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The structure of an axisymmetric swirling gas jet of a light species discharging into an ambient of
a heavier gas is analyzed using the quasicylindrical approximation of the compressible flow
equations, with the main aim of describing the conditions for the onset of vortex breakdown. A
self-similar solution valid in the mixing-layer close to the jet exit is found, which is used to start the
numerical integration of the parabolic equations. For the computations, we consider the particular
case of a swirling jet of hydrogen discharging into air. We characterize the critical swirl number for
vortex breakdown as a function of the coflow velocity of the ambient gas, and compare it to the case
of a homogeneous, single-species gas jet, discussing the physical differences found between the
cases. We also consider the influence of the Mach number on the onset of vortex breakdown, and
discuss the results in relation to the incompressible limit, finding that the swirl level for breakdown
decreases as the Mach number increases. © 2010 American Institute of Physics.
�doi:10.1063/1.3489127�

I. INTRODUCTION

Swirling jets occur in many engineering applications. A
distinctive feature of these vortex flows is the appearance of
the so-called vortex breakdown �VB� phenomenon above a
certain swirl intensity level �see, e.g., Ref. 1�. Although there
exists a large body of information on the breakdown of
incompressible and homogeneous swirling jets, both
theoretical/numerical �e.g., Refs. 2–5� and experimental,6–10

much less is known about VB in swirling jets of a light
molecular species discharging into an ambient gas consti-
tuted by a heavier molecular species. These light gas swirling
jets �LGSJs� are relevant, for instance, in combustion pro-
cesses, where in many circumstances the fuel is a light spe-
cies, such as H2, which is injected into an ambient of an
oxidant gas, such as O2 or air, whose molecules are much
heavier. In addition, vortex breakdown is an important phe-
nomenon in combustion systems, which is searched for flame
stabilization, to enhance mixing and reduce pollution.11,12 In
most swirl combustors, however, the injected oxidizer rotates
while the fuel does not,13 in opposition to the configuration
considered here; in addition, the flow is usually turbulent,
while we consider a laminar flow. However to gain further
theoretical understanding of the flow conditions for the onset
of VB in these combustion systems, and in other hydrogen or
helium, jet applications where swirl is used to enhance mix-
ing, it is of interest to characterize the onset of VB in these
LGSJs, and analyze the differences in relation to a homoge-
neous �single-species� and incompressible swirling jet.

This is the objective of the present work, which we un-
dertake by solving the quasicylindrical �QC� approximation14

of the equations governing the axisymmetric and compress-
ible jet flow, valid for high Reynolds numbers. Although it is
well known that this approximation ceases to be valid after
the flow undergoes VB, it is a useful approximation to pre-
dict the critical swirl intensity for the onset of VB, which

corresponds to the failure of the QC approximation.4,15–18 In
our analysis we include the compressibility effects on the
LGSJ structure, and characterize the dependence of the onset
of VB on the Mach number of the jet. There exists a number
of works which analyze the effect of compressibility on the
breakdown of several types of vortex flows �e.g., Refs. 17
and 19–22�, but the study of compressibility effects on the
VB onset in LGSJ, or even in swirling jets in general, is
novel to our knowledge. We also include in the analysis pre-
sented here the effect of the coflow velocity of the ambient
gas, which is also very relevant in combustion processes. No
chemical reactions are, however, considered in this work, in
which we are interested in the subsonic flow structure de-
scribed by the QC approximation.

The structure of the paper is the following: After formu-
lating the problem in the next section, a self-similar solution
valid for the mixing-layer close to the jet exit is given in Sec.
III. This solution is used in the following section to start the
numerical integration of the QC equations. In that section the
numerical method is introduced and validated against known
analytical solutions, and the numerical results for the differ-
ent cases considered are presented and discussed. This paper
ends with a conclusions section.

II. FORMULATION OF THE PROBLEM

A. General formulation

We consider the discharge of a swirling gas jet through a
pipe of radius RI into an ambient gas. For simplicity, we
consider only two chemical species, the one introduced with
the swirling jet �the fuel, which will be a light molecular
species such as H2�, with a mass fraction denoted by Y, and
that in the ambient gas where the jet discharges �the oxidant
or heavy molecular species, such as O2 or air�, with mass
fraction given by 1−Y. Chemical reactions will be neglected.
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We use cylindrical polar coordinates �r ,� ,z�. The jet en-
ters at z=0 with Y =1 �pure fuel� through the orifice of radius
RI, which is used as a characteristic radius to render dimen-
sionless the radial coordinate r �see Fig. 1�. The axial coor-
dinate z is made dimensionless by scaling it with character-
istic axial length zc, to be defined below, in such a way that
the dimensional position vector x is related to the nondimen-
sional cylindrical coordinates �r ,� ,z� through

x = �RIr,�,
RI

�
z�, � �

RI

zc
. �1�

To define the remaining dimensionless variables we
scale them with their corresponding characteristic values at
the fuel inlet. However it is important to note first that we
shall consider the limit of high Reynolds number of the jet,
defined as

Re =
WcRI�Fc

�Fc
, �2�

where Wc is a characteristic axial velocity of the incoming jet
at z=0, and �Fc and �Fc are characteristic values of the den-
sity and viscosity, respectively, of the fuel species at the �in-
let� reference temperature Tc. In the limit Re�1, corre-
sponding to the quasicylindrical approximation, where the
characteristic axial length zc is much larger than the charac-
teristic radius RI, we may choose, without loss of generality
and for the sake of simplicity,

zc = Re RI or �−1 = Re, �3�

eliminating the scaling factor � and, therefore, the Reynolds
number from the QC formulation �see below�.

The nondimensional order unity velocity field �U ,V ,W�
is defined, in terms of the dimensional velocity field v, as

v = Wc	�U

V

W

 , �4�

where it has been taken into account that from the continuity
equation, the radial velocity of the jet is not of the order Wc

like the axial velocity, but of the order �Wc.

We assume a perfect gas equation of state for the mix-
ture, relating the density � to the pressure p, the temperature
T, and the mass fraction Y by

� =
p

RT

1

Y

MF
+

1 − Y

MO

=
MF

R

p

T

1

Y + ��1 − Y�
, � �

MF

MO
,

�5�

where R�8.314 J mol−1 K−1 is the universal molar gas con-
stant, and MF and MO are the molecular weights of the fuel
and oxidant species, respectively. The ratio of molecular
weights � will be a small parameter in the LGSJ case con-
sidered in this work, although the problem is formulated here
for arbitrary values of �. The nondimensional density �,
pressure P, and temperature � are defined in terms of their
dimensional counterparts �, p, and T as

� = �Fc�, p = pcP, T = Tc� , �6�

where the characteristic pressure is given by pc=�Fc

	RTc /MF.
For the viscosity and thermal conductivity of the mix-

ture, � and K, we shall use the semiempirical expressions23

� = �F

Y + �1/2�1 − Y�
�O

�F

Y + �1/2�1 − Y�
, �7�

K = KF

Y + �2/3�1 − Y�
KO

KF

Y + �2/3�1 − Y�
, �8�

respectively, where �F and �O are the viscosity coefficients
and KF and KO are the thermal conductivities of the fuel and
oxidant species, respectively, all of them functions of the
temperature.

