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Three-dimensional transitions in a swirling jet impinging against
a solid wall at moderate Reynolds numbers
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We consider the three-dimensional structure of a g-vortex interacting with a solid surface
perpendicular to its axis. We use a direct numerical simulation based on a potential vector
formulation with a Fourier decomposition in azimuthal modes for a Reynolds number equal to 100.
This method is specially suited for the study of the nonlinear stability of axially symmetric flows
because one may follow the raising of the different nonaxisymmetric modes from numerical noise,
their nonlinear development, and their nonlinear interactions. For the given Reynolds number we
find that there exists several transitions as the swirl number is increased, including the development
of nonaxisymmetric instabilities for different azimuthal modes, and the formation of a vortex
breakdown bubble that turns the flow axisymmetric again. We analyze these transitions and
characterize them as a function of the swirl number for different distances of the incoming vortex
to the wall. © 2009 American Institute of Physics. [DOI: 10.1063/1.3103364]

I. INTRODUCTION

A detailed knowledge of the different structures appear-
ing in a swirling jet or wake as the governing parameters
are varied, due to linear and nonlinear instabilities, and to
other phenomena such as vortex breakdown, is crucial
for several technical and industrial applications of this type
of flows." For instance, it is important in combustion systems
to enhance mixing, reduce pollution, and for flame stabiliza-
tion by taking advantage of the vortex breakdown
phenomenon.z’3 It is also relevant in trailing vortices behind
aircrafts to increase the possible take-off frequency at
airports,‘l’5 or in vortices above a delta wing to prevent an
abrupt deterioration of the lift and drag characteristics, and a
poor controllability, of the aircraft.’

Impinging swirling jets are of interest in areas such as
paper and fabric drying, local cooling of turbine blades and
high-power electronics, material coating, metal solidifica-
tion, and many others.” The study in the present work has
been motivated by yet another technical application of swirl-
ing jets such as seabed excavation. In this case one is inter-
ested in generating a flow recirculation zone attached to the
seabed, together with an increase in the shear stress at the
bed, to enhance the extraction of sediments from it. Vortex
breakdown phenomenon is important to reach these
objectives,8 but this phenomenon is strongly affected by non-
axisymmetric, or three-dimensional (3D), instabilities of the
swirling jet. This constitutes the main objective of the
present work, namely, to characterize the appearance of 3D
instabilities, and their nonlinear evolution as traveling waves,
in a swirling jet impinging normally against a solid wall as
the swirl parameter is increased for a given, moderately large
Reynolds number of the jet. In this sense, the present work
may be considered as a 3D extension of the axisymmetric
flow considered in Ref. 8 for a similar swirling jet configu-
ration. As we shall see, there exists a strong interaction be-
tween the recirculation region produced by the vortex break-
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down phenomenon and the nonlinear waves generated by the
3D instabilities in the incoming swirling jet.

Of course, since the concentration of particles raised
from the bed by the flow is usually very high, the interaction
between the sediment particles and the swirling flow is es-
sential in the characterization of the real process. However,
to gain a first insight on the physics of the problem we con-
sider here only the incompressible flow, without particles,
and perform a series of 3D numerical simulations for the
interaction of a quite general swirling jet, such as the
g-vortex, with a solid surface normally to its axis of symme-
try. In addition, owing to the high computer capacity re-
quired by 3D flow simulations, especially when 3D traveling
waves have to be captured, we shall only consider a single
Reynolds number of the jet (equal to 100). However for this
Reynolds number we analyze the different flow structures
arising as the swirl number is increased from O to 2.5, for
several distances of the incoming vortex to the solid wall. We
characterize the different 3D transitions of the flow as the
swirl number is increased, and study how they are affected
by the distance to the wall. Thus, for instance, we show that
nonaxisymmetric instabilities modify the original axisym-
metric flow above a critical swirl when the distance to the
plate is sufficiently large, as in the unconfined vortex case,
but these instabilities are suppressed for short distances to
the wall. Also, that the vortex breakdown phenomenon,
appearing above another critical swirl which depends on the
distance to the wall, tends to suppress nonaxisymmetric
perturbations.

