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Three-dimensional and axisymmetric numerical simulations of the incompressible Navier-Stokes
equations have been conducted to study the appearance and development of vortex breakdown in a
family of columnar vortex flows in a straight pipe without wall friction. The numerical simulations
show that the basic form of breakdown is axisymmetric, and a transition to helical breakdown
modes is shown to be caused by a sufficiently large pocket of absolute instability inside the original
axisymmetric “bubble” of recirculating flow. Depending on the values of the Reynolds and swirl
parameters, two distinct unstable modes corresponding to azimuthal wave numbers n= +1 and n
= +2 have been found to yield a helical or a double-helical breakdown mode, respectively. By means
of a simple linear spatial stability analysis carried out in the sections of the pipe where the basic
axisymmetric flow presents reverse flow, we have identified the frequencies and the dominant
azimuthal wave numbers observed in the three-dimensional simulations. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2338065�
I. INTRODUCTION

Vortex breakdown has been described as a catastrophic
structural change in the flow of intense vortex cores by Hall.1

Several breakdown patterns ranging from asymmetric spiral
vortex cores to almost axisymmetric stagnant bubbles have
been observed; in addition, unsteadiness of the flow and tur-
bulence usually develop in the wake downstream the break-
down zone �see, e.g., Refs. 2–5, among many others�. The
prediction and control of vortex breakdown in either swirling
flows in pipes or in unconfined vortices are of interest in
many engineering applications: vortex cores over delta wings
at high incidence angles, wing trailing vortices, swirling
flows inside pipes and other swirl devices, combustion cham-
bers, etc.

There is a large number of numerical studies which have
analyzed the occurrence of this phenomenon in axisymmetric
swirling flows in pipes. Some of them are inviscid
analysis,6–8 while other ones pay special attention to the role
of viscosity,9,10 or to the compressibility effects.11,12 How-
ever, although experiments on vortex breakdown reveal the
three-dimensional �3D� character of the phenomenon in most
cases studied, very few theoretical or numerical works deal-
ing with nonaxisymmetric swirling flows have been carried
out. In the context of swirling flows in pipes, Tromp and
Beran13 studied the temporal evolution of a compressible,
swirling, 3D flow in a pipe for values of the Reynolds and
Mach numbers equal to 1000 and 0.3, respectively. More
recently, and in the context of open flows, Ruith et al.14 have
extensively studied the three-dimensional vortex breakdown
of incompressible swirling jets and wakes. These authors,
who considered a two-parameter family of velocity profiles,

found out that these swirling flows exhibited, in the absence
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of external co-flow, helical or double-helical breakdown
modes for sufficiently high Reynolds and swirl numbers. In
particular, they found that the basic form of breakdown is
axisymmetric, and suggested that the asymmetric �helical or
double helical� breakdown was related to the existence of a
sufficiently large pocket of absolute instability in the wake of
the recirculating bubble, corresponding to helicoidal modes
with azimuthal wave numbers m=−1 and m=−2, respec-
tively, where “the minus sign represents the fact that the
winding sense of the spiral is opposite to that of the flow.”
This sign convention of the azimuthal wave number in Ref.
14 is not the one generally used in the normal mode decom-
position, where m�0 means winding with the jet.15 Some of
the findings by Ruith et al. were subsequently confirmed
experimentally for swirling jets by Liang and Maxworthy.16

In this paper, we have conducted both axisymmetric and
3D numerical simulations to study the appearance of vortex
breakdown in a family of columnar vortex flows in straight
pipes �without wall friction�. In particular, our main interest
is to know whether the three-dimensional �helical or double-
helical� form of vortex breakdown inside a pipe is a phenom-
enon of the same kind as the axisymmetric vortex break-
down, or it develops from instabilities of the axisymmetric
�recirculating bubble� vortex breakdown. To that end, the
numerical results have been complemented with a local sta-
bility analysis of the axisymmetric swirling flows after a re-
circulating bubble has been formed. Following the ideas de-
veloped by Pier and Huerre17,18 in the case of developing
wake flows, but using the criterion for frequency selection
given by Pierrehumbert19 in the context of baroclinic insta-
bilities, we have looked for regions of absolute instability

20
inside the recirculating bubble �see also Gallaire et al. for a
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recent work on a similar problem�. The stability results have
been compared to the 3D numerical simulations in order to
try to identify the frequencies and the dominant azimuthal
wave numbers observed in the 3D simulations.

The paper is organized as follows: Sec. II contains the
equations and the initial and boundary conditions of the
problem. In particular, we consider the time evolution of a
family of columnar swirling flows of Batchelor-type in a
straight pipe. The numerical scheme for the integration of the
full incompressible Navier-Stokes equations is given in Sec.
III. Numerical results, both axisymmetric and 3D, are given
and discussed in Sec. IV. A linear, spatial stability analysis of
the axisymmetric flow is given in Sec. V. Finally, results are
discussed and summarized in Sec. VI.

II. FORMULATION OF THE PROBLEM

In the present paper, the incompressible, time-dependent
and three dimensional Navier-Stokes equations are solved in
cylindrical coordinates �r, �, z� inside a pipe. To render the
governing equations dimensionless, a characteristic length �,
and a characteristic velocity wc, are introduced. As we will
see later, both quantities are defined at the pipe entrance and
characterize the inlet columnar vortex, being � the character-
istic vortex core radius, and wc the velocity at the axis of the
tube. The convective time scale is T=� /wc, and the charac-
teristic pressure is P=�wc

2, with � representing the constant
density of the fluid. With this scaling, the dimensionless con-
tinuity and momentum equations can be written as
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The Reynolds number is defined as

Re =
wc�

�
�7�
being � the kinematic viscosity of the fluid.
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The above system of equations has been solved to de-
scribe the temporal evolution of a family of columnar swirl-
ing flows in a straight pipe, which in dimensionless form are
given by the following expressions:

w = a + �1 − a�exp�− r2�, v =
S

r
�1 − exp�− r2��, u = 0,

�8�

where parameter a	w� /wc is the ratio between the axial
velocity far away from the axis, w�, and the velocity at the
axis, wc, used as the characteristic velocity; S is a swirl pa-
rameter, defined as

S =
�

�wc
, �9�

being � the circulation of the vortex far away from the axis.
Note that all the exponentials terms appearing in �8� are of
order unity when r
1, which corresponds to a dimensional
radial distance of order �, so that � is the characteristic vor-
tex core radius. This kind of velocity profile, combination of
an axial flow �jet-like for a�1 and wake-like for a�1� and
a circumferential �Burger’s vortex� flow, with no radial flow,
fits well with the inlet velocity of some experiments on vor-
tex breakdown in pipes.21 It is sometimes called Batchelor
vortex, and has been extensively used in different theoretical
and numerical investigations of axisymmetric swirling flows
in pipes,6,12 in addition to the original modelling of aircraft
trailing vortices.22,23

This axisymmetric velocity field �8� will be used here as
the initial condition for both the axisymmetric numerical
simulations �neglecting the azimuthal derivatives in the
equations� and some of the 3D computations reported below.
In addition, the steady state axisymmetric solutions resulting
from the axisymmetric computations �when they exist� will
also be used as initial conditions in the rest of the 3D nu-
merical simulations performed in this work �see Sec. VI�.

