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Stability analysis of boundary layer flow due to the presence of a small hole on a surface

R. Fernandez-Feria
Universidad de Malaga, E.T.S. Ingenieros Industriales, 29013 Malaga, Spain

~Received 23 October 2001; published 13 February 2002!

A linear, temporal, and viscous stability analysis of the boundary layer induced on a solid plane by a
three-dimensional potential sink flow is considered. The flow is inviscidly~neutrally! stable. For axisymmetric
perturbations, one can analyze separately the stability of those perturbations with a purely circumferential
motion, and those with no azimuthal velocity. The first ones are shown to be always stable, a result that is
found analytically. The second ones become unstable in a range of~high! Reynolds numbers that depends on
the radial wave number. Finally, it is shown that all nonaxisymmetric perturbations are linearly stable.
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I. INTRODUCTION

The study of the hydrodynamic stability of the visco
boundary layer induced on a plane wall by a thre
dimensional potential sink flow, whose velocity and press
fields may be written in cylindrical polar coordinates (r ,u,z)
as

~u,v,w!5
Q

4p~r 21z2!3/2
~2r ,0,2z!, ~1a!

p5po2
1

2
r~u21w2!, ~1b!

(Q/2 is the flow rate,po a reference pressure, andr the fluid
density!, is of interest for two reasons. First, because
stability properties of such a basic solution to the bound
layer equations~described in the next section!, that models
the boundary layer flow due to the presence of a small h
on a solid surface sufficiently away from the hole, are n
known ~to our knowledge!. Shusser and Weihs@1# consid-
ered the inviscid stability of the potential sink~1a!, finding
that it is always inviscidly stable. However, no stabili
analysis of the viscous boundary layer induced by suc
potential flow on the plane of the sinkz50 has been given
Known are the stability properties of the boundary layer
duced by a two-dimensional sink flow~see, e.g., Ref.@2#, pp.
231–233!, but not of its three-dimensional counterpart.

The second reason, which has been the main motiva
of the present work, is that the stability analysis of th
model flow may shed some light on the problem of the s
generation of swirl in a sink flow. Well known is the fact th
a vortex is sometimes formed superimposed to the fl
through a hole~the so-called ‘‘bathtub vortex’’!. Quantitative
experiments in open@3# and closed@4# sink flows have
shown that the vortex is formed above a critical Reyno
number based on the sink flow rate, suggesting that the
nomenon may be due to an instability of the sink flow. Ho
ever, even if that is the case, which we do not know
present, since the three-dimensional viscous flow throug
hole is a very complex flow, it is not an easy task to find o
the nature of the hydrodynamic instability. For instance,
do not know in which part of the flow is the instability orig
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nated~if any!, or whether it is a linear or a nonlinear insta
bility, or whether it is an axisymmetric or a nonaxisymmetr
instability. Recent works suggest that self-rotation is a n
axisymmetric phenomenon~see, e.g., Ref.@5#!. But, of the
other two questions we have no clear idea. In the pres
work we try to delimit the regions of inquiry by analyzin
the linear stability of a self-similar solution to the boundar
layer equations that models, for high Reynolds numbers,
flow in the vicinity of the plane where the hole is locate
provided that we are not in the immediate neighborhood
the hole. The self-similar solution that constitutes the ba
flow of the stability analysis is given in the next sectio
together with the stability equations and a discussion of
numerical method used to solve them. Section III descri
the stability results, both for axisymmetric and nonaxisy
metric perturbations. Finally, some conclusions are given
Sec. IV.

II. FORMULATION OF THE PROBLEM

A. Basic flow

For high Reynolds numbers~the precise Reynolds numbe
will be defined below!, the viscous flow originated by the
interaction of the potential sink flow~1a!, ~1b! with a solid
plane located atz50 is governed, near the wall, by the fo
lowing boundary layer equations and boundary condition

1

r

]ru

]r
1

]w

]z
50, ~2!

u
]u

]r
1w

]u

]z
52

Q2

8p2r 5
1n

]2u

]z2
, ~3!

u5w50 at z50, ~4!

u→2
Q

4pr 2
as z/d~r !→`, ~5!

wheren is the kinematic viscosity, and the boundary lay
thicknessd(r ) is defined below. This problem has a se
similar solution, first described by Mangler~using spherical
rather than cylindrical coordinates; see, e.g., Ref.@6#,
p. 428!. In fact, defining
©2002 The American Physical Society07-1
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u52
Q

4p

f ~h!

r 2
, w52AQn

4p

h~h!

r 3/2
, ~6!

h5
z

d~r !
, d~r !5

r 3/2

A Q

4pn

, ~7!