Assuming that the flow is axisymmetric and steady �i.e.,
the flow magnitudes only depend on r and z�, and neglecting
terms of the order of �2=Re−2 �QC approximation� in the
compressible flow equations, the problem is governed by the
following nondimensional system of equations:

1

r

�

�r
�r�U� +

�

�z
��W� = 0, �9�

�U
�Y

�r
+ �W

�Y

�z
=

1

r

�

�r
� r�

Sc

�Y

�r
� , �10�

� =
P

�

1

Y + ��1 − Y�
, �11�

�
V2

r
= E

�P

�r
, �12�

��U
�V

�r
+

UV

r
+ W

�V

�z
� =

1

r2

�

�r
�r3�

��V/r�
�r

� , �13�

r

z

Y = 0

Y = 1

V = VF (r)

W = WF (r) 1

θ

FIG. 1. Sketch of the dimensionless geometry and boundary conditions at
z=0.
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��U
�W

�r
+ W

�W

�z
� = − E

�P

�z
−

1

Fr
� +

1

r

�

�r
�r�

�W

�r
� ,

�14�

��U
��

�r
+ W

��

�z
� = 
F

� − 1

�
�U

�P

�r
+ W

�P

�z
�

+

F

Pr

1

r

�

�r
�rK

��

�r
�

+

F − 
O

Sc
�

��

�r

�Y

�r
. �15�

Equation �9� is the continuity equation of the mixture. In the
fuel mass conservation equation �10� we have neglected ther-
mal diffusion �and, of course, chemical reactions�, and the
Schmidt number is defined as

Sc =
�Fc

�FcD
, �16�

where D is the coefficient of binary diffusion between both
species. Equation �11� is the equation of state for the mix-
ture. Equations �12�–�14� are the radial, azimuthal, and axial
components, respectively, of the momentum equation for the
mixture, where we have neglected compressibility effects in
the viscous forces, although, of course, compressibility ef-
fects are taken into account everywhere else. E is an Euler
number, related to the Mach number Ma of the jet and to the
fuel specific-heat ratio � through

E =
pc

�FcWc
2 =

1

� Ma2, Ma2 =
Wc

2

�pc/�Fc
, � =

cpF

cvF
. �17�

In the axial component �14� we have included, for complete-
ness, the gravitational forces in the z direction, with accel-
eration g, and the Froude number is defined as

Fr =
Wc

2

zcg
=

Wc
2

RIg

1

Re
. �18�

Finally, Eq. �15� is the energy equation of the mixture, where
we have neglected the viscous dissipation term as well as
the Dufour effect in the heat flux �consequently with neglect-
ing thermal diffusion in Eq. �10��, and we have assumed
that the mixture specific heat at constant pressure, cp=YcpF

+ �1−Y�cpO, is constant. We have defined the Prandtl number
as

Pr =
cpF�Fc

KFc
�19�

and the specific-heat ratios as


F =
cpF

cp
, 
O =

cpO

cp
. �20�

In addition, to simplify the notation, we have used in Eqs.
�13�–�15� the same letters to denote the dimensionless vis-
cosity and heat conductivity of the mixture, scaled with the
corresponding characteristic values for the fuel species,

� ←
�

�Fc
, K ←

K

KFc
. �21�

We are interested in solving Eqs. �9�–�15� with the fol-
lowing inlet boundary conditions at z=0 �see Fig. 1�:

U = 0, W = WF�r�, V = SVF�r�, Y = 1,

�22�
� = 1, at z = 0 for 0 � r � 1,

U = 0, W = W̄O�r�, V = 0, Y = 0,

�23�
� = 1, at z = 0 for r  1,

where WF, VF, and W̄O are given functions of r of order
unity, and S is a swirl number, the last of the series of non-
dimensional parameters governing the structure of the flow
described here �but the most relevant one in the present
work�, defined as the ratio between a characteristic azimuthal
velocity Vc and Wc,

S =
Vc

Wc
. �24�

The pressure is not specified in Eqs. �22� and �23� because it
can be obtained from VF�r� through the radial momentum
equation �12� together with a given reference value �say,
P→PO as r→��. On the other hand, the density � at z=0 is
computed from the equation of state �11�.

The remaining boundary conditions for the parabolic
equations �9�–�15� are the symmetry condition at the axis
r=0,

�Y

�r
=

�W

�r
=

��

�r
= U = V = 0 at r = 0 for z  0, �25�

and the given external values of Y, V, W, P, and � as
r→�,

Y → 0, V → 0, W → WO, P → PO,

�26�
� → 1, as r → � ,

for given constants WO and PO.

B. Simplified equations for a light jet emerging
with uniform axial velocity and rotating as a rigid body

We consider in this work the simplest case where Sc, �F,
and KF are constants, 
F=
O=1 �i.e., cpF=cpO=cp�, and
buoyancy �Froude number� effects are negligible. In the case
of a jet constituted by a gas much lighter than the ambient
���1�, the mixture viscosity and heat conductivity may be
assumed constants, according to Eqs. �7� and �8�, at the low-
est order in �. Since � and K are made dimensionless with
the characteristic values of the jet species �Eq. �21��, we can
write ��K�1 in Eqs. �13�–�15�. Note that this is also valid
for the particular case of a constant-density �single-species�
jet problem ��=1 and Y =1 everywhere� so that the resulting
equations given below can be used in both cases, �=1 and
��1, which is of special interest for comparing the LGSJ
results with the constant-density swirling jet results.
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Using the above approximations, Eqs. �9�–�15� can be
rewritten as

1

r

�

�r
�r�U� +

�

�z
��W� = 0, �27�

�U
�Y

�r
+ �W

�Y

�z
=

Sc−1

r

�

�r
�r�

�Y

�r
� , �28�

� =
� Ma2 P̄ + 1

�

1

Y + ��1 − Y�
, �29�

�
V2

r
=

� P̄

�r
, �30�

��U
�V

�r
+

UV

r
+ W

�V

�z
� =

1

r2

�

�r
�r3��V/r�

�r
� , �31�

��U
�W

�r
+ W

�W

�z
� = −

� P̄

�z
+

1

r

�

�r
�r

�W

�r
� , �32�

��U
��

�r
+ W

��

�z
� = �� − 1�Ma2�U

� P̄

�r
+ W

� P̄

�z
�

+
Pr−1

r

�

�r
�r

��

�r
� . �33�

Note that we have redefined the nondimensional pressure as

P̄ � E�P − 1� =
P − 1

� Ma2 �34�

so that Ma �or E� disappears from the momentum equations

�12�–�14�, with P̄ replacing P, but appearing in the equation
of state �11� and the energy equation �15�. This formulation
is clearly more appropriate if one has to consider the incom-
pressible limit Ma→0, which corresponds to E→�. Implicit
in Eq. �34� is that the nondimensional reference pressure is,
without loss of generality, PO=1.