We have considered the following set of boundary con-
ditions:

• At the inlet section, z=0, we assumed that the velocity
profiles given by Eq. �8� remain unaffected during the
time evolution of the flow.

• At the outlet section, z=zf, zero gradient outflow con-
ditions have been imposed to the velocity field.

• The pipe wall, r=Ro, is treated as an inviscid stream
surface, so that impermeability is enforced at this
boundary, but allowing velocity slip. Thus the wall is
assumed to be a steady, axisymmetric stream surface
at which circulation, �=rv, and azimuthal vorticity,
	=uz−wr, remain constant and equal to the given val-
ues at the pipe entrance,

�w

�r
= u = 0, v =

S

Ro
�1 − exp�− Ro

2�� �
S

Ro
. �10�

This type of inviscid boundary condition at the pipe wall has
been widely used in the past in problems dealing with vortex
breakdown in tubes.9,10 It greatly simplifies the numerical

treatment of the problem. Although the wall boundary layer
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may have a significant impact on the flow behavior if the
boundary layer thickness grows too much, it is generally
assumed that it is not important in describing the genesis of
vortex breakdown. The calculations are carried out with a
fixed geometric characterized by Ro=4 and zf =60.

III. COMPUTATIONAL METHOD

Since the flow must be 2
 periodic in �, the velocity
field, u= �u ,v ,w� can be projected exactly onto a set of two-
dimensional complex Fourier modes ûn as

u�z,r,�,t� = �
n=−�

�

ûn�z,r,t�exp�in�� . �11�

We introduce the following notation for the gradient and La-
placian of a �complex� scalar, as applied to mode n of the
Fourier decomposition:
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The change of variables ũn= ûn+ iv̂n, ṽn= ûn− iv̂n, is intro-
duced to decouple the linear terms in the equations.24 Then,
the cylindrical components of the transformed momentum
equation read
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where N�u�˜

rn=N�u�̂rn+ iN�u�̂�n and N�u�˜

�n=N�u�̂rn− iN�u�̂�n,

with N�u�̂zn, etc., representing the corresponding n compo-
nent of the transformed nonlinear terms.

The appropriate boundary conditions to be applied at the
axis �r=0� for this kind of modal decomposition of the ve-
locity filed was described by Lopez et al.25 and lead to

r = 0: 
n = 0: ũo = ṽo = �rŵo = �rp̂o = 0;

n = 1: ũ1 = �rṽ1 = ŵ1 = p̂1 = 0;

n � 1: ũn = ṽn = ŵn = p̂n = 0.
� �16�

The required boundary conditions for the pressure modes at
the physical boundaries �inlet, outlet and pipe wall� are ob-
tained by projecting the momentum equations onto the nor-
mal direction n of the domain. For the computation of the
time evolution, a mixed implicit-explicit second order pro-
jection scheme based on backwards differentiation is
employed.25

The spatial discretization employs Fourier expansion in
the azimuthal direction. The infinite set of Fourier modes �8�

is truncated at some finite wave number n�:
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u�z,r,�,t� = �
n=−n�

n�−1

ûn�z,r,t�exp�in�� . �17�

Since the modes have the symmetry property û−n= û+n
* ,

where the asterisk superscript denote the complex conjugate,
in practice we need keep only the positive wave number half
of the spectrum �n�0�. Spatial discretization in the meridi-
anal �z ,r� semiplane employs nr Chebyshev spectral colloca-
tion points in r, and second-order, central finite-differences
in z, with nz points in the axial direction. This approach
allow us to use the matrix diagonalization method,26 whose
computational complexity is of order nr�nz�min�nr ,nz�, to
solve the three Helmholtz-type equations resulting from the
momentum equations and the Poisson equation needed to get
the pressure corrections. The nonlinear terms are evaluated
using a pseudospectral method.27

Note that the spectral resolution in both the radial and
azimuthal directions allow us to use a much less number of
grid points in those directions than in the axial one, that is
discretized by finite-differences. Therefore, for the geometri-
cal configuration selected, Ro=4 and zf =60, we have carried
out the numerical simulations in a grid with nr=30,
nz=401 and n�=8 for the cases with Re=100 and Re=250,
while more axial points were required �nz=501� in those
cases with the largest Reynolds number considered here,
Re=400. Several convergence tests conducted in finer grids
�with nr=41 radial points and n�=12 azimuthal modes� sug-
gested that this resolution level yield accurate results. The
time step employed in the simulations was 
t=0.02, since no
significant differences in the temporal evolution of the flow
were found by using smaller time steps. In addition, to check
out that the 3D structures found in this work were not af-
fected by the particular length of the computational pipe used
in the simulations, nor by the boundary conditions imposed
at the pipe outlet, the 3D results with the largest values of
both Re and S were reproduced by using a longer pipe with
zf =80.

IV. NUMERICAL RESULTS

A. Axisymmetric results

The 3D numerical code allow us to carry out axisymmet-
ric simulations as well by just taking n�=0 in the spectral
representation �17�. In the considered pipe geometry with
Ro=4 and zf =60, we have analyzed first the case of a jet-like
velocity profile with a=0.5 in Eq. �8�. The axisymmetric
time evolution of the initial columnar flow shows that, for
100�Re�400, the flow evolves towards a steady state so-
lution of the axisymmetric Navier-Stokes equations that
presents a region of reversed flow �a recirculating “bubble”�
if the relative swirl is high enough. This can be quantified
by using the minimum axial velocity of the steady axisym-
metric solution in the pipe domain as the control parameter,
defined as

wmin = min�w�r,z��0�r�Ro,0�z�zf
. �18�

Figure 1 represents wmin as a function of the swirl pa-

rameter S for Re=400. It is observed that, as S increases,
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wmin decreases bellow its initial value 0.5 �which corre-
sponds to the initial axial velocity far away from the axis�.
For S larger than a critical value, S�S*, which for Re=400
is approximately S*=1.075, the solution shows the presence
of reversed flow, wmin�0, indicating the occurrence of axi-
symmetric vortex breakdown in the fluid domain. To illus-
trate the structure of the flow with wmin�0 for different
Reynolds numbers, we have plotted in Fig. 2 contour lines of
the axial velocity of the steady axisymmetric solution for a
given swirl larger than S*, S=1.2, and three different
Reynolds numbers: 100, 250, and 400. These contours lines
are in a meridianal plane �y ,z�, with y=r for �=0 and
y=−r for �=
. It should be pointed out that we have used
axial velocity contours to visualize the structure of the flow,
instead of the more usual streamlines in axisymmetric flows,

FIG. 1. wmin as a function of the swirl parameter S for Re=400 and
a=0.5.

