is scaled with Re−1, so
that z=1 corresponds to a distance Re times the cylinder
radius from the leading edge�.

The results in Fig. 9 for S=1 shows that Re* does not
differ much when computed from the three different approxi-
mations. However, in terms of z* for a given Re, the results
are quite different: now z* is much larger from the PSE than
from the other two approximations. In relation to the critical
frequency and wavenumber, �*�z� and *�z�, both are sig-
nificantly larger when obtained from the PSE than from the P
and NP approximations, whose results are very close to each
other. Again, nonparallel effects of the basic flow and the
axial evolution of the perturbations are crucial to detect with
precision the axial location where the flow becomes unstable
for a given Reynolds number, and to determine the frequency
and the wavenumber of these unstable modes.
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IV. SUMMARY AND CONCLUSIONS

We have considered in this work the structure and sta-
bility of the boundary layer flow over a rotating cylinder. We
have characterized the onset of convective instabilities taking
into account nonparallel effects due to the axial evolution of
both the basic flow and the perturbations by means of the
PSE technique.

First we have considered the nonrotating cylinder case to
compare with existing parallel-flow stability results �Tutty
et al.�.6 We have checked that our spatial stability analysis
reproduces the temporal stability results of these authors
�critical Reynolds numbers, critical frequencies, and wave-
numbers� in the parallel flow approximation. However, non-
parallel effects modify substantially these results, especially
for the nonaxisymmetric mode with n=1, which is the first to
become unstable as the Reynolds number is increased. The

PSE technique shows that, for this most unstable spiral
mode, the critical Reynolds number is increased, and the
instability is shifted toward the leading edge, in relation to
the parallel flow results. But the critical frequency and the
critical wavenumber do not differ much from the parallel
flow approximation.

Rotation of the cylinder increases friction and reduces
the boundary layer thickness due to the change in the pres-
sure distribution along the cylinder surface. The rotating
boundary layer flow becomes now unstable to centrifugal
perturbations with n�0 at much lower Reynolds number
than the shear modes present in the nonrotating case. Thus,
for n=1, which again is the first mode to become unstable as
the Reynolds number is increased for most relevant values of
the axial coordinate, the flow becomes centrifugally unstable
for Reynolds number of the order of 10, sufficiently far
downstream the leading edge, even for relatively low values
of the swirl parameter. Figure 10 summarizes the critical
Reynolds numbers for the mode n=1 at a given axial loca-
tion �z=0.5� for increasing values of S, showing the dramatic
decrease of Re* when the cylinder rotates �S�0; note the
logarithmic vertical scale�. Nonparallel effects do not affect
too much to the critical Reynolds number for a given S�0 at
a fixed axial location z, but for a given supercritical Reynolds
number, the axial location where the flow becomes unstable,
together with the frequency and the wavenumber of the am-
plified mode, are strongly affected by the nonparallelism of
the basic flow and the perturbations �see Figs. 6 and 9�. It
would be of interest to perform experiments to test these
nonparallel stability results, both for the spinning and for the
nonspinning cases.
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