3D numerical simulations, and nonlinear stability analy-
ses, of swirling jets have been recently performed by several
authors in quite different configurations (Refs. 9-12, among
others). Although somewhat similar trends to those reported
in these works are observed in the present simulations, no
quantitative comparisons are possible because the differences
in the structure of the incoming swirling jet and, more im-
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FIG. 1. Sketch of the nondimensional integration domain and coordinates.

portantly, in the global configuration of the flow due to the
presence of the solid wall, which completely alters the swirl-
ing flow. We shall make use, however, of the abundant infor-
mation about the linear stability of the g-vortex (also called
Batchelor vortex; see, e.g., Ref. 13 for a general account, and
Refs. 14—18 for more recent works), which constitutes the
inlet velocity profile in the numerical simulations given here,
to explain the appearance of the different instabilities. Our
numerical method, based on a decomposition of the velocity
field into symmetric and nonaxisymmetric parts, with a vec-
tor potential formulation for the nonaxisymmetric part,19 is
able to capture these instabilities from just numerical noise,
and to follow their development into nonlinear traveling
waves, tracking their nonlinear interactions.

Il. FORMULATION OF THE PROBLEM
AND NUMERICAL METHOD

We consider in this work the interaction of a g-vortex
with a solid surface perpendicular to its axis. In cylindrical-
polar coordinates (r, 6,z), the velocity field (U, V, W) of this
vortex is given by

2

U=0, V=2(1-¢"), W=e". (1)

S IR

All the magnitudes are nondimensional: r is made dimen-
sionless with a characteristic radius r, (the dispersion radius
of vorticity of the vortex), and the velocity field with a char-
acteristic axial velocity W,. The vortex is characterized by a
swirl parameter,

Ve

q=3, (2)

c

where V., is a reference azimuthal velocity. This vortex with
axial flow is a simplification of Batchelor’s trailing-line
vortex,”’ which is widely used in many vortex applications
as a simple model because it is a good fit to the experimental
velocity profiles for vane-guide-generated pipe vortices.?'

We solve the incompressible Navier—Stokes equations

V.v=0, (3)
d 1
a—:+V'VV=—Vp+aV2V, )

in the cylindrical domain depicted in Fig. 1, where
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Re=—-=° (5)

is the Reynolds number, with v the kinematic viscosity of the
fluid. Time 7 is made dimensionless with r./ W, and the pres-
sure p with pr, where p is the fluid density (however, the
pressure will not enter explicitly in our formulation, see
below).

The velocity field (1) is used as the inlet boundary con-
dition on the plane z=H, but with a minus sign in the axial
velocity W since the vortex propagates downward. We use
H=10 for the detailed computations reported below, thus
corresponding to a wall located ten vortex core radii down-
stream the inlet vortex; but we report all the relevant results
for the wide range 2.5 =H =15. At the wall, z=0, the veloc-
ity v vanishes, and at the cylindrical surface r=R we use
nonreflecting (radiation) boundary conditions (see below). R
is chosen large enough for this last boundary condition not to
affect the interaction of the vortex with the solid plane
(R=40 in most of the computations reported in this work, but
it has to be even larger for the highest swirl numbers consid-
ered). Note that owing to the radial decay of the g-vortex (1),
the inlet surface z=H behaves as a solid wall for large r.

To solve numerically the above problem, the velocity
field is split into two parts, an axisymmetric base flow,
V(r,z,t), plus a general perturbation field, A(r, 6,z,1),

v(r,0,z,t) = V(r,z,t) + A(r,6,z,1). (6)

The axisymmetric flow is solved through the streamfunction-
circulation-vorticity formulation (see, e.g., Ref. 23),

1
V=(UV.W=VAn(fe,)+-Te,
r

1oy 1 19y \T

=<_ __lp"_l—"__lﬂ,> s (7)
rdz r ror

where i is the streamfunction, I'=rV the circulation, and the

superscript 7 means transposed. The deviation velocity A is

written in terms of the potential vector W(r, 0,z,1),
A=VAW. (8)

The fact that VAV ¢ =0 for any scalar function ¢ can be
used to eliminate one of the components of W (the
f-component, say) so that the potential vector can be written
with just two components,24

¥ =(G,0,77". 9)

Therefore, the complete velocity field can be written as

!
T LouF
r
Ve }r o ag-o7F | (10)
| _Log
;07,1,[/ r

where d; means partial derivative with respect to the variable
i. With this formulation, the continuity equation (3) is auto-
matically satisfied.
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To simplify the numerical solution of the equations and
to eliminate the pressure from the formulation we use as
intermediate variables the components of the vorticity field
w=V Av, which is also decomposed into axisymmetric and
nonaxisymmetric parts in accordance with Eq. (10). The
equations to be solved are then the #-component of the mo-
mentum equation (4) for I', and the three components of the
vorticity equations, together with the definitions of the vor-
ticity components in terms of ¢, I', F, and G. More details of
the numerical method, together with a test of its accuracy, are
given in Ref. 19. Here we only give the specific information
relevant for the present problem.