FIG. 2. Contours of the axial velocity component, w, in the �z ,y� plane
corresponding to the steady axisymmetric solution of the N-S equations with
a=0.5 and S=1.2 for three different Reynolds numbers: �a� Re=100, �b�
Re=250 and �c� Re=400. Ten positive and ten negative equidistant contours
of w are plotted in the following intervals: between its minimum value and
zero �dashed lines� and between zero and its maximum value �continuous

lines�.
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because we want to compare these axisymmetric results with
the 3D simulations of the next section. In the three cases
plotted, a steady “bubble” of recirculating flow �dotted lines
represents negative values of the axial velocity� is formed
close to the pipe entrance. The flow upstream that region
�where w�0� does not change too much when the Reynolds
number is increased. However, the bubble size increases both
in the radial and in the axial directions as the Reynolds num-
ber increases, and even a new small bubble is observed
downstream of the first one �near z�10� for Re=400.

Since the three axisymmetric solutions depicted in Fig. 2
will be used as initial conditions for the 3D simulations re-
ported below, and as the basic flows in the stability analysis
of Sec. V, to study the influence of Re on the appearance of
3D instabilities, we will name them as follows:

Case I: a=0.5, S=1.2, Re=100 �Fig. 2�a��;

Case II: a=0.5, S=1.2, Re=250 �Fig. 2�b��;

Case III: a=0.5, S=1.2, Re=400 �Fig. 2�c��.

Another case which we shall consider in the 3D numeri-
cal simulations of Sec. IV B, but now starting the 3D com-
putations from the original columnar vortex �8�, to compare
the 3D results with the axisymmetric time evolution, will be

Case IV: a=0.5, S=1.1, Re=250 �Fig. 3�.

This case corresponds to a value of the swirl parameter larger
than S* �S=1.1�S*�Re=250,a=0.5��, but closer to S* than
in case II. The contour lines of the axial velocity correspond-
ing to the axisymmetric steady state solution are depicted in
Fig. 3 �compare with Fig. 2�b��.

Finally, we have also analyzed in this section the depen-
dence on the swirl parameter of the behavior of columnar
flows given by �8� for the case of a wake-like velocity profile
with a=1.5. The axisymmetric time evolution of these co-
lumnar flows shows that, for a fixed Reynolds number �say,
Re=250�, the flow evolves towards a steady state solution of
the Navier-Stokes equations that again presents reverse flow
if the swirl is sufficiently large �see Fig. 4�. Note that the
swirl parameter for axisymmetric vortex breakdown is sig-

*

FIG. 3. Contours of the axial velocity component, w, in the �z ,y� plane
corresponding to the steady axisymmetric solution of the N-S equations with
a=0.5, S=1.1, and Re=250. Ten positive and ten negative equidistant con-
tours of w are plotted in the following intervals: between its minimum value
and zero �dashed lines� and between zero and its maximum value �continu-
ous lines�.
nificantly larger now �S �1.85� than for the case considered
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above of a jet-like initial velocity profile with a=0.5. We
have plotted in Fig. 5 the contour lines of the axial velocity
for the axisymmetric steady solution corresponding to

Case V: a=1.5, S=2, Re=250 �Fig. 5�,

which will be also used as an initial condition in the 3D
simulations described in the next section.

B. 3D results and discussion

Here we present the results of the 3D numerical simula-
tions for the five cases considered in the above axisymmetric
numerical simulations. With the first three cases we investi-
gate the role of viscosity on the subsequent 3D evolution of
the flow starting from the axisymmetric steady state with the
“bubble” of recirculating flow. With the fourth case we start
the numerical simulation from the initial columnar flow to
show that the nonaxisymmetric flow, i.e., the spiral or heli-

FIG. 4. wmin as a function of the swirl parameter S for Re=250 and
a=1.5.

FIG. 5. Contours of the axial velocity component, w, in the �z ,y� plane
corresponding to the steady axisymmetric solution of the N-S equations with
a=1.5, S=2 and Re=250. Ten positive and ten negative equidistant contours
of w are plotted in the following intervals: between its minimum value and
zero �dashed lines� and between zero and its maximum value �continuous

lines�.
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coidal form vortex breakdown, is formed sufficiently after
the axisymmetric bubble form of vortex breakdown has de-
veloped. With this case we also account for the effect of the
swirl parameter on the helical breakdown. Finally, the fifth
case will show the differences between the evolution of a
vortex with a wake-like axial velocity profile at the entrance
and a vortex with a jet-like form at the inlet.

Figures 6�a� and 6�b� depict the time evolution of the
axial velocity wref at a given position xref= �r=0.4,�=0,z
=30� behind the axisymmetric bubble of recirculating flow
for the cases I, II, and III. It can be seen in Fig. 6�a� that, for
Re=100, the reference velocity does not change with time
�dashed line�, indicating that the initial axisymmetric steady
solution remains stable during the 3D numerical simulation.
However, for larger values of the Reynolds number, Fig. 6
shows that, after a certain period of time, which becomes
shorter as the Reynolds number increases, wref begins to
change in time, indicating that the flow becomes unsteady
and nonaxisymmetric. A closer look at the time evolution of
cases II and III for the largest instants of time considered
�Fig. 7� shows that the flow becomes purely periodic at the
end, with a frequency �3D
0.43 for Re=250, and slightly
higher, �3D
0.44, for Re=400. The reason for this behavior
is the development of nonaxisymmetric instabilities in the
flow in both cases �II and III�, giving rise to an unsteady
nonaxisymmetric flow which, after a relatively long transient
period, finishes up with a simple wave-like behavior. In order
to illustrate this, we have plotted in Fig. 8 the temporal evo-

FIG. 6. Temporal evolution of the axial velocity wref at a given position
xref= �r=0.4,�=0,z=30� for a flow with S=1.2, a=0.5, and three different
Reynolds numbers: Re=100 �case I� and Re=250 �case II� �a�; and
Re=400 �case III� �b�.

FIG. 7. Detail of the large time behavior of wref for: case II �a� with

�3D
0.43, and case III �b� with �3D
0.44.
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lution of the amplitudes of the different nonaxisymmetric
modes for the axial velocity in the modal decomposition �17�
at the same location xref,

An�t� 	 �ŵn�rref,zref,t��, n � 0. �19�

For Re=250 �Fig. 8�a��, A2 is the first mode that becomes
destabilized, increasing very fast in time, while the ampli-
tudes of the other modes begin to increase later and more
slowly. Eventually, for a sufficiently large time, the ampli-
tude A2 decays, and the mode corresponding to A1 becomes
the dominant one at the final state �the amplitude A3 and
those corresponding to higher modes not shown in the figure
remain always very small�. For Re=400, Fig. 8�b� shows that
the nonaxisymmetric perturbations develop appreciably
faster than for Re=250. In addition, the time required for the
amplitudes of the nonaxisymmetric modes to reach the final
purely oscillatory state is much larger. Another significant
difference in this case is that the amplitude A1 is appreciably
larger that A2 from the beginning of the 3D instability, and
remains so until the final state.