Eqs.~2!–~5! become

f 1
3

2
h f 82h850, ~8!

f 9121h f82 f S 2 f 1
3

2
h f 8D50, ~9!

f ~0!5h~0!50, f ~`!51, ~10!

where the primes mean differentiation with respect toh.
Equations~8! and ~9! may be reduced further to a singl
third-order differential equation if one uses the self-simi
form of the stream function instead off andh. In that form,
the resulting equation was first integrated numerically
Terrill @7#. The numerical solution shown in Fig. 1 is ob
tained directly from Eqs.~8!–~10! using a standard finite
difference method with deferred corrections.

It is convenient to define thelocal Reynolds number

R5
r

d~r !
5A Q

4pnr
. ~11!

One can also define a Reynolds number based on the
displacement thickness of the boundary layer,

d1~r !5E
0

`S 12
u

Uo
Ddz5d~r !E

0

`

@12 f ~h!#dh

.0.585 397d~r !, ~12!

FIG. 1. Self-Similar solution for the basic flow.
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whereUo5Q/(4pr 2). Thus,

R15
d1Uo

n
.0.585 397R. ~13!

Comparing Eq.~1a! with Eq. ~5!, it is clear that the above
self-similar solution is valid forz!r , so that it is not valid,
obviously, in the close vicinity of the sink (r 50). In terms
of the self-similar variable and the local Reynolds numb
this condition can be written

h!R. ~14!

From Fig. 1, this means thatR must bemuch larger than
approximately 4.

B. Stability equations

To analyze the linear stability of the above base flow,
flow variables (u,v,w) andp are decomposed, as usual, in
the mean part, Eqs.~6! and ~1b!, and small perturbations:

u5
Q

4pr 2
@2 f ~h!1ū#, ~15!

v5
Q

4pr 2
v̄, ~16!

w5
Q

4pr 2 S 2
h~h!

R
1w̄D , ~17!

p2po

r
5

1

2 S Q

4pr 2D 2

~211 p̄!. ~18!

The dimensionless independent variables (R,u,h) will be
used instead of (r ,u,z). Making use of the near-parallel flow
approximation (R@1), the dimensionless perturbations

s[@ ū,v̄,w̄,p̄#T, ~19!

are decomposed in the standard form

s5S~h!eiR(2a1nu2vt). ~20!

In this expression,

S~y![S F~h!

G~h!

H~h!

P~h!

D , ~21!

is the ~complex! amplitude of the perturbations,

t5
Q

4pr 3
t, ~22!

is the dimensionless time, and
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a5âd~r !, n5
n̂

R
, v5

4pr 3

Q

v̂

R
, ~23!

are the local, order of unity, dimensionless radial wave nu
ber, azimuthal wave number, and frequency, respectivelyâ

and v̂ are the dimensional radial wave number and f
quency, respectively!.

Substituting Eqs. ~15!–~23! into the incompressible
Navier-Stokes equations, neglecting termsO(R22), in accor-
dance with the boundary layer approximation, and seco
order terms in the small perturbations, one obtains the
lowing linear stability equation:

L•S5 ivL0•S, ~24!

where

L05S 0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

D , ~25!
r

ut

e

03630
-

-
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L[L11 iaL21
1

R
L31

a2

R
L0 , ~26!

L15S 0 in
d

dh
0

0 0 2
d f

dh
0

0 0 0
in

2

0 0 0
1

2

d

dh

D , ~27!

L25S 21 0 0 0

f 0 0 2
1

2

0 f 0 0

0 0 f 0

D , ~28!
L35S 212
3

2
h

d

dh
0 0 0

4 f 1
3

2
h

d f

dh
1n21Dh 0 0 222

3

4
h

d

dh

0 f 1n21Dh 0 0

0 0 2 f 2
dh

dh
1n21Dh 0

D , ~29!

