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The interaction of an open vortex with a solid plane perpendicular to the axis of the vortex is
analyzed numerically. We solve the axisymmetric, incompressible Navier-Stokes equations with
boundary conditions that far from the axis correspond to the near-inviscid far-field of Long’s
similarity solution for an open vortex. Continuation techniques are used to solve the equations of
motion for varying Reynolds numbers. When this parameter is large enough, a vortex breakdown
phenomenon occurs, producing a small region of reversed flow at the axis. This region increases in
size and migrates toward the solid plane for increasing Reynolds numbers. The subsequent
intensification of the swirl near both the axis and the surface generates a bifurcation with
nonuniqueness of the solution corresponding to a new, more intense, vortex breakdown. At the end,
for Reynolds numbers above a critical value, the flow acquires a two-celled structure, with a region
of reversed flow all along the axis surrounded by an annular updraft region with intensified swirl.
For large Reynolds numbers this flow structure tends, far above from the plane, to Long’s
self-similar solution of Type II. Thus, we show that of the two different similarity solutions for high
Reynolds numbers found by Long for a given flow force, only that with negative axial velocity at
the axis �Type II solution� is compatible with the viscous interaction of the vortex with a solid
surface. We also find that the corresponding flow force increases linearly with the Reynolds number,
so that the solution tends for large Reynolds numbers to the similarity solution with the most
negative axial velocity at the axis. This transition from one-cell to two-cell flow configuration, and
its relation to the intensification of the swirl in the flow, is in agreement with observations of intense
tornado-like vortices, where the flow at the axis is directed downward, while the rotation of the flow
is intensified in an annular updraft. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2737783�

I. INTRODUCTION

The viscous interaction of a vortex with a solid plane
perpendicular to its axis is a problem of industrial and atmo-
spheric interest. This interaction may be so strong as to affect
the global structure of the original vortex, even far away
from the surface. A significative example, though not a vor-
tex in the usual sense, is the rotating flow with constant
angular velocity �solid body rotation� above a solid plane.
This interaction was first studied by Bodewadt,1 finding one
of the few exact solutions to the full Navier-Stokes equa-
tions. The original, purely rotating flow is completely trans-
formed by the interaction with the solid surface, producing a
radial inflow near the plane and an axial upward flow that
extends up indefinitely far from the plane.1,2

For high Reynolds numbers, the boundary layer structure
close to the plane has been analyzed for several types of
nearly inviscid vortices.3–8 However, these boundary layer
solutions are not valid near the axis, where the flow turns
upward to form the viscous core of the vortex, thus failing to
uncover the main feature of the vortex-surface interaction.
For this reason, we have performed here a series of numeri-
cal simulations, using the full incompressible Navier-Stokes
equations, to analyze the interaction of a relevant type of
vortex with a solid surface. In particular, we have selected a
family of vortices that far from the axis and far from the
plane �located at z=0� corresponds, for high Reynolds num-

bers, to the outer inviscid behavior of Long’s vortex.9 That is
to say, we consider a family of vortices whose velocity field
v��u ,v ,w� in cylindrical polar coordinates �r ,� ,z�, for
large r and z, behaves as

u � 0, v � L
Wo

r
, w �

Wo

r
, �1�

where Wo is a constant with the dimensions of a circulation
and L is the nondimensional swirl parameter. We have se-
lected this vortex instead of a potential vortex with just cir-
cumferential velocity because most of actual vortices of in-
terest have also a significant meridional motion even far
away from the axis. In fact, the flow �1� is the large r and
large z behavior of an exact solution to Euler equations,
which can be written as

v = V�y�
1

r
, y �

r

z
, �2�

where the three components of the vector function V�y� can
be obtained from the integration of just one ordinary differ-
ential equation.10 This solution is the particular case m=1 of
a more general family of inviscid vortices with a radial decay
of the form rm−2 in �2�. It is singular both at the axis �y=0�
and at the solid surface �y→��. At the axis it is regularized
by a viscous slender region with self-similar structure, which
constitutes the so-called Long’s vortex,9,11 while at the solid
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plane it is regularized by a viscous boundary layer, which has
also a self-similar structure, but now of the second kind.8