FIG. 8. Temporal evolution of the different amplitudes An �defined in Eq.
�19�� for different nonaxisymmetric modes n�0 corresponding to case II �a�
and case III �b�. The inset in �a� is shown to compute the frequency of the
mode n=2 at its initial stages of development.

FIG. 9. Three-dimensional perspectives of the perturbations of the circula-
tion corresponding to case II at time t=4800. �a� Isosurface of �p, �b� iso-
surface of the �n � =1 component, and �c� isosurface of the �n � =2 component.

All the isosurfaces are chosen at 10% of their maximum values.

Downloaded 22 Nov 2006 to 150.214.43.21. Redistribution subject to 
The above results suggest that, in case II �Re=250�, the
flow first develops a double helicoidal structure behind the
bubble �the mode n=2 is the dominant one at the beginning
of the 3D instability�, evolving later towards a nearly single
helicoidal structure �n=1�. However, in case III �Re=400�,
the mode n=1 seems to be the dominant one from the be-
ginning of the instability, but with a significant contribution
of the mode n=2 remaining. In order to corroborate this
picture, we have plotted in Figs. 9–11 several isosurfaces of
the circulation �=rv at different instants of time. In particu-
lar, we have used the modal decomposition �17� to express
the circulation as the sum of an axisymmetric main part and
a nonaxisymmetric perturbation,

��r,�,z,t� = �̂o�r,z,t� + �
n�0

�̂n�r,z,t�exp�in��

	 �main�r,z,t� + �p�r,�,z,t� . �20�

Figure 9 shows three-dimensional perspectives of the pertur-
bation �p of the circulation for case II at the time t=4800

FIG. 10. As in Fig. 9, but for t=8000.
FIG. 11. As in Fig. 9, but for case III at t=7000.
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for which, according to Fig. 8�a�, both modes �n � =1 and
�n � =2 are present in the flow at approximately the same
level. Figure 9�a� displays an isosurface of the whole pertur-
bation �p corresponding to the 10% of its maximum value,
while Figs. 9�b� and 9�c� display the isosurfaces for its
�n � =1 and �n � =2 components, respectively �both corre-
sponding to the 10% of their respective maximum values�.
The double-helicoidal structure of the flow is clear in Fig.
9�a�, but it is distorted in relation to the pure mode �n � =2,
depicted in Fig. 9�c�, due to the relative importance of the
component �n � =1 �Fig. 9�b��. For subsequent times, the rela-
tive importance of the mode �n � =2 decays and, for t=8000
�Fig. 10�, the downstream flow corresponds to an almost
single helical structure �note that Figs. 10�a� and 10�b� are
practically coincident�.

FIG. 12. Contour lines of �p on the �� ,z� plane for r=rref=0.4 and for two
different instants of time ��a� t=4900 and �b� t=8000� for case II. Five
positive and five negative equidistant contours of �p are plotted in the fol-
lowing intervals: between its minimum value and zero �dashed lines� and
between zero and its maximum value �continuous lines�.
FIG. 13. As in Fig. 12, but for case III at t=7000 �a�, and at t=10000 �b�.
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Figure 11 shows three-dimensional perspectives of the
perturbation of the circulation for case III �Re=400� at
t=7000. The structure of the flow �Fig. 11�a�� is a mixing
of the mode �n � =1 �Fig. 11�b�� and the mode �n � =2
�Fig. 11�c��. However, for larger times, the situation is simi-
lar to case II, becoming the mode �n � =1 the dominant one.

To find out the winding direction of the helicoidal, or the
double helicoidal, vortex breakdown structures appearing in
the wake of the axisymmetric breakdown bubble during the
temporal evolution of the flow, one may use the contour lines
of the nonaxisymmetric part of the circulation �p in a plane
�� ,z� for some value of r at several instants of time. Figure
12 shows these contour lines at r=rref=0.4 for case II �Re
=250� at t=4900 and at t=8000. For t=4900 �Fig. 12�a��, the
inclination of the contour lines in the region 5�z�10 �ap-
proximately� indicates negative values of the azimuthal wave
numbers, while the change in the inclination of the contours
in the main downstream region 10�z�60 indicates positive
values of n. However, for t=8000 �Fig. 12�b��, almost all the

FIG. 14. Contour lines of the axial velocity component, w, on the �z ,y�
plane of the 3D solution for: �a� case II at t=8000, and �b� case III at
t=10000. Ten positive and ten negative equidistant contours of w are plotted
in the following intervals: between its minimum value and zero �dashed
lines� and between zero and its maximum value �continuous lines�.

FIG. 15. Comparison between the time evolution of the axial velocity, wref,
at the fixed position xref, obtained from the 3D numerical simulation �solid
line� and from the axisymmetric one �dashed line� for case IV. Part �a�
shows the whole evolution from the initial columnar flow, and part �b�
the periodic character of the resulting 3D flow at the final stages with

�3D
0.37.
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contour lines have the same �positive� slope, n�0. These
results suggest that several types of nonaxisymmetric insta-
bilities develop in the flow �both with n�0 and with n�0�,
but only the perturbations with n�0 remain for sufficiently
large times. Figure 13 shows the contour lines of �p in the
�� ,z� plane at r=rref=0.4 for case III �Re=400� at t=7000
and at t=10000. The situation in this case is quite similar to
that observed for Re=250: waves with n�0 and n�0 de-
velop in the flow, but only the n�0 ones, particularly with
n= +1, survive at later times.

To finish with this long discussion of the results for the
cases II and III, we have plotted in Fig. 14 contour lines of
the axial velocity in a meridianal plane �y ,z� for �=0 �and
�=
 if y�0� at t=8000 �case II�, and at t=10000 �case III�.
By comparing with the axisymmetric contour lines of Figs.
2�b� and 2�c�, respectively, it is clear that, case II, the flow
remains mostly unaffected inside the recirculating bubble
and in the region upstream of it; however, 3D effects are
clearly visible in the wake behind the bubble, with a loss of
symmetry with respect to the line y=0 �axis�. For case III,
3D effects are more pronounced, and one observes important
differences between the 3D flow and the axisymmetric initial
one even inside and upstream the breakdown bubble �com-
pare Figs. 2�c� and 14�b��.