One of the main advantage of this numerical method is
that one can easily follow the nonlinear evolution of the
different nonaxisymmetric modes once the axisymmetric
base flow is previously obtained. To that end, the variables
describing the nonaxisymmetric part of the flow are dis-
cretized in the azimuthal direction # by means of a complex
Fourier decomposition, truncated at some finite azimuthal
wavenumber Ny Thus, for instance, the two components of
the vector potential are written as

n=+Ngy

Fr,z,0,t) = E

n=-Ng,n#0

(pﬂ(r’ Z’ t)ein07

(11)

n=+Ngy

G(rz00= 2

n==Ng,n#0

in

Xn(r,z,0)e™?,

where the axisymmetric mode n=0 is not included because it
is transferred into the axisymmetric variables. Therefore, for
each one of the nonaxisymmetric variables there are 2N,
unknowns functions of (r,z,7). However, taking into account
that the velocity and vorticity fields are obviously real fields,
it follows that f_, = f,,, 1 =n=Ny, where f is any of the non-
axisymmetric scalar variables and the hat denotes complex
conjugate. This halves the number of unknown functions and
equations associated to each nonaxisymmetric variable. The
total number of dependent variables and equations is thus
5Ny+3; i.e., the three axisymmetric variables (stream func-
tion ¢, circulation I', and axisymmetric part of the azimuthal
vorticity component 7=4J,U-J.W .2 and the Ny modes of
the two components of the vector potential plus the three
components of the nonaxisymmetric part of the vorticity.
These equations, together with the boundary conditions, are
discretized in N,+1 nodes in the radial direction and N, +1
nodes in the axial direction. In particular, in the radial direc-
tion a Chebyshev pseudospectral collocation method® is
used, while in the axial direction we use a second order
finite-difference scheme on a nonuniform grid,26 concentrat-
ing the nodes in the regions where the radial and axial gra-
dients of the variables are the greatest. In the computations
reported here we use N, between 3 and 12, N, between 100
and 200, and N, between 50 and 120, depending on H and R.
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These values are adjusted in such a way that the accuracy of
the results does not change practically when increasing them.

As indicated above, the boundary conditions are given
by the axisymmetric velocity field (1) at z=H, with all the
nonaxisymmetric variables set equal to zero, v=0 at the solid
wall z=0, and regularity conditions at the axis r=0. At the
outflow boundary r=R we use the usual quasicylindrical
flow conditions for the axisymmetric (n=0) variables, i.e.,
second order radial derivatives equal to zero (see, e.g., Refs.
27 and 28), and a nonreflecting (radiation) boundary condi-
tion for the nonaxisymmetric variables.”*" We have set
R=40 initially, which is large enough for the computed axi-
symmetric flow to be independent of the boundary condi-
tions, but it has to be increased for high swirl numbers due to
the increasing size of the vortex breakdown bubble. Nonre-
flecting boundary conditions allow for the free exit of the
nonaxisymmetric perturbations that may appear inside the
flow through the outlet section, avoiding numerical instabili-
ties or spurious wave reflections at r=R.