However, neither of these boundary layers is valid near the
origin �r=0,z=0�, where the vortex axis intersects the plane,
and where the flow structure cannot be described by a
boundary layer approximation. In that region, the radial in-
flow in the boundary layer turns upward to form the viscous
core of the vortex, which, sufficiently far from the surface,
and for sufficiently high Reynolds numbers, has to tend to
one member of the family of Long’s self-similar solutions.
One of the main objectives of this paper is to find out which
one of these self-similar solutions corresponds to a free vor-
tex interacting with a solid plane. Also, we want to describe
how this solution is reached as the Reynolds number is in-
creased. To that end we solve numerically the full incom-
pressible and axisymmetric Navier-Stokes equations with
boundary conditions far from the axis given by the compos-
ite solution constituted by the inviscid solution �2� for large r
�large y� plus the self-similar boundary layer solution near
the plane.8

Burggraf and Foster12 made a somewhat related analysis
some time ago, but they used the parabolic, or near-axis,
approximation of the Navier-Stokes equations for large Rey-
nolds numbers, which, of course, cannot model the interac-
tion of the vortex with a solid surface. These authors inte-
grated the parabolic equation starting from arbitrary vortices
decaying as r−1 at a given axial location, and followed their
parabolic evolution as z increased. They found that the
downstream solution either breaks down or tends to Long’s
self-similar solution of Type II �i.e., with negative axial ve-
locity at the axis, see below� as z→�, depending on the
parameters of the initial vortex. A similar conclusion was
recently found by Perez-Saborid et al.,13 also using the para-
bolic approximation of the flow equations, including the en-
ergy equation. As a substantial difference, here we use the
full Navier-Sokes equations and consider a problem of great
practical interest, the interaction of a free vortex with a solid
surface. We also find that the solution for large z tends to
Type II Long’s self-similar solution if the Reynolds number
is large enough, but we connect the formation of this two-
celled structure with the swirl intensification occurring in
tornado-like vortices interacting with a solid surface. As we
shall see, the flow structure in the region near the axis where
the vortex meets the wall is quite complex, with vortex
breakdown and other flow transitions taking place as the
Reynolds number increases. Similar complex structures, but
for external far-field vortices which do not match the one
considered in this work as a boundary condition, have been
observed experimentally and discussed by Phillips and
Khoo,14,15 and by Hirsa, Lopez, and Kim.16 In particular,
these latter authors found that the essential dynamics in the
effusive corner region are axisymmetric, with a large toroidal
structure developing from the wall boundary layer. However,
in the work of Phillips and Khoo, the appearance of the
near-axis structure is related to vortex breakdown. In our
numerical simulations, we find an interplay between both
mechanisms, vortex breakdown at the axis, and effusing
boundary layer flow at the wall, which at the end, for suffi-
ciently high Reynolds numbers, tends to the formation of a

two-celled flow structure far from the wall. This two-celled
structure corresponds, as we shall show, to a Type II Long’s
vortex. It has no relation to Sullivan’s two-cell vortex.17 Sul-
livan’s exact solution to the Navier-Stokes equations, which
does not satisfy the no-slip boundary condition at the solid
wall z=0, has a radial structure of the tangential velocity
qualitatively similar to Long’s Type II vortex. However, this
tangential velocity has no axial variation like in Long’s vor-
tex, and, what is more relevant here, the axial velocity in
Sullivan’s vortex is completely different: it grows with the
axial distance z and tends to a constant far from the axis,
while the axial velocity in Long’s vortex decays as r−1 far
from the axis �Eq. �2�� and presents a more complex axial
variation, which, for instance, behaves as 1/z at the axis.9,11

II. FORMULATION OF THE PROBLEM
AND NUMERICAL METHOD

A. Mathematical formulation

We consider here the incompressible and axisymmetric
flow in a domain above a solid plane at z=0, and inside a
cylindrical region of radius r0 and height zf �see Fig. 1�: The
swirling flow enters through the lateral surface r=r0, and
goes out through the upper surface, z=zf �r0. To avoid
boundary conditions for the pressure, we use a formulation
of the flow equations in terms of the stream function, the
circulation, and the azimuthal component of the vorticity,
commonly used in this type of flow �e.g., Ref. 18�. First we
define the following dimensionless variables:

r* �
r

r0
, z* �

z

z0
, �3�

where z0 is an arbitrary characteristic axial length such that

� �
r0

z0
� 1; �4�

FIG. 1. Sketch of the dimensional integration domain and coordinates.
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�* �
�

V0r0
2 , �* �

�

V0r0
, �* �

r	

V0
, �5�

where V0 is a characteristic velocity that will be taken from
�1� as V0=W0 /r0, and the stream function �, the circulation
�, and the azimuthal component of the vorticity 	 are de-
fined in terms of the velocity field �u ,v ,w� as

u = −
1

r

��

�z
, w =

1

r

��

�r
, � = rv , �6�

	 =
�u

�z
−

�w

�r
. �7�

With this formulation, the continuity equation is satisfied
identically, and the equations to be solved are the azimuthal
component of the vorticity equation for the evolution of �*,
the azimuthal component of the momentum equation for �*,
and the definition �7� of the vorticity in terms of the stream
function �6� for �*. In dimensionless form, they can be writ-
ten as18 �in what follows, we shall drop the superscript * in
the dimensionless variables, understanding that all variables
are dimensionless, except otherwise specified�

��

�t
−

1

r

��

�z

��

�r
+

1

r

��

�r

��

�z
+

2�

r2

��

�z

=
2�

r2

��

�z
+

1

Re �
�*

2� , �8�

��

�t
−

1

r

��

�z

��

�r
+

1

r

��

�r

��

�z
=

1

Re �
�*

2� , �9�

� = − �*
2� , �10�

where

�*
2 � �2 �2

�z2 +
�2

�r2 −
1

r

�

�r
�11�

and

Re =
V0r0



=

W0



�12�

is the Reynolds number, with 
 the kinematic viscosity.
The main input of the problem solved here is the bound-

ary condition at r=1 �r=r0 in terms of the dimensional ra-
dius�, which is given by the composite solution of an inviscid
flow of the form �2� and the corresponding matching with its
viscous boundary layer near z=0. This boundary layer solu-
tion was found in Ref. 8 to be a similarity solution of the
second kind, which contains an additional, and arbitrary, ra-
dial length R �see Fig. 1�. Therefore, without loss of gener-
ality �since R is arbitrary�, we assume that r0 is much smaller
than R, but of course much larger than the boundary layer
thickness. Thus, the boundary condition at r=1 can be writ-
ten as the following composite expressions:

��r = 1,z� � �1�z� = �in + �bl − �comm, �13�

��r = 1,z� � �1�z� = �in + �bl − �comm, �14�

��r = 1,z� � �1�z� = �in + �bl − �comm, �15�

where the subscripts in, bl, and comm make reference to the
inviscid solution, the boundary layer solution, and the com-
mon part, respectively. Each of these solutions will be briefly
described next.

In the formulation �−�−�, the inviscid flow �2� can be
written as

�in = LrY�y�, �in = L, �in = − �*
2�in, �16�

where in the present dimensionless variables y=�r /z, and
the function Y�y� comes from the solution to an ordinary
differential equation.10 For the case �2� considered here of a
flow decaying as r−1 �m=1 in the notation of Refs. 10 and
11, corresponding to Long’s vortex�, this function can be
obtained analytically:10

Y�y� =
�2

L

��1 + y2 − 1�1/2

y
. �17�

In addition, as is observed in �16�, the inviscid circulation in
this case is just a constant, which in the dimensionless vari-
able � is equal to the swirl parameter L. As shown in Ref. 11,
the only value of L for which this inviscid solution can be
regularized at the axis by viscosity �in the present case with
m=1� is L=�2, so that this will be the only value of the swirl
parameter considered in what follows. This coupling be-
tween meridional and azimuthal velocity through L=�2 is
implicit in Long’s vortex.9,12

The boundary layer solution near the solid plane at
z=0, assuming that r0�R, can be written as8

�bl = �Re0/2�−1/3f���, �bl = �2g���, �bl = − �*
2�bl.

�18�

In these expressions, the functions f��� and g���, where

� � 21/3Re0
2/3rz

�
, Re0 � Re� , �19�

are the solution to a couple of ordinary differential
equations,8

f� + f f� + f�2 = 0, g� + f�g� = 0, �20�

f�0� = f��0� = g�0� = 0, f�� → �� → ��, g�� → ��

→ L/�2, �21�

with primes denoting differentiation with respect to �. In
writing Eqs. �18� and �19�, we have also assumed that

� r0

R
	3

= � �
r0

z0
� 1. �22�

This choice of the characteristic axial length z0 allows us to
eliminate the arbitrary length R in the formulation of the
problem, without loss of generality. Thus, the only two di-
mensionless parameters in the problem are Re0�=Re�
=Re�r0 /R�3� and �. But � is a geometrical parameter, of
much less physical relevance than the Reynolds number Re0,
and will be fixed to �=0.1 in all the numerical results given
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below �remember that the swirl parameter L has been fixed
to �2�.