Let us now present the 3D results for case IV. As men-
tioned above, we have started the 3D simulation in this case
directly from the columnar vortex �8� in order to give sup-
port to the hypothesis that the development of the helicoidal
vortex breakdown necessarily requires the appearance first of
a region of reverse flow �breakdown bubble�. In addition, we
have selected in this case a different �smaller� value of swirl
parameter �S=1.1� in order to study the influence of this
parameter on the temporal development of the nonaxisym-
metric perturbations. Figure 15 shows the comparison be-
tween the time evolution of the axial velocity, wref, at the
fixed position xref= �r=0.4,z=30,�=0�, obtained from the
3D numerical simulation �solid line� and from the axisym-
metric one �dashed line�. It is observed in Fig. 15�a� that in

FIG. 16. Contour lines of the axial velocity component, w, on the �z ,y�
plane of the 3D solution for case IV at t=5200. Ten positive and ten nega-
tive equidistant contours of w are plotted in the following intervals: between
its minimum value and zero �dashed lines� and between zero and its maxi-
mum value �continuous lines�.

FIG. 17. Three-dimensional perspectives of �p corresponding to case IV at

t=5200. The isosurface of �p is chosen at 10% of its maximum value.
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both simulations wref tends to a steady value which corre-
sponds to the axisymmetric steady solution with reverse flow
represented in Fig. 3. However, some time after this axisym-
metric solution is reached, nonaxisymmetric instabilities de-
velop in the flow that evolve towards a periodic nonaxisym-
metric flow. The 3D character of the resulting final flow is
shown in Fig. 16, which displays contour lines of the axial
velocity at t=5200 on the meridianal plane �=0. The fre-
quency of the oscillations, �3D�0.37 �see Fig. 15�b��, is
smaller than the frequency of the oscillation observed in case
II for the same Re ��3D�0.42�, indicating that the frequency
of the oscillations increases with the swirl of the initial
flow. The helicoidal ��n � =1� structure of the 3D flow can be
seen in Fig. 17, which displays an isosurface of �p corre-
sponding to 10% of its maximum value at t=5200. Finally,
the contour lines of �p on the �� ,z� plane, shown in Fig. 18
for r=rref=0.4 at t=5200, indicate that the resulting helicoi-
dal wave corresponds to n�0.

To end this section we present the 3D results for case V,
which we have selected to analyze the influence of the inlet
axial velocity profile in the development of the 3D flow.
Figure 19 shows the time evolution of the axial velocity wref

at the fixed position xref= �r=0.4,z=30,�=0�. The initial axi-
symmetric flow evolves, after a transient, towards a periodic
3D flow with a relatively large frequency �3D
1.4 �see Fig.
19�b��. As pointed out above, our computations show that the
frequency of the final wake behind the bubble increases with
the swirl strength of the initial flow: �3D
0.43−0.44 for
cases II and III with S=1.2, �3D
0.37 for case IV with
S=1.1, and now �3D
1.4 for case V with S=2 �see Fig. 20�.

FIG. 18. Contour lines of �p on the �� ,z� plane for r=rref=0.4 at t=5200 for
case IV. Five positive and five negative equidistant contours of �p are plot-
ted in the following intervals: between its minimum value and zero �dashed
lines� and between zero and its maximum value �continuous lines�.

FIG. 19. Time evolution of the axial velocity, wref, at the fixed position xref,
obtained from the 3D numerical simulation for case V. Part �a� shows the
whole evolution from the axisymmetric steady flow, and part �b� the peri-

odic character of the resulting 3D flow with �3D
1.4.
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The 3D character of the resulting flow is shown in Fig. 21,
that displays contour lines of the axial velocity at t=2000. It
may be noted the large differences between the resulting 3D
flow and the initial axisymmetric flow �Fig. 5�. In particular,
the region of reverse flow completely disappear during the
3D evolution �there is no negative axial velocity in the whole
domain�. This result is qualitatively different from the results
obtained for cases II, III, and IV with a jet-like velocity
profile at the inlet, for which the 3D evolution always pre-
serves �though distorted� the bubble of reverse flow near the
entrance of the pipe. Following with the presentation of the
results for case V, the helicoidal structure of the flow can be
seen in Fig. 22, that displays the isosurfaces of �p �Fig.
22�a��, and its components for the modes �n � =1 �Fig. 22�b��,
and �n � =2 �Fig. 22�c��, all of them corresponding to the 10%
of their respective maximum values at t=2000. The resulting
wake flow presents a superposition of helicoidal and double-

FIG. 20. Numerical frequency �3D as a function of S for Re=250. The
circles correspond to the frequencies obtained in the 3D numerical simula-
tions for the cases indicates in the figure.

FIG. 21. Contour lines of the axial velocity component, w, on the �z ,y�
plane of the 3D solution for case V at t=5200. Ten positive equidistant
contours of w are plotted in the interval between zero and its maximum

value �no recirculating flow remains�.
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helicoidal waves, but with a single helical flow ��n � =1� ex-
iting the pipe. The maximum amplitude ratio between modes
�n � =2 and �n � =1 is just 0.00596. Finally, the contour lines of
�p in the �� ,z� plane, shown in Fig. 23 for r=rref=0.4 at
t=2000, indicates that n�0 �n= +1�.

V. LOCAL STABILITY ANALYSIS

A. Formulation of the problem

The full Navier-Stokes numerical simulations of the pre-
vious section strongly suggest that the helical vortex break-
down structures develop only after a recirculating axisym-
metric bubble has been formed in the transient evolution of
the flow. Following the ideas of Pier and Huerre,17,18 who
have recently shown that the self-sustained nonlinear oscil-
lating frequency of wake-like velocity profiles can be deter-
mined by the absolute frequency of the local stability analy-
sis, we have performed here a linear absolute-convective
analysis of those axisymmetric flows which presents a recir-
culating bubble. By means of a simple linear, spatial stability
analysis carried out in the sections of the pipe where the
intermediate axisymmetric flow presents reverse flow �nega-

FIG. 22. Three-dimensional perspectives of the perturbations of the circu-
lation corresponding to case V at t=2000. �a� Isosurface of �p, �b� isosurface
of the mode with �n � =1, and �c� isosurface of the mode with �n � =2. All the
isosurfaces are chosen at 10% of their maximum values.

FIG. 23. Contour lines of �p on the �� ,z� plane for r=rref=0.4 for case V at
t=2000. Five positive and five negative equidistant contours of �p are plot-
ted in the following intervals: between its minimum value and zero �dashed

lines� and between zero and its maximum value �continuous lines�.
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tive axial velocity at the axis�, we have tried to identify the
frequencies and the dominant azimuthal wave numbers ob-
served in the 3D simulations.

We first proceed to decompose both the velocity and
pressure fields in a basic part, Uo= �Uo ,Vo ,Wo� and Po, and a
perturbation, u�= �u� ,v� ,w�� and p�,

u = Uo + u�, v = Vo + v�, w = Wo + w�, p = Po + p�,

�21�

where the basic flow corresponds to any of the previously
computed axisymmetric steady solutions of the N-S equa-
tions considered above �cases I–V�, all of them with a region
of reverse flow. Taking into account that in our simulations
Re�1, we use the method of multiple scales by introducing
a slow axial variable Z=z /Re, and by expressing the un-
steady perturbations in terms of a slowly varying amplitude
and axial wave number in the form

�u�,p���z,r,�,t� = �
n

�un,pn��Z,r�

�exp�Re�Z

kn���d� + in� − i�t� .