As for the numerical scheme for solving the temporal
evolution of the flow variables, we first obtain the axisym-
metric flow by solving the equations governing the axisym-
metric variables, setting all the nonaxisymmetric variables
equal to zero. The numerical procedure is very similar to that
described in Ref. 23: Given the solution at a given instant
t=7At, where At is the time step, the temporal derivatives in
the equations are approximated with a semi-implicit, two
step predictor-corrector scheme with second order error in
time. Viscous terms in these equations are discretized implic-
itly, while the convective terms explicitly. The numerical
procedure is started at =0 from the flow at rest until an
axisymmetric steady state is reached. Once this axisymmet-
ric steady state is obtained, we solve the whole set of 3D
equations with initial conditions given by the steady axisym-
metric flow for the axisymmetric variables ¢, I', and #», and
random noise with a given intensity level e<<1 for all the
nonaxisymmetric variables (we use £=107> in most of the
reported computations given below). The temporal deriva-
tives in the parabolic evolution equations are approximated
in the same way as describe above for the axisymmetric vari-
ables, and the Poisson-like equations are solved by means of
an iterative successive over-relaxation scheme, for which the
optimum value of the under-relaxation factor is obtained
with some preliminary tests. The time step in the computa-
tions reported below is 0.01.

Ill. RESULTS AND DISCUSSION
A. Results for H=10

We report here with some detail the results for Re=100,
H=10, and for increasing values of the swirl parameter q.
The results for different values of H are summarized in
Sec. III B.

We present first the results for the steady axisymmetric
flow (for ¢, U, V, and W), which is used as the initial con-
dition for the 3D numerical simulation, and then for the tem-
poral evolution of the 3D flow. To this end we shall plot
contour lines in different planes of the three components of
the perturbation velocity A, given by
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FIG. 2. (Color online) Streamlines (a), and contour lines of the radial ve-
locity u (b), the azimuthal velocity v (c), and the axial velocity w (d) in the
axial plane #=0 for the initial (r=0) axisymmetric flow with Re=100,
H=10, and ¢=0.1. The spacing between contours is 0.0466, starting from 0
(wall) in (a), 0.021 27 («=0 at the axis) in (b), 0.002 2 starting from O at the
axis in (c), and 0.035 16, from —0.019 63 far from the axis, in (d).

1 1 Ne
A==0,F=-R| X nee"|, (12)
r

r n=-Ngn#0

Ng
Ng=0G-0F=R| > (9xn

n==Ng,n#0

- ar@n)eina s (13)

Ny

1 1
A=——8G=-—-R| >
r r

n==Ng,n#0

nx,e™ |, (14)

at some instants of time, in addition to the temporal evolu-
tion of some significant nonaxisymmetric variables. In par-
ticular, the nonlinear evolution of the different azimuthal
modes will be characterized by the maximum in the whole
flow domain of the modulus of the nth mode of the azimuthal
perturbation velocity component,

In|=5,4,3,2,1

0 1000 2000 3000 4000 5000 6000 7000 8000
t

FIG. 3. Temporal evolution of max|Ag,| in the whole flow domain, with
[n|=1,...,5, as indicated, for Re=100, H=10, and ¢=0.1.
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FIG. 4. (Color online) Contour lines of the radial velocity u (a), the azi-
muthal velocity v (b), and the axial velocity w (c) in the axial planes
6=0(r>0) and 6=m(r<0) for Re=100, H=10, ¢=0.1, and r=8221. 30
equidistant contours are plotted between —0.021 27 and 0.016 74 in (a), 0
and 0.0022 in (b), and —0.019 63 and 0.035 16 in (c).

az)(}'l(rlaz9t) - é’r(Pn(r’Z7t)| . (15)

The temporal behavior of the radial and axial components,
max|A,,(1)] and max|A,,(7)], are quite similar to
max|A4,(r)] and will not be shown.

For Re=100, the inlet g-vortex is convectively unstable
to helical perturbations with azimuthal wavenumber n=-1
for all values of the swirl parameter in the range
0<g< 1.08.° Obviously, the parallel-flow assumption used
in the stability analysis of Ref. 13 is not valid in the present
jet flow impinging against a solid wall, but, since the plate is
relatively far from the flow inlet in terms of the vortex core
size, similar convective instabilities with n=—1 are observed
in our numerical simulations for ¢ =0.4. However, the am-
plitude of the resulting traveling waves do not grow enough
before reaching the vicinity of the wall, and their amplitudes
remain so small that the computed flow is practically
axisymmetric.

This behavior can be observed in Figs. 2—6 for ¢=0.1.

maX|Aﬁ,n(t)| = max, .

FIG. 5. (Color online) Contour lines of A, (a), A4 (b), and A. (c) in the axial
planes #=0(r>0) and 6#=m(r<0) for Re=100, H=10, ¢=0.1, and
t=8221. 60 equidistant contours are plotted between *+4.652 X 107 in (a),
+1.136 X 107" in (b), and +3.15X 107" in (c).