Finally, the common part between the inviscid solution
�16� and the boundary layer solution �18� is obtained by
making y→� in �16� or, alternatively, �→� in �18� result-
ing in8

�comm = �2rz

�
	1/2

, �comm = L, �comm = − �*
2�comm.

�23�

Substituting all these expressions into �13�–�15�, one ob-
tains the flow boundary conditions at r=1. Figure 2 shows
the details of the matching for Re0=10 and �=0.1, and Fig.
3 depicts the boundary conditions for several values of Re0

with �=0.1.
The remaining boundary conditions for Eqs. �8�–�10� are

the following: at the solid wall �z=0� the velocity field van-
ishes, implying that

��r,z = 0� = 0, ��r,z = 0� = 0, ��r,z = 0�

= − �2� �2�

�z2 	
z=0

; �24�

at the axis �r=0� one has the symmetry conditions

��r = 0,z� = ��r = 0,z� = ��r = 0,z� = 0, �25�

and at z=z1�zf /z0 we assume that the second derivatives of
the variables vanish,

�2�

�z2 =
�2�

�z2 =
�2�

�z2 = 0, at z = z1. �26�

In the computations, we use different values of z1�1 in
order to assure that the numerical solution does not depend
on the specific value of z1, where this last boundary condi-
tion is applied �remember that z0 /r0=�−1�1�.

B. Numerical method

We are mostly interested in the steady-state solutions of
the problem formulated above for different �increasing� val-
ues of the Reynolds number Re0. For this reason, no initial
condition has been specified. To obtain these steady solutions
numerically, we use a continuation and bifurcation method
very similar to that described in Sanchez et al.19 Basically,
the equations and boundary conditions �8�–�26�, once dis-
cretized on N��Nr+1�
 �Nz+1� spatial nodes, including the
boundaries, are written in the vector compact form

�

�t
B · x = L · x + N�x,x� � f�x . Re0� , �27�

where x��� ,� ,��T is a vector of size 3N formed by the
values of the variables �, �, and � on every spatial node,
and B, L, and N are the discretized versions of the continu-
ous linear and nonlinear operators in the equations and
boundary conditions. The steady-state solutions are obtained
by solving the corresponding time-independent equation
f�x ,Re0�=0, together with an additional condition, which al-
lows us to follow the solution of this equation as the param-
eter Re0 is varied. To be able to follow the solution in the

presence of folds or bifurcations, a pseudo-arclength con-
tinuation method is used.20 In terms of the continuation vari-
able s along the curve of solutions, the equations to be solved
are

f�x,Re0� � L · x + N�x,x� = 0 �28�

and

FIG. 2. �Color online� Matching details of the boundary conditions
�13�–�15� for � �a�, � �b�, and � �c� at r=1, for Re0=10, �=0.1, and L
=�2.
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n�x,Re0� �
dx

ds
· �x − x0� +

dRe0
0

ds
�Re0 − Re0

0� = 0, �29�

where �x0 ,Re0
0� is the predicted point along the curve of

solutions in the space �x ,Re0�, which is obtained by qua-
dratic extrapolation from the three previous solutions along
the curve for a given increment �s. Once this predicted point
is obtained, the solution to �28� and �29� is found by a
Newton-Raphson iteration method. To start this continuation
method, one needs the steady solutions for three initial �low�
values of Re0. These are obtained by solving either the time-
dependent equation �27� starting from the flow at rest, which
is feasible for very low values of Re0, or by solving the
time-independent equation f�x ,Re0�=0 starting from an ini-
tial approximate flow of the form

��r,z� = �1�z�r2, ��r,z� = �1�z�r2, ��r,z� = �1�z�r2,

�30�

where �1 , �1, and �1 are the boundary conditions �13�–�15�
at r=1. In the former case, the time-dependent equation is
solved by a second-order predictor-corrector method with a
time step �t, and in the second case we use a Newton-
Raphson iteration method. In the computations given below,
we have used a combination of all these methods to check
the accuracy of the results, reserving the continuation
method to pass the folds in Re0.