�22�

In this expression, n is the azimuthal wave number, while
�	�� /wc and kn	�Kn are the nondimensional frequency
and axial wave numbers, respectively, being � and Kn the
corresponding dimensional values. We will perform a spatial
stability analysis, where � is real and the kn are complex
numbers. The real and the imaginary parts, � and �, of the
complex axial wave number,

kn 	 �n + i�n, �23�

are the exponential growth rate and the axial wave number,
respectively, for each n.

Introducing �22� into the Navier-Stokes equations
�1�–�4�, retaining only linear terms of the perturbations, ne-
glecting terms of order �1/Re�2 and the nonparallel terms
arising from the axial variation of both the basic and pertur-
bated flows, one arrives at the following set of linear equa-
tions for the amplitude of the perturbations:

wnkn +
�un

�r
+

un

r
+

invn

r
= 0, �24�

i�un − knWoun − Uo
�un

�r
− un

�Uo

�r
−

�pn

�r

+
1

Re
� �2un

�r2 +
1

r

�un

�r
+ �kn

2 −
n2

r2 �un −
un

r2 − 2in
vn

r2� = 0,

�25�

i�vn − knWovn − Uo
�vn

�r
− Uo

vn

r
− in

pn

r

+
1

Re
� �2vn

�r2 +
1

r

�vn

�r
+ �kn

2 −
n2

r2 �vn + 2in
un

r2 −
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r2� = 0,
�26�
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i�wn − knWown − Uo
�wn

�r
− un

�Wo

�r
− knpn

+
1

Re
� �2wn

�r2 +
1

r

�wn

�r
+ �kn

2 −
n2

r2 �wn� = 0. �27�

By neglecting the nonparallel terms �near-parallel approxi-
mation�, the global stability problem is reduced to a local
stability analysis to be solve at different z stations.

The system have been solved subjected to the following
radial boundary conditions for each azimuthal wave
number n:

at r = Ro, un = vn = �rwn = 0; �28�

at r = 0, 
un = vn = 0, �rwn = 0 �n = 0� ,

un ± ivn = 0, �run = 0, wn = 0 �n = ± 1� ,

un = vn = wn = 0 ��n� � 1� .

�29�

Note that it is assumed that the perturbations do not modify
the basic flow at the pipe wall r=Ro, and satisfy the same
boundary condition as the basic flow at the axis. Observe,
however, that the stability equations are not symmetric with
respect to n �since the basic swirl velocity vo is not zero�, and
therefore both positive and negative azimuthal wave num-
bers n have to be considered.

B. Numerical scheme

It proves convenient to rewrite Eqs. �24�–�27� in the
form

0 = �L1 + knL2 +
kn

2

Re
L3� · S , �30�

where L1, L2, and L3 are complex matrices which depend on
z �only through the basic flow� and r, and S	�un , pn�. To
solve �30� numerically, the equations are discretized in the r
direction using the same Chebyshev spectral collocation
technique employed in the full numerical simulations. The
nonlinear �quadratic� eigenvalue problem �30� for kn is
solved using the linear companion matrix method described
in Ref. 28. The resulting linear eigenvalue problem is nu-
merically solved with the help of an eigenvalue solver sub-
routine DGVCCG from the IMSL library, which provides the
entire spectrum of eigenvalues and eigenfunctions. Spurious
eigenvalues were ruled out by comparing the computed spec-
trums obtained for different values of the number of colloca-
tion points nr. For most of the computations reported below,
values of nr between 31 and 41 were enough to obtain the
eigenvalues with at least 7 significant figures, as it was
checked out for every result given below by using larger
values of nr.

C. Results

We have applied the above lineal stability analysis to the
basic axisymmetric flows considered in the numerical simu-
lations of Sec. IV A �cases I–V�, all of them with a region of

reverse flow close to the pipe inlet. Since the stability analy-
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sis that we propose here is local, one important preliminary
question is the selection of the axial station to perform the
stability analysis in order to predict the main 3D features of
the subsequent flow. We have seen in the 3D simulations of
the previous section that the flow develops a helicoidal struc-
ture only after a region of reverse flow �axisymmetric break-
down bubble� is present in the domain. This fact suggests us
the idea of carrying out the stability analysis at the z station
where the axial velocity of the axisymmetric basic flow
reaches its minimum �negative� value, that will be designed
by z*. Figure 24 shows the axial �solid lines� and azimuthal
�dashed lines� velocity profiles of the basic axisymmetric
flows corresponding to the five cases considered as functions
of r at z=z* �the corresponding values of z* are indicated in
the respective figures; see also Figs. 2, 3, and 5�. As we shall
see, the local stability analysis applied to these velocity pro-
files predicts surprisingly well the existence and the proper-
ties of the subsequent 3D wake, provided that the flow is
absolutely unstable. As a matter of fact, to apply the empiri-
cal frequency selection of Pierrehumbert,19 one should exam-
ine the existence of absolute instabilities regions in the whole
axisymmetric flow, particularly inside the bubble region of
flow reverse, and look for the most �absolutely� unstable per-
turbation. But, as we show below, this most unstable pertur-
bation is located at, or very close to, the axial station where
the axial velocity presents its minimum �negative� value.

For a given azimuthal wave number n and for real fre-
quencies � �spatial stability analysis�, we solve Eq. �30� to
obtain the complete eigenvalue spectrum. Let us start with
case I �velocity profiles at z=z* given in Fig. 24�a��. Follow-
ing the definitions of convective and absolute instabilities
given by Huerre and Monkewitz,29 we find that the flow is
only convectively unstable for perturbations with n=1. This
can be seen in Fig. 25, where we have plotted � and � as
functions of � for the most unstable modes �largest growth

FIG. 24. Axial �continuous line� and azimuthal �dashed line� velocities pro-
files of the basic flow at the axial position z=z* where the local stability
analysis is carried out, case I �a�, case II �b�, case III �c�, case IV �d�, and
case V �e�.
rate �� with n=1. Observe that � increases with � �Fig.
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25�a��, indicating that the group velocity is always positive,
and that the growth rate is positive in a certain range of
frequencies �Fig. 25�b��. Therefore, the amplitude of any per-
turbation with n=1 and with a frequency in that range grows
as z increases. In the full numerical simulations for this case
performed in Sec. IV B we have not appreciated the spatial
growth of any nonaxisymmetric perturbation. This can be
due to the fact that the spatial growth rates are quite small, so
that a much longer pipe would be necessary to appreciate the
downstream amplification of just the numerical noise to vi-
sualize these convective instabilities �in the form of travel-
ling waves� in that specific range of frequencies.