In addition we assume a uniform inlet flow, with the jet
rotating as a rigid body so that the boundary conditions �22�
and �23� at z=0 become

U = 0, � = 1, �35�

W = � 1 for 0 � r � 1

WO for r  1,
 �36�

V = �Sr for 0 � r � 1

0 for r  1,
 �37�

Y = �1 for 0 � r � 1

0 for r  1,
 �38�

where the coflow WO is a known constant. From Eqs. �29�
and �30� and Eqs. �35�–�38� the pressure and density profiles
at z=0 are given by

P̄ = � 1

� Ma2 �eS2� Ma2�r2−1�/2 − 1� for 0 � r � 1

0 for r  1,
� �39�

� = �eS2� Ma2�r2−1�/2 for 0 � r � 1

�−1 for r  1.
 �40�

In the incompressible limit �Ma2=0�, the last two boundary
conditions become

P̄ = �S2�r2 − 1�
2

for 0 � r � 1

0 for r  1,
� �41�

� = � 1 for 0 � r � 1

�−1 for r  1.
 �42�

The remaining boundary conditions are the same as Eqs. �25�
and �26�, except for P̄→0 as r→�.

This simplified problem is thus governed by the dimen-
sionless parameters S, �, Sc, Ma, �, Pr, and WO. We shall
vary the swirl parameter S, the coflow WO, and the Mach
number Ma, keeping the remaining parameters constant for a
given gas mixture �e.g., hydrogen-air, �=0.07� or a homoge-
neous jet ��=1�.

III. SELF-SIMILAR SOLUTION NEAR z=0

In the absence of swirl �V=0�, the problem is governed

by just Eqs. �27�, �28�, and �32�, with P̄=0 and �=1 every-
where because there is no rotation to generate pressure dif-
ferences through Eq. �30� and, therefore, temperature gradi-
ents in the jet. This nonswirling problem was considered by
Sánchez-Sanz et al.,24 finding that for a uniform axial veloc-
ity profile at the jet inlet, the problem admits a self-similar
solution near the jet exit �i.e., for z�1 and �r−1��1�, in
terms of the self-similar variable

� =
r − 1
�z

, �43�

which describes a slender mixing-layer between the jet and
the ambient gas in the vicinity of the orifice rim r=1 close to
z=0. This is the same self-similar variable that describes the
planar mixing-layer.25

When V�0 and given by solid body rotation at the jet
inlet, the problem still admits a self-similar solution for
z�1 in terms of variable �43�, as does the incompressible,
single-species counterpart analyzed by Revuelta et al.4 As we
shall see below, the introduction of swirl does not affect the
self-similar solution of the problem without swirl at its low-
est order, entering as a correction in the next order �O��z��.

In effect, boundary conditions �35� and �39�, together
with Eqs. �30� and �29�, suggest the introduction of the fol-

lowing self-similar dependence for P̄, V, and � at the lowest
order in z�1:

P̄ = �zP1��� , �44�
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V = V��� , �45�

� = 1 + �z�1��� . �46�

The rest of the flow variables remain unchanged, at the low-
est order, in relation to the swirless and incompressible flow.
In terms of the stream function �, which simplifies the
analysis by automatically satisfying continuity equation �27�,
the self-similar solution at the lowest order in �z, close to
r=1, can be expressed as24

� = �zF���, �W =
��

�r
= F�,

�47�

�U = −
��

�z
=

1

2�z
��F� − F� ,

Y = Y���, � = ���� , �48�

where primes denote differentiation with respect to �.
Substituting expressions �43�–�48� into Eqs. �28�–�33�,

one obtains the following set of ordinary differential equa-
tions at the lowest order in �z:

��Y��� + Sc
F

2
Y� = 0, �49�

V� +
F

2
V� = 0, �50�

�F�

�
��

+
F

2
�F�

�
��

= 0, �51�

1

Pr
�1� +

�� − 1�
2�

Ma2�F�P1 − FP1�� +
1

2
�F�1� − F��1� = 0,

�52�

P1� = �V2, �53�

together with

� =
1

Y + ��1 − Y�
. �54�

These equations are to be solved with the boundary condi-
tions

� → �: Y → 0, V → 0, F�/� → WO,

�55�
�1 → 0, P1 → 0,

� → − �: Y → 1, V → S,

�56�
F�/� → 1, F → �, �1� → 0.

Note that at this lowest order one can only match the swirl
intensity at r→1−, i.e., V=S. To match exactly the specific
solid body rotation V=Sr, or any other tangential velocity
distribution of the emerging swirling jet, would require the
next order of the expansion in powers of �z of the self-
similar solution. The same can be said of the pressure be-
cause no boundary condition for P1 can be specified as
�→−�. However, as we shall see, this lowest order self-
similar solution provides a very good approximation for
small z if one uses it as part of a composite solution that
takes into account the inlet boundary conditions, and it suf-
fices for our main objective here of providing an alternative
with continuous radial derivatives to initial conditions
�35�–�42� to start the numerical integration of Eqs. �28�–�33�.
The second order correction to the self-similar solution may
be obtained in an analogous way to that described in Ref. 4
for the incompressible, single-species flow, but now, in a
compressible, two-species flow, the resulting ordinary differ-
ential equations are much more involved.

To solve numerically the above equations we use the
subroutine BVP4C of MATLAB, which implements a colloca-
tion method for solving a system of ordinary differential
equations with two-point boundary conditions, starting from
an initial guess. The boundary conditions �55� and �56� are
imposed at �max and �min, respectively, whose absolute val-
ues are chosen large enough for the solution to be indepen-
dent of them. As the initial guess we use tanh-like functions
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

Y
F’/ρ

FIG. 2. �Color online� Axial velocity W=F� /� and mass fraction Y as
functions of � for Sc=1.39, �=0.07 �corresponding to hydrogen-air�, and
WO=0. The numerical integration was performed between −20���50.
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0

0.5

1
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2

η

V

P
1

FIG. 3. �Color online� Tangential velocity V and pressure correction P1 as
functions of � for S=2, and the same remaining parameters used in Fig. 2.
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for Y, F� /�, and V, and constant functions for P1 and �1.
Equations �49� and �51�, together with Eq. �54�, for F and Y
�i.e., the solutions for W, U, Y, and ��, are decoupled from
the solutions for V, P1, and �1, depending only on the pa-
rameters WO, Sc, and �. As mentioned above, this self-
similar solution for an incompressible flow without swirl was
found by Sánchez-Sanz et al.24 Figure 2 depicts W=F� /�
and Y as functions of � for a hydrogen-air mixture
�Sc=1.39, �=0.07� in the absence of coflow �WO=0�.