Downloaded 28 Mar 2009 to 150.214.43.19. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



034107-5 3D transitions in a swirling jet
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FIG. 6. Contour lines of A, (a), Ay (b), and A. (c) in the (r,6)-plane
z=4.8 for Re=100, H=10, g=0.1, and r=8221. Spacing between contours is
1.6 X 107", starting from —2.326 X 107!, in (a), 1.575 X 107"}, starting from
-2.283 %1079, in (b), and 1.613 X 107!, starting from —2.34 X 1071, in (c).

The initial flow is the axisymmetric flow, depicted in Fig. 2,
plus a perturbation of constant value =107 for all the non-
axisymmetric variables. As it is observed in Fig. 3, all these
perturbations decay first very fast, and then more gradually.
[n|=1 is the less stable mode, as predicted by the stability
analysis (but now the numerically simulated flow is stable),
with the amplitude of modes |n|=2,3,4,5 remaining five or
more orders of magnitude smaller than that of the mode
[n|=1 as the flow evolves in time. Note also that N,=5
azimuthal modes are more than enough to describe the flow
in this case, because all the azimuthal modes decay very fast.
Actually, Ny=1 would have been enough in this case. Thus,
the flow remains practically axisymmetric (compare the flow
at r=8221 in Fig. 4 with the axisymmetric initial flow in Fig.
2). Nonetheless, perturbations with |n|=1 are present in the
flow, as observed in Figs. 5 and 6, but with very small am-
plitudes, of the order of 107!° at that instant of time. These
figures also show that the numerical method is able to cap-
ture organized flow structures with very small amplitudes.
Remember that the initial noise to start the nonaxisymmetric
variables is of the order of 1073, and that the 3D flow evolves
to an organized structure, with |n|=1 as the dominant mode
(clearly observed in Fig. 6), of much smaller amplitude.
The situation is quite similar for g=0.4 (see Figs. 7-10),
but in this case the amplitude of the mode |n|=1 remains
constant after the initial decay from the starting noise (see
Fig. 8; note that we now use N,=8 azimuthal nodes, as in
most of the computations reported below). The perturbations

FIG. 7. (Color online) As in Fig. 2 but for ¢=0.4. The spacing between
contours is 0.0388, starting from —0.171, in (a), 0.014 78, starting from
—0.0301, in (b), 0.0088, starting from 0 at the axis, in (c), and 0.035 52,
starting from —0.03, in (d).
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FIG. 8. As in Fig. 3, but for ¢=0.4 and |n|=1,...,8.

have a clear helical structure with |n|=1 (Figs. 9 and 10).
However the amplitude is still too small (of the order of 107’
now) to modify the axisymmetric flow in a perceptible way.

The simulated flow change substantially for g slightly
larger than 0.4. In particular, for g =0.43, the flow becomes
unstable for the azimuthal mode |n|=2, and the final state
is clearly nonaxisymmetric. This behavior remains qualita-
tively the same in the wide range of swirl numbers
0.43=¢g=0.96, and we find that it is associated to an
absolute instability of the axisymmetric flow. This is based
on the fact that the parallel g-vortex with Re=100 is abso-
lutely unstable for perturbations with |n|=2 in the interval
04=<g=05."

For instance, Fig. 11 shows the spatial stability proper-
ties of the parallel g-vortex for Re=100 and g=0.45. In par-
ticular, it is shown the dispersion relation in terms of the
spatial growth rate as a function of the frequency, y(w), and
the axial wavenumber as a function of the frequency, a(w),
for different azimuthal wavenumbers n [see Ref. 17 for the
exact definitions of y(w) and a(w), and for the details of the
stability analysis]. It is observed that the mode |n|=2 has
reached the onset of absolute instability from an spatial sta-
bility point of view, with a cusp point in y for |w|=0.13, and
vanishing group velocity dw/da at that frequc:zncy.32 Al-

(a)

(c)
30 40

FIG. 9. (Color online) As in Fig. 5, but for ¢=0.4 at r=5973. 60 equidistant
contours are plotted between *+2.02X 1077 in (a), +1.1X 1077 in (b), and
+2.09Xx 1077 in (c).
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(a) (b)
i \/ i
0 0
% 0 s S50 s