Dh5
3

2
h f

d

dh
2h

d

dh
2

d2

dh2
. ~30!
ga-

tral

ua-
eas

the
at-
ns,

ap
This equation has to be solved with the following bounda
conditions:

F~0!5G~0!5H~0!50, ~31!

F~`!5G~`!5H~`!50. ~32!

In the temporal stability analysis that will be carried o
here, for a givenreal radial wave numbera, and given the
parametersR andn, the system~24!–~32! constitutes a linear
eigenvalue problem for the complex frequency

v5v r1 iv i . ~33!

The flow is considered unstable whenv i.0. Since we are
interested in perturbations approaching the sink~i.e., the evo-
lution of perturbations for decreasing valuesr, which, ac-
cording to Eq.~11!, corresponds to increasing values ofR),
only positive values ofa will be considered. Also, since th
ymean flow has no circumferential motion, positive and ne
tive values of the azimuthal wave numbern will yield the
same results, so that only positive values ofn will be con-
sidered.

C. Numerical method

To solve Eqs.~24!–~32! numerically, the eigenfunction
vectorS is discretized using a staggered Chebyshev spec
collocation technique developed by Khorrami@8#, where the
three velocity components and the three momentum eq
tions are discretized at the grid collocation points, wher
the pressure and the continuity equation are enforced at
mid grid points. This method has the advantage of elimin
ing the need of two artificial pressure boundary conditio
which are not included in Eqs.~31!, ~32!. To implement the
spectral numerical method, Eq.~24! is discretized by ex-
pandingS in terms of a truncated Chebyshev series. To m
7-3
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the interval 0<h,` into the Chebyshev polynomials do
main21<s<1, the transformationh5c1(11s)/(c22s) is
used, wherec1 is a constant (c153 in all the computations!
and c25112c1 /hmax. The boundary condition~32! is ap-
plied at h5hmax, which is chosen large enough to ensu
that the results do not depend on that truncated distance.
transformation concentrates the Chebyshev colloca
points near the planeh50, in such a way that approximatel
half of the points are located in the interval 0<h<c1.

The domain is thus discretized inN points, N being the
number of Chebyshev polynomials in whichS has been ex-
panded. For most of the computations reported below, va
of N between 40 and 50 were enough to obtain the eigen
ues with at least 6 or 7 significant figures, as it was chec
out for every result given below by using larger values ofN.
With this discretization~24!–~32! becomes an algebraic lin
ear eigenvalue problem that is solved with double precis
using an eigenvalue solver from the IMSL library~subrou-
tine DGVCCG!, which provides the entire eigenvalue an
eigenvector spectrum. Spurious eigenvalues were disca
by comparing the computed spectra for increasing numbeN
of collocation points.

III. RESULTS

From an inviscid point of view, the flow is stable accor
ing to Rayleigh’s criterion, for the velocity profilef (h) has
no inflexion point. This is corroborated numerically by sol
ing the stability equation in the formal limitR→` for any
value ofn. Actually, the flow is neutrally stable in this limi
R→`.

The viscous results (R large, but finite! will be presented
for axisymmetric and nonaxisymmetric perturbations se
rately.

A. Axisymmetric perturbations

Since the base flow has no circumferential velocity co
ponent, axisymmetric perturbations (n50) may be classified
within two different kinds: those with no azimuthal veloci
component (G[0, FÞ0, HÞ0, PÞ0), which will be re-
ferred to as typea for short, and perturbations with onl
azimuthal motion (F[H[P[0, GÞ0), referred to as type
b. Typical eigenfunctions belonging to each one of these
types of perturbations are plotted in Fig. 2, wheref (h) is
also plotted as a reference. Note that the eigenfunctionG for
perturbations of typeb is much more concentrated near t
planeh50 than the eigenfunctionsF andH in perturbations
of type a. Results for perturbations of typeb will be given
first because they are easier to analyze, and because a ge
result on their stability can be obtained analytically.