The tangential velocity V �Eq. �50�� depends also on the
swirl parameter S through the boundary condition as
�→−�, and so does the pressure correction P1 �Eq. �53��. In
fact, it is easy to see from the equations and boundary con-
ditions that V=SF� /�. Figure 3 displays these functions for
S=2, and the same parameters used in Fig. 2. Finally, the
temperature correction �1 depends additionally on the Mach
number Ma, the Prandtl number Pr, and � �Eq. �52��. This
temperature correction is depicted in Fig. 4 for Ma=0.5,
Pr=0.7, and �=1.4 �in addition to the same values used in
Fig. 3 for the remaining parameters�. It is interesting to note

that at this lowest order in �z of the self-similar solution,
compressibility effects are only visible in the temperature
distribution because the density is independent of Ma and

because of the use of the variable P̄ for the pressure. Rota-
tion then affects the pressure distribution just through the
swirl number S, which affects the temperature distribution
only if Ma�0.

Once the similarity solution is found at its lower order,
the radial profiles of the mass fraction, density, velocity,
pressure, and temperature at a fixed value of z�1 are given
by the following composite solutions:

Y�r� = Y���, ��r� = 1/�Y + ��1 − Y�� , �57�

W�r� =
F����

�
, U�r� =

1

2��z
��F���� − F���� , �58�

V�r� = �S�r − 1� + V��� for 0 � r � 1

V��� for r  1,
 �59�

P̄�r� = � 1

� Ma2 �e��S2� Ma2�/2��r2−1� − 1� + �zP1��� for 0 � r � 1

�zP1��� for r  1,
� �60�

��r� = 1 + �z�1��� , �61�

with r=1+�z�. For Ma=0 �incompressible flow�, Eq. �60�
has to be substituted by

P̄�r� = �S2

2
�r2 − 1� + �zP1��� for 0 � r � 1

�zP1��� for r  1.
� �62�

Figures 5–7 show these profiles for z=0.001 and the same set
of parameters used in Figs. 2–4, except for � �Fig. 7� that is

plotted for different values of Ma. It is observed in these
figures that the radial velocity U shows a double-hump struc-
ture in the mixing-layer region, where it first increases from
its zero value inside the jet, then decreases abruptly, but with
a hump in between, and finally increases to reach an asymp-
tote as r→� corresponding to the jet entrainment rate at
the given axial location z, �−�U�r→�=F� / �2�z� �with
F��2.1461 in the case plotted�. On the other hand, Fig. 6
shows that the radial profile of the mass fraction Y �and,
consequently, of the density �� decreases �increases� more
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FIG. 4. �Color online� Temperature correction �1 as function of � for
Ma=0.5, Pr=0.7, �=1.4, and the same remaining parameters used in Fig. 3.

0 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

r

U

VW
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z=0.001, and the same parameters of Figs. 2–4.
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slowly toward zero �toward �−1� as r→� than the axial and
azimuthal velocity components. This behavior is due to the
small value of � so that the light gas jet expands quickly by
diffusion into the heavier ambient gas just as the jet emerges
from z=0 �see also Fig. 2�. Finally, it is clear in Fig. 7 that
the thermal �cooling� effect associated to the expansion of
the light gas jet increases with the Mach number. However
even for Ma of order unity this initial cooling of the emerg-
ing jet is small.

IV. RESULTS AND DISCUSSION

A. Numerical method and validation with theoretical
results

To solve numerically Eqs. �27�–�33� we use second order
finite differences in the axial direction and a pseudospectral,
Chebyshev collocation method in the radial direction. The
boundary condition �26� at infinity is applied at a truncated
radial distance rmax, chosen large enough to ensure that the
results do not depend on that truncated distance. To map the
interval 0�r�rmax into the Chebyshev polynomial domain
−1�s�1, we use the transformation

r = c1
1 + s

c2 − s
, with c2 = 1 +

2c1

rmax
. �63�

The Chebyshev variable s is discretized in the Gauss–
Lobatto points si=cos��i /N�, i=0, . . . ,N,26 so that approxi-
mately half of the resulting nodes ri are concentrated in the
interval 0�r�c1.27 This transformation allows large values
of r to be taken into account with relatively few Chebyshev
basis functions. In the computations reported below, we have
used values of c1 between 1 and 5, rmax between 50 and 300,
and N between 100 and 600.

Once the parabolic equations �27�–�33� are discretized
radially, they are solved in the streamwise direction z by
“marching” with a second order, backward finite differences
technique in which the diffusive terms are discretized using a
Crank–Nicolson method. At each zj = j�z station, where �z is
the axial step size, the nonlinear equations are solved itera-
tively with the following scheme: First we solve the transport
equations �28� and �31�–�33� for �i

j, i=0, . . . ,N �the super-
script is for the axial location, the subscript for the radial
node, and �=Y, V, W or �� using the previously found val-
ues of �i

j−1 and �i
j−2 in the second order backward differ-

ences, and approximating initially �i
j in the nonlinear terms

by their values at the previous station zj−1; then, Eqs. �30�,
�29�, and �27� are used to compute P̄, �, and U, respectively,
at zj, using the previously obtained approximations of the
remaining variables at zj; the process is repeated, replacing
the computed approximations for the flow variables at zj in
the nonlinear terms, until convergence is reached within a
given tolerance. Usually, between 5 and 15 iterations are
sufficient to reach convergence with a tolerance of the order
of ��z�2. This marching process is started at z=z2 using the
self-similar solution of the preceding section at z=z1=�z,
and boundary conditions �35�–�40� at z=z0=0. Actually, in
order to improve the accuracy of the starting solution at
z=z1=�z, and therefore to reduce the number of iterations
for z�z2, the self-similar solution is corrected at z=z1

through a few iterations with the above scheme, but using
first order finite differences for the axial derivatives.

To check the accuracy of the numerical technique, and to
find the optimal numerical parameters �z, N, c1, and rmax, we
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FIG. 6. �Color online� Radial profiles of the mass fraction and density at
z=0.001, and the same parameters of Figs. 2–4.
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have made several convergence studies for simplified cases
where either an analytical exact solution or an analytical
asymptotic solution exists. The first case corresponds to a
swirl-free jet �S=0 so that V=0� with a coflow WO=1. In the
absence of swirl there is no radial pressure variation so that

the flow will remain isobaric and isothermal, P̄=0 and �
=1 everywhere, and Eq. �29� reduces to �=1 / �Y +��1−Y��.
In addition, a coflow WO=1 implies that W=1 everywhere,
simplifying the mathematical problem to a great extent. In
fact, an analytical solution for Eqs. �27� and �28� in this case
was found by Sánchez et al.,28 which for � and Y can be
written as

1 − ��

1 − �
=

Y

Y�1 − �� + �

=
Sc

2z
e−Sc r2/4z�

0

1

se−Sc s2/4zI0�Sc rs

sz
�ds , �64�

where I0 is the modified Bessel function of order zero.29

Along the axis �r=0�, this solution simplifies to

1 − ��

1 − �
=

Y

Y�1 − �� + �
= 1 − e−Sc/4z for r = 0. �65�

Figures 8 and 9 compare these analytical solutions to the
numerical ones for a hydrogen-air mixture �Sc=1.39 and
�=0.07�. It is observed that the agreement is very good
at every axial distance z when �z�10−3, N100, and
rmax100. Actually, the insets of these figures show that the
most relevant parameter for accuracy is �z, in such a way
that for N100 and rmax100 the convergence of the nu-
merical solution toward the exact one improves only by di-
minishing the axial step size, owing to the high accuracy of
the Chebyshev pseudospectral method.