FIG. 10. As in Fig. 6, but for ¢g=0.4 at t=5973. Spacing between contours
is 7.90 X 1079, starting from —1.14X 1077, in (a), 7.775 X 107, starting from
—1.13X 1077, in (b), and 7.922 X 107, starting from —1.15X 1077, in (c).

though the present inlet g-vortex becomes almost immedi-
ately distorted downstream of the flow inlet due to the pres-
ence of the wall, and nonparallel effects become important
on any stability analysis of the flow, the properties of the
numerically simulated flow for ¢g=0.45 (Figs. 12-16) agree
very well with this absolute instability. The initial axisym-
metric flow (Fig. 12) becomes clearly nonaxisymmetric for
t=2000 (see Fig. 13), the amplitude of the final 3D pertur-
bations being now of the order of 107! (Figs. 13-16). The
dominant mode is clearly |n|=2, as observed in Figs. 14 and
16, and the frequency of the oscillations is about 0.08 (Fig.
13), close to the value obtained from the parallel flow sta-
bility analysis.

What is more relevant for the present nonlinear stability
analysis is the way in which this 3D flow evolves in time
(see Fig. 14). As in the previous cases, the amplitude of the
initial noise, of the order of 1075, first decay in time. Now,
just after this short transient interval, the amplitude of the
mode |n|=2 starts increasing in an exponentially way (lin-
early in the logarithmic plot of Fig. 14), therefore as a con-
sequence of a linear instability. This (absolute) instability is
originated near the axis, inside the core of the jet, approxi-
mately at the middle plane between the inlet g-vortex and the
wall. Much before this instability saturates, nonlinear inter-
actions take place among the different azimuthal modes with
even values of n, that also become unstable. This is because
the wavenumber 2 solution has energy in its harmonics, i.e.,
in all even Fourier modes. However, just after these even

[n|=5,4,3,2,1

FIG. 11. Spatial growth rate y (a), and axial wavenumber a (b) as functions
of the frequency w for a g-vortex with Re=100 and ¢=0.45.
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FIG. 12. (Color online) As in Fig. 2 but for g=0.45. Note that only
0=r=20 is plotted. 30 equidistant contours between —0.28 and 0.971 in
(a), —0.033 and 0.3183 X 1072 in (b), 0 and 0.2872 in (c), and —0.0324 and
1 in (d).

0.1 T . . . :
0 A
0 1000 2000 3000 4000 5000
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o
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0.05 T - : : ;
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-0.05 ‘ ‘ ‘ :
0 1000 2000 3000 4000 5000
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FIG. 13. Temporal evolution of the radial velocity perturbation A, at 6=0
(continuous lines) and A= (dashed lines), r=1, and the axial locations
(from top to bottom) z=1.38, 5, 3.5, and 9.46, for Re=100, ¢=0.45. Since
the dominant azimuthal mode is even, the lines at #=0 and 6= practically
coincide.

Inl=2,4,6,8 /

0° | I/ | f

‘ In|=1,3,5,7
1070 |

0 1000 2000 3000 4000 5000
t

FIG. 14. As in Fig. 3, but for ¢=0.45.
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FIG. 15. (Color online) As in Fig. 5, but for ¢=0.45 at r=5293. 60 equidis-
tant contours are plotted between —7.09X 1072 and 5.22X 107 in (a),
-3.97X1072 and 1.18x 107" in (b), and —1.44X 107" and —1.49X 107!
in (c).

modes saturate, a new bifurcation occurs in which the mode
|n|=1 becomes unstable and, consequently, all the Fourier
modes. At the end, all the modes become saturated, reaching
the flow an oscillatory (traveling waves) state, with a veloc-
ity perturbation structure dominated by the azimuthal mode
|n|=2 (see Figs. 14-16), whose amplitude is almost one or-
der of magnitude larger than the next (nonlinearly) unstable
mode with |n|=4.

This scenario is a typical consequence of a double Hopf
bifurcation of the original axisymmetric flow, where two dis-
tinct Hopf bifurcations occur, the first one for mode |n|=2
and its harmonics, and then for |n|=1 and all the Fourier
modes (see Refs. 33-37 for some related examples in an
enclosed swirling flow in which a detailed analysis of these
Hopf bifurcations are presented).