1. Purely azimuthal perturbations

As indicated above, forn50, there exists a class of solu
tions to Eqs.~24!–~32! that are characterized byF5H5P
50. The remaining, nonvanishing componentG of the am-
plitude of the perturbations satisfy the following eigenval
problem:
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F ia f 1
1

R S f 1
3

2
h f

d

dh
2h

d

dh
1a22

d2

dh2D GG5 ivG,

~34!

G~0!5G~`!50. ~35!

Using the standard transformationG5g exp@21
2*(h

23
2hf)dh#, and defining

a5aR, Ã5vR5Ã r1 iÃ i , ~36!

Eqs.~34!–~35! can be written

g92F3

4
f 1

1

4 S h2
3

2
h f D 2

1 i ~a f2Ã!1
a2

R2Gg50,

~37!

g~0!5g~`!50, ~38!

where the primes denote differentiation with respect toh.
Multiplying this equation by the complex conjugateg* , in-
tegrating betweenh50 andh5`, integrating by parts, and
using the boundary conditions, one obtains the following
lations for the imaginary and real parts of the resulting e
pression:

E
0

`

~a f2Ã r !ugu2dh50, ~39!

FIG. 2. Eigenfunctions corresponding to the less stable axis
metric (n50) perturbations of typea ~a!, and typeb ~b!, for R
543 221 anda50.3070. The corresponding eigenvalues arev r

55.477 595 8131022, v i.0, and v r53.544 265 5331022, v i

521.976 272 1131022, respectively. The maximum value of a
the eigenfunction components are normalized to unity. Also sho
as a reference isf (h).
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Ã iE
0

`

ugu2dh52E
0

`H Udg

dhU
2

1ugu2F3

4
f 1

1

4 S h2
3

2
h f D 2

1
a2

R2G J dh. ~40!

The first relation~39! tells us that the real part of the dispe
sion relation does not depend on the local Reynolds num
R when written in the new variables~36!, i.e., Ã r(a). More
important is the second relation~40!, which says that these
purely azimuthal perturbations are always stable,Ã i<0, for
every value ofa and R, with the imaginary part of the dis
persion relation,Ã i(a), depending slightly onR for largeR.
All these results are corroborated numerically. Figure
shows the dispersion relationv r(a)1 iv i(a) of the less
stable perturbations~largestv i) for several values ofR. Note
thatv i,0, and that the flow is increasingly more stable,
these purely azimuthal perturbations, asR decreases.

2. Meridional perturbations

For axisymmetric perturbations with no azimuthal velo
ity ~perturbations of typea), there is no general criterion o
stability, and the results have to be obtained numerically.
a fundamental difference with the azimuthal perturbations
is found that perturbations of typea may be unstable in som
ranges of the wave numbera and the Reynolds numberR.
Figure 4 shows the dispersion relationsv(a) for several
Reynolds numbers. It is observed that the flow is unstable
high Reynolds numbers in a range of wave numbersa that
depends onR ~remember that the flow is neutrally stable f
R→`), and becomes stable forR,Rc.43 221. This is bet-
ter depicted in Fig. 5, where the neutral curves of stability
the (a,R) and the (v r ,R) planes are plotted. The critica
Reynolds numberRc corresponds toac.0.3070 andv rc
.5.477631022 @see Fig. 2~a! for the eigenfunction#. In

FIG. 3. Real~a! and imaginary~b! parts ofv as functions ofa
of the less stable axisymmetric perturbations of typeb for several
Reynolds numbers. All the curvesv r(a) collapse when plotted in
the formÃ r(a).
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terms of the local displacement thickness of the bound
layer ~12!, the critical Reynolds number and critical wav
number are R1c.25 301 and a1c5âcd150.585 397 ac
.0.1797. These values can be compared with those co
sponding to a two-dimensional flow in the boundary lay
along an infinite plane wall due to a line sink at the orig
~see, e.g., Ref.@2#, p. 233!: R1c521675,a1c50.1738.