The above convergence study is not enough because a
coflow with WO=1 smoothes out the radial profiles near the
exit z=0, and the numerical accuracy needed to catch the jet
flow is much less severe than that needed for jets without
coflow. The above comparison is however interesting be-
cause it involves two species and, therefore, a distribution of
mass fraction Y, and because it is made against an exact
solution �64� of the equations. To complement this, we now
compare the numerical solutions with asymptotic analytical

solutions for a swirling jet emerging in a fluid at rest �with-
out coflow, WO=0�, but corresponding to a single-species
��=1, and Y =1 everywhere�. In particular, we consider the
Schlichting–Görtler–Loitsianskii asymptotic solution30,31 for
the far-field decay of an incompressible ��=1� swirling jet
�see also Refs. 4 and 32�. This solution, asymptotically valid
for z�1, but sufficiently accurate even for z=O�1�, is writ-
ten in terms of the self-similar variable

� =
�Mr

z + z0
, �66�

where

M = 2�
0

�

�W2 + P̄�rdr �67�

is the so-called flow force �or nondimensional momentum
transfer, see, e.g., Ref. 33�, and z0 is the so-called virtual
origin,34 as

W =
512M

3�z + z0�
1

�64

3
+ �2�2 , �68�

V =
8SMr

�z + z0�3

1

� 64
3 + �2�2 , P̄ = −

32S2M

3�z + z0�4

1

� 64
3 + �2�3 .

�69�

The flow force M and the virtual origin z0 are functions of
the swirl parameter S. For a uniform axial flow at the inlet
with the jet rotating as a rigid body, Eq. �67� yields M =1
−S2 /4. However, z0�S� has to be determined numerically by
solving the jet developing region, for which the asymptotic
solution is not valid. For this reason, we will compare our
numerical solution for �=1 and WO=0 with the self-similar
solutions �68� and �69� adjusting the parameter z0�S� in the
far-field. This is done in Fig. 10 for S=0 and in Figs. 11 and
12 for S=0.5. Since the flow is incompressible �Ma2=0�,
�=1 everywhere from Eq. �33� and the boundary condition
at z=0 so that �=1 from the equation of state �29�. In the
boundary condition �38� at z=0 we set Y =1 for all r so that
Y will remain unity everywhere.
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It is observed in Fig. 10 that the convergence to Schli-
chting’s asymptotic solution �68� for S=0 is quite good at
z=5, with the computed value z0�S=0��0.20 �marked with
dashed lines in the figures� in close agreement with that ob-
tained by Revuelta et al.4 The main parameter for the con-
vergence of the numerical solution is again the axial step �z,
provided that N and rmax are large enough and that c1 is not
too small. These figures show that for swirless jets �S=0�,
convenient choices of parameters are �z=5	10−4, N=300,
rmax=150, and c1 between 1 and 2.

Figures 11 and 12 show that the convergence to the
Schlichting–Görtler–Loitsianskii asymptotic solutions �68�

and �69� is also quite good for S=0.5 when z=3. As in the
case with S=0, the most critical numerical parameter is �z,
but now, when swirl is present in the jet flow, the required
number of radial nodes N and the value of c1 depend on the
intensity of the swirl, both increasing with S. For S=0.5,
convenient choices of the numerical parameters are �z=5
	10−4, N=600, rmax=150, and c1=2 �which are the ones
shown in the figures�. From these figures, the computed
value of z0�S=0.5� lies between 0.27 �marked with a dashed
line in Figs. 11 and 12� and 0.28, in agreement with Revuelta
et al.4 �note that our swirl parameter S is twice the S defined
by these authors so that it corresponds to their S=0.25�.

B. Results for a homogeneous incompressible jet
„�=1, Ma=0…

We consider first the structure of a homogeneous �single-
species� jet ��=1� in the incompressible limit �Ma=0�, i.e.,
the case considered in the above comparison with the
asymptotic solution, but now we search systematically for
changes in flow structure as both the swirl parameter S and
the coflow ratio WO are varied. In particular, we are mainly
interested in the variation of the critical swirl for vortex
breakdown as WO is increased. The results in this case will
serve as a reference against which to analyze the effects on
the VB onset of both compressibility �Ma�0� and the dif-
ferent molecular masses of the light gas jet ���1� that will
be considered in the subsequent sections, and constitute the
main objectives of the present work. In addition, the results
for this case will be given here with more detail in order to
describe the procedure that we use in the present work for
determining the critical swirl number for VB onset with the
present QC approximation. Except otherwise specified, the
numerical parameters of the results reported below are
�z=10−4, N=300, rmax=150, and c1=2, in accordance with
the convergence analysis of the preceding section, with z
varying between 0 and 3.

Figures 13–15 show the results for WO=0.05. In particu-
lar, Fig. 13 shows the radial profiles of the axial velocity for
S=0, S=0.9, S=Sc��=1, Ma=0, WO=0.05��1.2220, and
S=1.2221. Sc is the critical swirl number for VB onset,
which corresponds to the largest value of S �for given �, Ma,
and WO� for which the governing parabolic equations do not
break down and can be integrated numerically up to the
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maximum axial distance considered. For the next value,
S=1.2221 �within the accuracy used here we only consider
four decimal figures�, the axial velocity becomes negative at
the axis at z=zc�0.0326, and, after that axial location, the
parabolic equations cease to be valid. This is better appreci-
ated in Fig. 14, where the evolution along z of the axial
velocity at the axis, W�0,z�, and the pressure at the axis,

P̄�0,z�, are plotted for different values of S �for S=0, P̄=0
everywhere, and it is substituted by the case S=0.1�. For
S=1.2221 �dashed lines� the axial velocity drops abruptly to
zero at z=zc, and the pressure blows up. For S=Sc�1.2220,
the axial velocity at the axis decreases, and then increases
abruptly near z=zc �see inset in Fig. 14�a��, but decays
smoothly downstream as in the cases with S�Sc. The pres-

sure at the axis has an analogous behavior. Therefore S=Sc

marks the onset of VB, with the subsequent failure of the QC
approximation for SSc.

4,15–18

To complete the picture for WO=0.05, Fig. 15 shows the
radial profiles of the azimuthal velocity for the same param-
eters as in Fig. 13 �except for the case S=0 that is substituted
by S=0.1�. It is observed that the swirl decays very fast, with
the peak azimuthal velocity less than half the initial one al-
ready at z=0.1. This fast decay is much more dramatic for S
close to Sc, especially just after vortex breakdown �see Fig.
15�d�, where the azimuthal velocity near the axis becomes
very small as z approaches zc�.