A qualitatively similar behavior of the flow is found nu-
merically for increasing values of g, until it becomes close to
unity (more precisely, until ¢=0.96). As shown in Fig. 17
for g=1, vortex breakdown takes place at the axis, with a
stagnation point (zero axial velocity) at z=8. As a conse-
quence, the 3D instabilities observed for smaller values of g
disappear (Fig. 18). Thus, the formation of a breakdown re-
gion with flow recirculation, which is quite large in the
present case (see Fig. 17), suppress nonaxisymmetric insta-
bilities, and all the eight azimuthal modes considered in the
present numerical simulation for g=1 decay in time from
their initial small values (Fig. 18).
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FIG. 16. (Color online) As in Fig. 6, but for ¢=0.45 at r=5293. 30 equidis-
tant contours between —8.89 X 1072 and 8.41 X 1072 in (a), —1.28 X 10~ and
1.216 X 1072 in (b), and —1.795X 107" and 1.91 X 10! in (c).
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FIG. 17. (Color online) As in Fig. 2 but for ¢=1.0. Note that only
0=r=15is plotted. 20 equidistant contours are plotted in (a) between 0 and
0.5, and 10 between —2.87 and 0, 30 contours are plotted between —0.026
and 0.40 in (b), between 0 and 0.6382 in (c), and between —0.062 and 1
in (d).

As g increases further, the only significant difference is
that the breakdown region with flow recirculation increases
in size, with the stagnation point moving toward the flow
inlet. However the flow remains stable to nonaxisymmetric
perturbation, at least until the quite large swirl number
g=2.5, which is the maximum value for which we have
made numerical simulations. For these large values of g we
have to increase the radial size R in the computations. We
find that all the 3D perturbations are suppressed by the recir-
culating breakdown bubble, as in the case with g=1 reported
above, and the flow remains axisymmetric.

B. Summary of results for different values of H

The computations have been repeated for different
distances H to the wall in the range 2.5=H=15. For
5.5=H=15 the results are qualitatively similar to those re-
ported above for H=10. There exists a first critical swirl
q(H) such that for ¢<g;(H) the flow remains practically
axisymmetric. For ¢;(H) < g <q,(H) the flow becomes abso-
lutely unstable, first for perturbations with |n|=2, and then
for rest of the azimuthal modes, with traveling waves propa-
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FIG. 18. As in Fig. 3, but for g=1.0.
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FIG. 19. (Color online) As in Fig. 3, but for H=5 and ¢=0.5.

gating downstream and transforming the original axisymmet-
ric flow into a strongly nonaxisymmetric one. In these 3D
flows the mode |n|=2 is always the dominant one. For
q=q,(H), these 3D nonlinear perturbations become
suppressed due to the formation of a vortex breakdown
bubble above the critical value ¢,(H), in such a way that the
flow becomes axisymmetric again, and remains so for all the
swirl numbers larger than ¢, considered (up to g=2.5). The
only differences with the case H=10 analyzed above reside
in the quantitative values of critical swirl numbers ¢, and ¢,
for the transitions, which are plotted in Fig. 20 for several
values of H.

When 3=H=5.5, we find that the dominant absolute
instability arising for ¢ =¢g;(H) does not correspond to per-
turbations with |n|=2, as in the previous cases, but with
[n|=1. This behavior can be seen in Fig. 19 for H=5 and
¢=0.5, which is slightly larger than ¢,(H=5) =0.46, where it
is observed that the mode |n|=1 starts growing exponentially
after a short initial decay from the original noise, increasing
its amplitude more than four orders of magnitude, and then
saturates. Before that saturation, all the remaining modes
also grow exponentially by nonlinear interactions, and then
saturate. The final state is dominated by the helical mode
|n|=1, whose amplitude is approximately one order of mag-
nitude larger than the mode |n|=2, and this is about one order
of magnitude larger than |n|=3, and so on. This is a conse-
quence of the fact that now the Hopf bifurcation breaking the
axial symmetry of the flow is for the [n|=1 mode, which has
energy in all Fourier modes.