It is observed in Fig. 4~also in Fig. 3! that no results are
given for R5100 when the wave numbera is small. The
reason is that, asaR decreases, the eigenfunctions beco
more extended in space, reaching higher values ofh. Even-
tually, the eigenfunctions are different from zero at such
high value ofh that the boundary layer approximation of th
basic flow is no longer valid there. In particular, the comp
tations show that foraR<15, approximately, the condition

FIG. 4. Real~a! and imaginary~b! parts ofv as functions ofa
of the less stable axisymmetric perturbations of typea for several
Reynolds numbers.~c! Detail of the functionsv i(a) near the criti-
cal values ofa andR.

FIG. 5. Curves of marginal stability for axisymmetric perturb
tions of type a on the (a,R) plane, ~a!, and on the (v r ,R)
plane,~b!.
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~14! is not satisfied. Therefore, no results foraR<15, ap-
proximately, are given here.

B. Nonaxisymmetric perturbations

For local azimuthal wave numbernÞ0, all the eigenfunc-
tion components are always different from zero; i.e., all
eigenfunctions have azimuthal velocity componentGÞ0, as
well as nonvanishing meridional componentsF and H. Nu-
merically, the stability results are intermediate between th
for type a and typeb axisymmetric perturbations, but near
to typeb. In particular, it is found that, forn51, the flow is
stable for all Reynolds numbers~see Fig. 6!. As n increases,
the flow becomes more stable, particularly asR decreases
This can be observed in Figs. 7 and 8, where the disper
relations for nonaxisymmetric perturbations withn51 and

FIG. 6. Real~a! and imaginary~b! parts ofv as functions ofa
of the less stable nonaxisymmetric perturbations withn51 for sev-
eral Reynolds numbers.

FIG. 7. Comparison between the real~a! and imaginary~b! parts
of v(a) for the less stable axisymmetric perturbations (n50) of
typesa and b, and nonaxisymmetric perturbations withn51 and
n510, R5103.
03630
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n510, together with the dispersion relations for axisymm
ric perturbations of typesa andb, are plotted for two differ-
ent Reynolds numbers. For the highest value ofR considered
in these figures (R5105, Fig. 8!, the results for nonaxisym
metric perturbations withn510 approach those for type-b
axisymmetric perturbations.

IV. CONCLUSIONS

The stability analysis of the boundary layer flow due
the presence of a small hole on a surface performed in
paper has shown that the flow is unstable only for axisy
metric perturbations with no azimuthal velocity compone
In particular, it is shown that the flow becomes unstable
local Reynolds numbersR larger thanRc.43 221. Thisvis-
cous instability ~the flow is neutrally stable in the limitR
→`) is similar to that found for the two-dimensional versio
of this flow, namely, the boundary layer flow due to the pre
ence of a two-dimensional~line! sink on a plane surface. Th
instability appears at a relatively high Reynolds numb
marking the onset of turbulence. It has nothing to do with
formation of a vortex in the sink, a phenomenon that
shown experimentally to occur at much lower Reyno
numbers~e.g., Refs.@3,4#!. Actually, this is quite clear from
the fact that any perturbation containing an azimuthal vel
ity component is always stable. Thus, it is shown analytica
@Eq. ~40!# that axisymmetric perturbations with only az
muthal motion~called oftype bin Sec. III! are always stable
On the other hand, nonaxisymmetric perturbations, wh
always contain an azimuthal velocity component, are a
stable for all values on the azimuthal wave numbern. In fact,
their stability increase withn. Therefore, although the
present results do not discard, of course, the instability or
of the vortex formation in a sink, they eliminate some po
sibilities. Thus, if the vortex formation is the consequence
an instability, either it does not come from the visco
boundary layer on the solid wall adjacent to, but not in t
immediate neighborhood of, the hole, or, if it is a bounda
layer instability, it has to be a nonlinear instability. Anoth
possibility that the present results do not discard is the p

FIG. 8. As in Fig. 7, but forR5105.
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nomenon caused by a near-wall instability, but occurring
such low Reynolds numbers and low wave numbers~i.e., at
such a low value ofaR) that the present boundary laye
analysis cannot be used to find it out because the boun
layer approximation fails. In contrast to the present sim
stability analysis, the investigation of any of these possib
ra

03630
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ties would require a full three-dimensional numerical sim
lation of the sink flow.
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