Similar trends are observed for increasing values of WO.
Figures 16–18 show the axial evolution of the axial velocity
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and the pressure at the axis for WO=0.5, 1 and 1.35 �the
numerical parameters used in the computations are the same
given above for WO=0.05�. In all these cases, the axial ve-
locity at the axis becomes smaller than WO in some axial
region as S approaches Sc, and the critical swirl Sc decreases
as the coflow WO increases. This behavior is better appreci-
ated in Fig. 19, which shows the radial profiles of the axial
velocity at different z for S=Sc�WO�, WO=0.5, 1 and 1.35
�compare with Fig. 13�c��, with the computed function
Sc�WO� plotted in Fig. 20.

As the swirl approaches the critical level Sc, the axial
pressure gradient at the axis increases abruptly, causing a
rapid decay of the axial velocity at the axis near the flow exit
z=0. For SSc, the axial velocity at the axis becomes nega-
tive for some z=zc�1 �vortex breakdown�, and the present
QC approximation ceases to be valid. As the coflow WO

increases, the only qualitative difference is that the axial gra-
dient of the pressure is a bit larger near the axis for a given S
close to Sc �compare the �b� parts of Figs. 14 and 16–18� due
to the increasing axial momentum outside the jet. Since the
momentum flux at the axis remains the same and the pres-
sure rise at the axis becomes more abrupt for a given S as WO

increases, vortex breakdown is reached for a smaller value of
the swirl, and Sc decreases slightly as WO increases. This is
shown in Fig. 20, where the function Sc�WO� is plotted for all
the values of WO considered.

C. Results for a hydrogen-air incompressible jet
„�=0.07, Ma=0…

We first show in this case the results for the structure
with coflow WO=0.05, i.e., practically without coflow, and
compare them with the results for �=1 reported above. Fig-
ure 21 shows this comparison for the downstream evolutions
of the axial velocity at the axis, W�0,z�, and the pressure at

the axis, P̄�0,z�, when the swirl number S is increased from
zero to its critical value for vortex breakdown.

The main difference between the two cases is that the
depression originated by the swirl is less concentrated near
the axis �the axial pressure gradient is smaller� in the case of
a light jet ��=0.07� than in the case of a homogeneous jet
��=1� �see Fig. 21�b��. As a consequence, the critical swirl
for vortex breakdown for �=1 is smaller than in the case
with �=0.07: Sc=1.2220 for �=1, while Sc=1.2784 for
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�=0.07. That is to say, the abrupt axial gradient of the pres-
sure that precedes vortex breakdown as the swirl S increases
is retarded in the case of a light jet due to the fact that the
swirl is less effective in creating an axial depression when
the relative mass of the jet is smaller so that one needs a
larger swirl intensity to reach the appropriate pressure gradi-
ent for breakdown in the light gas jet case.

This behavior also explains the differences observed in
the axial profiles of the axial velocity at the axis depicted in
Fig. 21�a�. Without swirl �S=0�, the light jet is more concen-
trated near the axis than the homogeneous jet due to the
smaller axial momentum of the light gas, which is “stopped”
more quickly than the homogeneous jet by the heavier sur-
rounding gas. However, as the swirl increases, the larger
axial gradient in the pressure originated in the case of the
heavier homogeneous jet changes this behavior, restraining
the axial momentum of the jet which results in a larger axial
gradient of the axial velocity than in the case of a light gas
jet.

To see better this last mentioned behavior of the axial
velocity, Fig. 22 compares the radial velocity profiles for
�=1 and for �=0.07 at their respective critical swirls Sc. The
light gas jet remains more concentrated near the axis
�Fig. 22�b��, but the axial velocity at the axis decays more
rapidly for large z in the case of a homogeneous, heavier gas
jet �Fig. 22�a��.

To finish with this case with near-absence of coflow,
WO=0.05, Fig. 23 shows the axial variations of the mass
fraction Y and the density � at the axis as the swirl is in-

creased from zero to Sc. It is noteworthy that the effect of the
swirl is not very significant in the concentration nor in the
mixture density, even when approaching the critical swirl, in
spite of the drastic modifications in the velocity field when
vortex breakdown is approached. In fact, the radial profiles
of the mass fraction Y practically do not change when the
swirl increases from zero to the critical swirl number Sc, and
seems to indicate that diffusion does not significantly affect
the vortex breakdown phenomenon. What seems to be im-
portant for the determination of the critical swirl is the rela-
tive density of the jet in relation to the background gas.

As the coflow WO increases, the behavior of the flow
changes as in the previous section, but now these changes are
more significant than in the case with �=1, as may be ob-
served for WO=0.5 in Fig. 24, especially in part �b� of this
figure. Note that the axial gradient of the pressure increases
drastically as S increases, becoming much larger than in the
case with �=1 for the same coflow WO. As a consequence,
the critical swirl for breakdown Sc decreases now for
�=0.07 in an amount larger than in the case with �=1 for the
same coflow. This means that the coflow is more effective
favoring vortex breakdown when the density of the interior
gas jet is smaller.

The same trend is observed in Fig. 25 for WO=1, de-
creasing the critical swirl for breakdown as the coflow in-
creases more rapidly than in the case of a homogeneous jet.
In fact, the effect of the coflow for WO=1 surpasses the
opposite effect of the low density at the axis, and the critical
swirl for breakdown is now slightly smaller for the case of a
light jet �Sc=1.1863 for �=0.07� than for a homogeneous jet
�Sc=1.1869 for �=1�. Thus, for WO�1, Sc is smaller in the
case with �=0.07 than in the case with �=1, decreasing Sc

with WO slightly faster in the former case. Figure 26 sum-
marizes the computed values of Sc as a function of WO for
these two values of �. Note that in the range 0.8�WO�1,
the critical swirl numbers for vortex breakdown for �=0.07
and �=1 are practically the same.

Finally, it is worth commenting that as in the case of a
small coflow described above, the concentration of the light
gas is almost independent of the swirl when the amount of
coflow increases, in spite of the strong changes originated in
the flow structure when S approaches Sc. This is shown in
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Fig. 27 for WO=1, where it is also observed that the effect of
increasing the coflow WO is to decrease slightly the diffusion
of the light gas into the heavier ambient.

D. Results for a hydrogen-air „�=0.07… compressible
jet with Ma=0.5

When compressibility effects are taken into account
�Ma0�, the temperature is no longer constant ���1� be-
cause pressure gradients may now create temperature varia-
tions �see Eq. �33��. Since the swirl generates a depression at
the axis in the flow, it affects the temperature, and therefore
the density through the equation of state, which in turn modi-
fies again the pressure distribution and the velocity field near
the axis, so that the critical swirl for breakdown may change
appreciably due to compressibility effects.