The situation is qualitatively different for the rest of the
cases depicted in Figs. 24�b�–24�d� �cases II–V�, where the
velocity profiles are found to be not just convectively un-
stable, but also absolutely unstable. To find out these abso-
lute instabilities one should look for the presence of saddle
points in the dispersion relation, arising from the coalescence
of two spatial branches located at opposite sides of the �� ,��
plane �Briggs-Bers criterion; see, e.g., Huerre and
Monkewitz29 and, for a more recent account, Chomaz30�. By
varying the imaginary part of the frequency, �i, we have
found a number of such saddle points for the four cases
considered and for different values of the azimuthal wave
number n. The main results are compiled in Table I. There
we show the critical values of the real part of the frequency,
�*, the imaginary part of the frequency �absolute growth
rate�, �i

*, and the corresponding values of �* and �* at which

FIG. 25. ���� �a� and ���� �b� for the most unstable mode with n=1
corresponding to case I.

TABLE I. Absolute instabilities: Characteristics of all the saddle points in
the dispersion relations found in the different cases considered.

Case n �* �* �* �i
*

II −1 0.242 1.6 0.6 −0.0245

II +1 0.38 1.8 1.7 −0.128

II +2 0.43 0.85 0.25 +0.021

III −1 0.215 1.52 0.45 −0.0075

III +1 0.435 0.5 3.3 +0.012

III +2 0.4104 0.22 0.1 −0.0195

IV +1 0.35 0.46 5.6 +0.0435

IV +2 0.59 0.8 0.9 +0.009

V −1 1.8 0.3 3.3 +0.16

V +1 1.3 1.5 0.8 +0.31

V +2 2.4 1. 1.5 −0.052
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these saddle points in the dispersion relation are found. Note
that only five of these cases correspond to absolute instabili-
ties, those for which the imaginary part of the frequency is
positive ��i

*�0�. As an illustration, Fig. 26 shows the coa-
lescence of two spatial branches in a saddle point of the
dispersion relation for case III with n=1. We have plotted the
evolution of the branches as �i is varied in the �� ,��, and in
the �� ,�� planes. It is seen how two spatial branches with
�i=0 �represented with circles� merge at a saddle point when
�i is increased up to �i= +0.012 �represented with the sym-
bol “+” in the figure�, indicating the presence of an absolute
instability with a critical frequency �*
0.435. This critical
frequency, and the specific azimuthal wave number for
which we have found this absolute instability �n=1�, agree
pretty well with the numerical simulation reported in Sec.
IV B, where �3D
0.44, and the 3D visualization of Fig. 13
indicates that the mode with n=1 is the dominant one in this
case III.

In order to investigate what happens to the critical values
of this absolute instability if we select another z station, we
have carried out the local stability analysis in other sections
of the pipe. Figure 27 shows the real part, �, and the imagi-

FIG. 26. ���� �a� and ���� �b� in the coalescence of two branches into a
saddle point in the dispersion relation for case III with n=1. Lines marked
with � corresponds to the spatial branches ��i=0�, which merge into a
saddle point for �i=0.012 �lines marked with +�.

FIG. 27. Real part, �, and imaginary part, �i, of the local absolute fre-
quency as functions of z for case III with n=1. The circles mark the actual
computed points. The dashed line corresponds to the value of the global
frequency, �3D, obtained from the 3D simulation. The location z=z* is also

marked.
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nary part, �i, of the local absolute frequency as functions of
z for case III with n=1. Note that the flow is absolutely
unstable ��i�0� only in a narrow region close to z=z*

�5.4, and that there exists an excellent agreement between
the local frequency at z* and the global frequency �3D of the
3D simulation �dashed line�.

The situation is similar for cases IV and V, where the
numerical frequencies obtained in the 3D numerical simula-
tions agree very well with the critical frequencies found from
the stability analysis at z=z* for perturbations with n=1. For
these two cases, Table I shows that there exist two additional
absolute instabilities: one with n=2 for case IV, and another
one with n=−1 for case V. However, the values of �i

* corre-
sponding to these two absolute instabilities are smaller than
the values of �i

* for the main absolute instabilities with
n=1. In fact, the 3D simulations for the cases III, IV, and V
suggest that only the absolute instabilities found here for
n=1 are the responsible ones for the temporal evolution of
the 3D flow.

We have also analyzed the absolute instability of the
flow at different axial locations in these cases. For example,
Fig. 28 shows � and �i as functions of z for case IV and the
two values of n for which the flow is absolutely unstable at
z=z*, namely n=1 and n=2. For n=1 the situation is similar
to that represented in Fig. 27: the flow is absolutely unstable
in a narrow region close to z=z*�5.85 and there exists an
excellent agreement between the local frequency at that
station and the global frequency �3D of the 3D simulation
�see Fig. 28�a��. However, the situation is quite different for
n=2 �Fig. 28�b��. In this case there are two regions where the
flow is absolutely unstable ��i�0�, one inside the break-
down bubble and another one in the wake just behind it. In
order to better appreciate this fact we have included in the
figures �with dashed lines� the minimum axial velocity at
each z station, minr�wo�z ,r��. A similar pattern, with two
pockets of absolute instabilities, one inside the breakdown
bubble and the other one in the wake, has been recently
reported in open flows by Gallaire et al.20 In our case, none
of the absolute frequencies associated with this mode n=2
agree with the global frequency of the 3D simulation. Actu-
ally, the largest absolute �i for n=2 is not attained near
z=z*, but just behind the breakdown bubble �see Fig. 28�a��.
Yet �i,max

n=2 �0.025825 is smaller than �i,max
n=1 �0.0435

FIG. 28. Real part, �, and imaginary part, �i, of the local absolute fre-
quency as functions of z for case IV and two values of n: �a� n=1, and �b�
n=2. The circles mark the actual computed points. The dashed-dotted line
represents �3D, and the dashed line corresponds to the minimum value of the
axisymmetric axial velocity as a function of z.
�Fig. 28�a� and Table I�.
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As discussed above for cases III and IV with n=1, we
have also found a unique region of absolute instability for
the most unstable mode for case V, which is also very close
to the z station where the axial velocity presents a minimum
value inside the breakdown bubble �see Fig. 29�. As a differ-
ence with cases III and IV, the frequency �3D found in the
3D numerical simulations does not corresponds exactly to
the largest absolute growth rate, but corresponds to a z sta-
tion slightly upstream of z*, while the location of the largest
�i is a bit downstream of z*. It is worth noticing that in this
case V, with a wake-like velocity profile at the inlet, the
absolute growth rates are much larger than in the previously
discussed cases.