This behavior indicates that the stability properties of the
incoming g-vortex are now strongly affected by the close
presence of the flat plate, differing qualitatively from the
stability properties of the unconfined vortex case. In other
words, for a distance to the plate larger than approximately
5.5 times the vortex core, the impinging jet behaves qualita-
tively as a free vortex from a stability point of view. On the
other hand, the vortex breakdown transition arising when
q=q,(H) is qualitatively similar to the previous cases, with
the flow becoming axisymmetric again for these swirl num-
bers (see Fig. 20 for the critical swirl values).

Finally, for H=<3 the influence of the wall on the swirl-
ing jet is so strong that the flow never becomes (absolutely)
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FIG. 20. Critical swirl numbers ¢, (squares) and ¢, (circles) for several
values of H. We also indicate the dominant azimuthal mode arising at ¢,(H).

unstable to nonaxisymmetric perturbations, because g,;(H)
becomes larger than ¢,(H), and therefore remaining axisym-
metric for all the values of ¢ considered. The transition to
vortex breakdown for ¢ = ¢,(H) is always present, at least for
the values of H=2.5 considered here, with g, increasing
slightly as H decreases.

These different regions in the plane (H,q), with different
flow properties, are marked in Fig. 20.

IV. CONCLUSIONS

We have considered in this paper the interaction of a
g-vortex impinging against a solid wall perpendicular to its
axis at different distances H from the vortex inlet, for a Rey-
nolds number equal to one hundred, and for increasing val-
ues of the swirl number (from 0 to 2.5). H measures the
distance to the plate in terms of the vortex core radius, and
we have considered values in the interval 2.5=H=15. The
first main conclusion is that instabilities in the nonlinear re-
gime are generated from absolute instabilities of the axisym-
metric incoming vortex above a critical swirl number ¢,
which depends on H (and, of course, on Re). For the Rey-
nolds number considered, and for sufficiently large values of
H, this instability corresponds to the azimuthal mode |n|=2,
in agreement with the absolute instability of the unconfined
g-vortex. Nonlinear mode interactions take place for g=¢q,
and all the azimuthal modes become unstable, but with
|n|=2 remaining always the dominant azimuthal mode. This
behavior is a consequence of a double Hopf bifurcation,
similar to the ones described by Lopez and co-workers in an
enclosed swirling flow.>>>" For H=<5.5, the qualitative in-
stability properties of the flow change due to the close pres-
ence of the wall, and the dominant absolute instability aris-
ing for g=¢q,(H) corresponds to perturbations with |n|=1,
which in the nonlinear regime has energy in all the azimuthal
modes. For H=3 this absolute instability (bifurcation) dis-
appears altogether, and the flow remains axisymmetric for all
the values of the swirl number at the present Re.

The second main conclusion of this work is that there
exists another critical swirl number ¢,(H), larger than q,(H)
when ¢, exists, above which a stagnation point is formed at
some point in the axis with a wide region of flow recircula-
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tion downstream. The most significant consequence of the
formation of this vortex breakdown bubble is that nonaxi-
symmetric instabilities become suppressed so that the flow
becomes axisymmetric again for ¢=¢,. This axisymmetric
vortex breakdown flow has been obtained even for the high-
est swirl number considered, g=2.5, differing only in the size
of the breakdown bubble, which increases with ¢. For
H =3 the flow remains always axisymmetric because g,(H)
becomes larger than ¢g,(H) so that the vortex breakdown
transition appears before any absolute instability as ¢ is in-
creased, impeding the formation of 3D traveling waves. All
the critical swirl numbers ¢, and ¢, are summarized in Fig.
20 as functions of H for Re=100. This figure also summa-
rizes the main qualitative differences between an impinging
swirling jet and a free one as the distance H between the
injection section and the wall decreases for a given Reynolds
number.

This overall behavior of the flow as the swirl number is
increased has been corroborated for other Reynolds number
of the order of one hundred (in particular, for Re=75 and
200), but not enough computations have been performed to
characterize with sufficient precision the critical swirl num-
bers as functions of Re and H owing to the high numerical
cost of the 3D simulations. We think that the relevant result
here is the interplay between nonaxisymmetric, nonlinear in-
stabilities with the vortex breakdown phenomenon in this
flow for moderate Reynolds numbers, showing the existence
of a window of swirl numbers between ¢, and ¢,, where the
flow is nonaxisymmetric (3D), if H is not too small. For ¢
> g, the flow is practically axisymmetric, with a large region
of flow recirculation. These results may be of practical inter-
est in studying seabed excavation processes.
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