To try to understand these mechanisms, we consider here
the case of �=0.07 with Ma=0.5, and, first, the case with
almost absence of coflow �WO=0.05�. Figure 28 shows the
comparison between the incompressible case �Ma=0� and
the compressible one with Ma=0.5 of the downstream evo-
lutions of both the axial velocity and the pressure at the axis
for different swirl numbers. It is observed that the differences
are almost negligible when the swirl is small. However, as
the swirl number approaches the critical value for vortex
breakdown, the compressibility effects become remarkable
in the sense that the axial gradients close to the jet exit
z=0 become much larger for the case Ma=0.5 than for
Ma=0. As a consequence, the depression originated by the
swirl is more concentrated near the axis in the compressible
case with Ma=0.5, and the flow conditions for vortex break-
down are reached with a significantly lower swirl level in
this compressible case so that the critical swirl for vortex
breakdown is smaller for Ma=0.5 than for Ma=0
�Sc=1.1941 for Ma=0.5 against Sc=1.2784 for Ma=0�.

In other words, the abrupt axial gradient of the pressure
that initiates VB as the swirl S increases is enhanced by the
compressibility effects due to the fact that now the swirl is
more effective in creating an axial depression when the tem-
perature increases near the axis �see below� so that one needs
a lower swirl intensity to reach the appropriate pressure gra-
dient for breakdown in the compressible jet case. Figure 29
shows this effect in the axial velocity profiles at different
values of z for S=1.1, which is close to Sc. The axial velocity
defect near the axis is remarkably larger in the vicinity of the

jet exit for Ma=0.5 than for Ma=0. This is explained by the
significant increase in the temperature near the axis when the
swirl increases �see Fig. 30�a�� so that according to the equa-
tion of state �29�, the density � falls below unity near the
axis when z is small, where Y is close to unity �see Fig.
30�b��. Then, by mass conservation �Eq. �27��, an abrupt
axial gradient of the axial velocity near the axis is generated
near the jet exit z=0, producing the axial velocity defect at
the axis that precedes vortex breakdown. Without the heating
effect near the axis �i.e., when Ma=0�, this axial velocity
defect is reached for larger values of S by means of just the
depression generated by the swirl. This global behavior is in
qualitative agreement with previous results on vortex break-
down for compressible vortices structurally different from
the present one, where compressibility makes the vortex
more susceptible to breakdown.19,20

This compressibility effect on the critical swirl number,
discussed above for WO=0.05, is almost independent on the
coflow so that the curve Sc�WO� for Ma=0.5 is practically
parallel, and below, the one discussed in the preceding sec-
tion for Ma=0 �see Fig. 31�.

E. Summary of the results for Sc

Figure 32 summarizes all the values of the critical swirl
number for VB onset as a function of the coflow WO com-
puted for Ma=0, 0.1, and 0.5, and for �=1 and 0.07. The
trend of Sc�WO� for Ma=0.5 and �=1 is analogous to that
described in the preceding section for �=0.07. For weak
compressibility effects �Ma=0.1� the results are obviously
very similar to those corresponding to the incompressible
case Ma=0. Note that the minimum value of WO represented
is 0.05. Numerical results for the flow structure with WO=0
can be obtained, with similar computer cost than for WO

0, for small values of the swirl S �see, e.g., Sec. IV A�.
However, as the swirl approaches its critical level Sc it is
very difficult to start the numerical integration at z=0 for
WO�0.05 �one needs values of �z much smaller than the
ones used in the above reported computations�. For this rea-
son the critical swirl numbers Sc have been computed only
for WO�0.05. In any case, the values of Sc for WO=0 can be
easily extrapolated from the results given in Fig. 32.
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V. SUMMARY AND CONCLUSIONS

We have analyzed in this work the axisymmetric flow
structure and the vortex breakdown onset of a swirling gas
jet discharging into an ambient constituted by a gas of much
larger molecular weight. The results have been compared
with those corresponding to a swirling jet discharging into
the same ambient gas, characterizing the effect on the vortex
breakdown onset of the disparity of molecular weights be-
tween the jet and the ambient, in addition to the effects of
compressibility and of the relative velocity �coflow� of the
ambient gas. This problem is of particular interest in some
combustion processes, where the fuel, constituted by a light
gas such as H2, is injected into an oxidant ambient �e.g., air�
of much larger molecular weight, and where the vortex
breakdown phenomenon of the discharging swirling jet is
sought for flame stabilization, to enhance mixing and reduce
pollution.

A quasicylindrical approximation of the flow equations,
valid for high Reynolds numbers, has been used. To start the
numerical integration of these equations we have used a
general self-similar solution valid close to the jet exit, which
is also obtained in the present work. The vortex breakdown
onset is characterized by the failure of the quasicylindrical
approximation.

We have considered the case of a molecular weight ratio
between the jet and the ambient gas of �=0.07, correspond-
ing to a hydrogen-air mixture, and compared the results with
those for the homogeneous, single-species jet case ��=1�.

The coflow WO has been varied from practically zero to 1.35,
and the Mach number Ma from 0 to 0.5. All the results for
vortex breakdown onset, i.e., for the critical swirl number for
vortex breakdown, are summarized in Fig. 32. In all the
cases considered the critical swirl Sc decreases as the coflow
WO increases. This is explained by the larger axial gradient
of the pressure at the axis near the flow exit due to the in-
creasing axial momentum outside the jet so that vortex
breakdown is reached for a smaller value of the swirl. In the
case of a light swirling jet ���1�, the critical swirl for vortex
breakdown is generally larger than in the case of a homoge-
neous jet ��=1�. This is explained by the fact that the swirl is
less effective in creating the abrupt axial gradient of the pres-
sure drop near the axis that precedes vortex breakdown as the
swirl S increases when the relative mass of the jet is smaller
so that one needs a larger swirl intensity to reach the appro-
priate axial pressure gradient for breakdown in the light gas
jet case. However, for WO�1, the opposite effect of coflow
dominates, and Sc becomes slightly smaller for ��1 than for
�=1. Finally, the effect of compressibility is always to di-
minish Sc due to the abrupt temperature rise near the jet exit
when S is high enough, which enhances the axial pressure
rise at the flow exit and makes the swirling jet more suscep-
tible to vortex breakdown. This last result is in qualitative
agreement with previous ones for compressible �shock-free�
vortex breakdown in different types of vortices.19,20

ACKNOWLEDGMENTS

This research has been supported by the Ministerio de
Educación y Ciencia of Spain under Grant No. FIS2007-
60161.

1O. Lucca-Negro and T. O’Doherty, “Vortex breakdown: A review,” Prog.
Energy Combust. Sci. 27, 431 �2001�.

2M. R. Ruith, P. Chen, E. Meiburg, and T. Maxworhy, “Three-dimensional
vortex breakdown in swirling jets and wakes: Direct numerical simula-
tion,” J. Fluid Mech. 486, 331 �2003�.

3A. Revuelta, “On the axisymmetric vortex breakdown of a swirling jet
entering a sudden expansion pipe,” Phys. Fluids 16, 3495 �2004�.

4A. Revuelta, A. L. Sánchez, and A. Liñán, “The quasi-cylindrical descrip-
tion of submerged laminar swirling jets,” Phys. Fluids 16, 848 �2004�.