Let us finish with the discussion of the stability results
for case II, which is slightly different to the previous ones.
The local stability analysis at z=z* shows that there exists an
absolute instability for n=2 �see Table I�, with a critical fre-
quency �*
0.43. The complementary analysis of the abso-
lute instability of the flow at different axial locations for this
case is shown in Fig. 30. Note that, although the largest
absolute frequency, �i,max

n=2 , is not attained at z=z*, but at a
slightly downstream position, there exists again an excellent
agreement between the local frequency at z* and the global
frequency �3D of the 3D numerical simulation once the pe-
riodic flow is fully developed. This case is particularly inter-
esting because the long time amplitude of the 3D waves
observed in the 3D simulations does not correspond to the
mode n=2, but to the mode n=1. In fact, the temporal evo-
lution of the 3D flow shows that, at the initial stages, the
mode with n=2 is the dominant one �see Figs. 8�a� and 9�,
just as the local stability analysis predicts, with a frequency
of the oscillations at t=2100 given by �3D

t=2100�0.53 �see
inset in Fig. 8�a��, which coincides with the critical fre-
quency of the local stability analysis at the z station where
�i,max

n=2 is attained �see Fig. 30�. However, for larger times, the
amplitude of the mode with n=2 decays, while the amplitude
of mode with n=1 increases drastically, becoming the domi-
nant one in the 3D simulations �see Figs. 8�a� and 10�. The
final frequency of the flow coincides however with the fre-
quency obtained from the stability analysis for the mode
n=2 at z=z*. All this suggests that nonlinear effects, that are

FIG. 29. Real part, �, and imaginary part, �i, of the local absolute fre-
quency as functions of z for case V with n=1. The dashed line marks the
value of the global frequency, �3D, obtained from the 3D simulation. The
location z=z* is also marked.
obviously not taken into account in the linear stability analy-
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sis, may account for this change in the 3D structure of the
flow from the mode with n=2 to the mode with n=1, once
the first absolute instability with n=2 predicted by the local
stability analysis develops in the flow.

VI. CONCLUSIONS

Three-dimensional and axisymmetric numerical simula-
tions of the incompressible Navier-Stokes equations have
been conducted to study the appearance and development of
vortex breakdown in a family of columnar vortex flows in-
side a straight pipe without wall friction for several values of
the Reynolds number. Both types of numerical simulations
�axisymmetric and 3D� show that the columnar flow evolves
towards an axisymmetric flow with a closed region of re-
verse flow if the relative strength of the swirl is sufficiently
high. This means that, in the 3D scenario considered in this
work, vortex breakdown can be viewed as a transition from a
columnar axisymmetric swirling flow to a basic form of vor-
tex breakdown which is axisymmetric �“bubble” break-
down�. However our numerical simulations suggest that
these axisymmetric “bubble” breakdown structures are un-
stable under infinitesimal, nonaxisymmetric perturbations if
the Reynolds number is large enough. Thus, a transition to
helical vortex breakdown modes is observed in the 3D simu-
lations after the axisymmetric bubble structure is formed.
The final solution at large time is a superposition of a steady
axisymmetric flow and a helicoidal, and/or double-
helicoidal, standing waves with a characteristic frequency of
oscillation. We have also analyzed the role of the swirl pa-
rameter S, and of the jet- or wake-like nature of the axial
velocity profile selected at the inlet of the pipe �characterized
by the parameter a� in the development of these helical struc-
tures. The numerical simulations demonstrate that the fre-
quency of the helical flows increases with the swirl param-

FIG. 30. Real part, �, and imaginary part, �i, of the local absolute fre-
quency as functions of z for case II with n=2. The dashed line marks the
value �3D of the frequency obtained from the 3D numerical simulation for
large times, while the dotted-dashed line marks the value �3D

t=2100 of the
frequency of the mode n=2 at its initial stages �t=2100; see inset in
Fig. 8�a��.
eter S �see Fig. 20�. For jet-like velocity profiles at the inlet
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�a�1�, the 3D evolution of the flow preserves the region of
reverse flow near the entrance of the pipe, which remains
almost axisymmetric, while for wake-like inlet flows �a
�1�, the region of reverse flow near the entrance disappears.
The helicoidal winding sign of the wakes found in this work
�n�0� agrees with the reported by Ruith et al.14 in open
vortices. In both cases, all the waves found in the 3D numeri-
cal simulations wind in opposite direction to the main flow.

We show here that the development of the helicoidal
vortex breakdown structures in the flow is caused by a
pocket of absolute instability inside the axisymmetric bubble
of recirculating flow formed at the initial stages of the evo-
lution of the flow. By means of a simple spatial, linear sta-
bility analysis carried out locally at the section where the
basic axisymmetric flow present a �negative� minimum in the
axial velocity at the axis, we have first shown that no 3D
wakes develop when the flow is stable or just convectively
unstable at these axial locations. This situation occurs for
relatively low Reynolds numbers �case I considered in this
work�. When the Reynolds number is large enough, we have
related the frequencies and the dominant azimuthal wave
numbers observed in the 3D simulations with the critical
frequencies, and the corresponding azimuthal wave numbers,
of the absolute instabilities found at these axial stations. Al-
though we have not make an exhaustive analysis owing to
the enormous computational effort required by each 3D nu-
merical simulation, the results are quite encouraging: in all
the four cases where a helicoidal structure is found in the
numerical simulation, the local stability analysis predicts
with pretty good precision the frequency of the oscillations
in the standing lee wave, and the value of the dominant azi-
muthal wave number. In one of the cases considered �case
II�, this good agreement is found only at the initial stages of
the 3D evolution of the flow; afterwards, the flow evolves
“nonlinearly” to a different helical structure which, obvi-
ously, cannot be predicted by the present linear stability
analysis. But, surprisingly, the final frequency of the flow
coincides with the frequency obtained from the stability
analysis. It is interesting to emphasize here that the stability
analyses are performed locally at the axial stations where the
axial velocity presents a minimum �negative� value inside
the bubble or recirculating flow formed by the initial axisym-
metric vortex breakdown. To our knowledge, no such a
simple criterion to predict 3D vortex breakdown structures,
nor its detailed development from an axisymmetric form of
vortex breakdown, have been previously reported, though the
relation between vortex breakdown and absolute instabilities
has been extensively debated for several types of swirling
flows.14,31–35

Similar results, but in the context of bluff-body wakes,
and considering the stability analysis in a finite region inside
the near field of the wake just behind the body, have been
recently reported by Pier and Huerre,17,18 and by Sevilla and
Martinez-Bazan,36 among others. Finally to mention the re-
cent work by Gallaire et al.,20 where similar ideas are devel-
oped for open vortices. However, in contrast to the present
results, these authors find two pockets of absolute instability
for the dominant mode, one in the breakdown bubble and the

other one in the wake behind it. Here, in all the cases con-
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sidered, there is an unique region of absolute instability for
the dominant mode inside the breakdown bubble, with the
most absolutely unstable station close to the location where
the axial velocity of the axisymmetric flow presents its mini-
mum value �z=z*�. This criterion for the frequency selection
based on the highest absolute growth rate was first proposed
by Pierrehumbert19 in the context of baroclinic instabilities,
and differ from that given by Pier and Huerre17,18 based on
the frequency at the convective/absolute transition station.
However, the frequency predictions by these two criteria are
in reasonable agreement in the present problem due to the
fact that all the frequencies within the pockets of absolute
instability are in a relatively narrow range.
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