5A. Revuelta, A. L. Sánchez, and A. Liñán, “Confined swirling jets with
large expansion ratios,” J. Fluid Mech. 508, 89 �2004�.

6J. Panda and D. K. Maclaughlin, “Experiments on the instabilities of a
swirling jet,” Phys. Fluids 6, 263 �1994�.

7P. Billant, J.-M. Chomaz, and P. Huerre, “Experimental study of vortex
breakdown in swirling jets,” J. Fluid Mech. 376, 183 �1998�.

8F. Gallaire, S. Rott, and J. M. Chomaz, “Experimental study of a free and
forced swirling jet,” Phys. Fluids 16, 2907 �2004�.

9H. Z. Liang and T. Maxworthy, “An experimental investigation of swirling
jets,” J. Fluid Mech. 525, 115 �2005�.

10I. K. Toh, G. Honnery, and J. Soria, “Axial plus tangential entry swirling
jets,” Exp. Fluids 48, 309 �2010�.

11A. H. Lefebvre, Gas Turbine Combustion, 2nd ed. �Taylor & Francis, New
York, 1999�.

12J. Ji and J. P. Gore, “Flow structure in lean premixed swirling combus-
tion,” Proceedings of the Combustion Institute �Elsevier, Amsterdam,
2002�, Vol. 29, pp. 861–867.

13Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-
stabilized combustion,” Prog. Energy Combust. Sci. 35, 293 �2009�.

14M. G. Hall, “The structure of concentrated vortex cores,” Progress in
Aeronautical Sciences �Pergamon, New York, 1966�, Vol. 7, pp. 53–110.

15M. Hall, “Vortex breakdown,” Annu. Rev. Fluid Mech. 4, 195 �1972�.
16P. Beran and F. Culik, “The role of nonuniqueness in the development of

vortex breakdown in tubes,” J. Fluid Mech. 242, 491 �1992�.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.05

1.1

1.15

1.2

1.25

1.3

W
0

S
c

ε=0.07, Ma=0

ε=0.07, Ma=0.5

FIG. 31. Sc vs WO for �=0.07 and Ma=0.5 compared to the case for
Ma=0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.05

1.1

1.15

1.2

1.25

1.3

W
0

S
c

ε=0.07, Ma=0

ε=0.07, Ma=0.1

ε=0.07, Ma=0.5

ε=1, Ma=0

ε=1, Ma=0.1

ε=1, Ma=0.5

FIG. 32. Sc vs WO for the different values of Ma and � considered.

113601-17 Quasicylindrical description of a swirling light gas jet Phys. Fluids 22, 113601 �2010�

http://dx.doi.org/10.1016/S0360-1285(00)00022-8
http://dx.doi.org/10.1016/S0360-1285(00)00022-8
http://dx.doi.org/10.1017/S0022112003004749
http://dx.doi.org/10.1063/1.1778375
http://dx.doi.org/10.1063/1.1645850
http://dx.doi.org/10.1017/S0022112004008948
http://dx.doi.org/10.1063/1.868074
http://dx.doi.org/10.1017/S0022112098002870
http://dx.doi.org/10.1063/1.1758171
http://dx.doi.org/10.1017/S0022112004002629
http://dx.doi.org/10.1007/s00348-009-0734-2
http://dx.doi.org/10.1016/j.pecs.2009.01.002
http://dx.doi.org/10.1146/annurev.fl.04.010172.001211
http://dx.doi.org/10.1017/S0022112092002477


17M. A. Herrada, M. Perez-Saborid, and A. Barrero, “Vortex breakdown in
compressible flows in pipes,” Phys. Fluids 15, 2208 �2003�.

18W. Gyllenram, H. Nilsson, and L. Davidson, “On the failure of the quasi-
cylindrical approximation and the connection to vortex breakdown in tur-
bulent swirling flow,” Phys. Fluids 19, 045108 �2007�.

19J. J. Keller, “On the practical application of vortex breakdown theory to
axially axisymmetrical and three-dimensional compressible flows,” Phys.
Fluids 6, 1515 �1994�.

20K. Mahesh, “A model for the onset of breakdown in an axisymmetric
compressible vortex,” Phys. Fluids 8, 3338 �1996�.

21Z. Rusak and J. H. Lee, “The effect of compressibility on the critical swirl
of vortex breakdown in a pipe,” J. Fluid Mech. 461, 301 �2002�.

22M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero,
“Downstream evolution of unconfined vortices: Mechanical and thermal
aspects,” J. Fluid Mech. 471, 51 �2002�.

23D. E. Rosner, Transport Processes in Chemically Reacting Flow Systems
�Butterworth-Heinemann, Boston, 1986�.

24M. Sánchez-Sanz, M. Rosales, and A. L. Sánchez, “The hydrogen laminar
jet,” Int. J. Hydrogen Energy 35, 3919 �2010�.

25M. Lessen, “On the stability of the free laminar boundary layer between
parallel streams,” Report No. NACA-TN-1929, 1949.

26C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Meth-
ods in Fluid Dynamics �Springer-Verlag, New York, 1988�.

27R. L. Ash and M. R. Khorrami, in Fluid Vortices, edited by S. I. Green
�Kluwer, Dordrecht, 1995�, pp. 317–372.

28A. L. Sánchez, M. Vera, and A. Liñán, “Exact solutions for transient
mixing of two gases of different densities,” Phys. Fluids 18, 078102
�2006�.

29M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
�Dover, New York, 1965�.

30H. Schlichting, “Laminare Strahlausbreitung,” Z. Angew. Math. Mech.
13, 260 �1933�.

31H. Görtler. “Decay of swirl in an axially symmetrical jet far from the
orifice,” Rev. Mat. Hisp.-Am. 14, 143 �1954�.

32H. Schlichting, Boundary Layer Theory, 7th ed. �McGraw-Hill, New York,
1987�.

33R. R. Long, “A vortex in an infinite viscous fluid,” J. Fluid Mech. 11, 611
�1961�.

34A. Revuelta, A. L. Sánchez, and A. Liñán, “The virtual origin as a first-
order correction for the far-field description of laminar jets,” Phys. Fluids
14, 1821 �2002�.

113601-18 Gallardo-Ruiz, del Pino, and Fernandez-Feria Phys. Fluids 22, 113601 �2010�

http://dx.doi.org/10.1063/1.1586272
http://dx.doi.org/10.1063/1.2717724
http://dx.doi.org/10.1063/1.868265
http://dx.doi.org/10.1063/1.868265
http://dx.doi.org/10.1063/1.869121
http://dx.doi.org/10.1017/S0022112002008431
http://dx.doi.org/10.1017/S0022112002002021
http://dx.doi.org/10.1016/j.ijhydene.2010.01.081
http://dx.doi.org/10.1063/1.2221349
http://dx.doi.org/10.1002/zamm.19330130403
http://dx.doi.org/10.1017/S0022112061000767
http://dx.doi.org/10.1063/1.1473650