For the spatial discretizations, we have used second-
order finite differences on a nonuniform mesh,21 concentrat-
ing the nodes near the plane and near the axis �i.e., for small
z and r�. The resulting sparse linear system of equations has
been solved with the subroutines in the SPARSEKIT pack-
age �a basic tool kit for sparse matrix computations, version
2, http://www.users.cs.umn.edu/~saad/software/SPARSKIT/
sparskit.html�. Finally, to check the accuracy of the results
we have used different mesh sizes �different values of Nr and
Nz� and different nonuniform distribution of the nodes. In
addition, a spectral collocation method in the radial direc-
tion, but maintaining the finite differences in the z direction,
has been used. Typically, we have used values of Nr between
80 and 120, and values of Nz between 200 and 1100, depend-
ing on Re0, so that the number of unknowns 3N ranges be-
tween just 48000 to almost 4
105.

Figure 4 compares results obtained from different grids
and methods as Re0 is varied. As the test value we use the
maximum azimuthal velocity in the whole domain, vmax,
which is the most sensitive quantity to the numerical accu-
racy we have found. In addition, this maximum swirl will be
used in the next section, among other flow magnitudes, to
characterize the different transitions in the flow as Re0 is
varied. It is observed that, up to Re0
50, finite differences,

FIG. 3. Boundary conditions �13�–�15� for � �a�, � �b�, and � �c� at r=1,
for �=0.1, L=�2, and three values of Re0, as indicated.

FIG. 4. Largest swirl in the whole domain, vmax, as a function of Re0

obtained with different meshes and numerical techniques. In the legend we
specify Nr, the numerical technique in the radial direction �finite differences
or spectral method�, and Nz �in the z direction we always use finite differ-
ences on a nonuniform mesh�.
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and just Nr
Nz=80
200 nodes, are enough to have a good
accuracy. In fact, up to the first bifurcation �Re0
66, see the
next section�, finite differences provide good results with a
reasonable number of nodes. However, after this bifurcation,
the structure of the flow becomes more involved, especially
near the origin, and the gradients near the solid plane are so
large that the use of finite differences in the radial direction
becomes prohibitive for our computer facility. For that rea-
son, after that Reynolds number we use a spectral collocation
technique in the radial direction, which is much more accu-
rate for the same number of nodes, but at the cost of a more
complex numerical code, and more computer memory for a
given Nr, because the matrices become less sparse. However,
one may use much smaller values of Nr for the same
accuracy.22 We use Chebyshev polynomials, with the spectral
nodes sj =cos�j� /Nr�, j=0,1 , . . . ,Nr, distributed in the radial
direction according to the linear transformation rj

= �1+sj� /2, which concentrates the nodes near the axis r=0
�and also near the boundary r=1�. It is observed in Fig. 4
that this spectral method yields very accurate results with
just Nr=50 �together with Nz=1100 finite-difference axial
nodes very concentrated near the plane z=0� up to the sec-
ond bifurcation �Re0�158, see the next section�. After that
bifurcation, we have to increase the number of radial, spec-
tral nodes to Nr=100. In most of the results reported below,
we use Nr=100 spectral nodes in the radial direction and
Nz=1100 finite-difference nodes in the axial direction.

III. RESULTS

We present here the different solutions of the problem
for a given small value of �=0.1 as the Reynolds number

Re0 is varied, which is the only parameter left in the problem
once L has been fixed to �2. We also fix z1=5.7, which is
large enough for the solution to be independent of the bound-
ary condition �26� for the highest values of Re0 considered
�for small Re0 one may use much smaller values of z1�. Note
that in all the results given below the vertical scale is actually
�−1=10 times larger that the radial scale, so that the height
of the computational domain is in fact 57 times larger than
its radius. Also, the actual Reynolds number of the flow �12�,
based on r0 and on the characteristic velocity V0, is Re
=Re0/�=10Re0.

To have a preliminary idea of the solution for a relatively
low value of Re0, Fig. 5 shows contour lines for �, �, and �
in the �r ,z� plane for Re0=15 �only the interval 0�z�1 is
shown in the figure�. For this Reynolds number, the flow is
one-celled and smooth everywhere, entering at r=1 with the

FIG. 5. Contour lines of �, �, and � �as indicated on the top of each
subfigure� in the �r ,z� plane for Re0=15, L=�2, and �=0.1 �only the range
0�z�1 is shown�. For each variable we plot with continuous lines 11
contour lines corresponding to �max�i /10�3, �max�i /10�3, and �max�i /10�3,
respectively, with i=0,1 , . . . ,10. If there exists negative values of these
variables, we also plot with dots 10 contour lines corresponding to
�min�i /10�3, �min�i /10�3, and �min�i /10�3, respectively, with i=1,2 , . . . ,10
�in the present case, only the vorticity � has negative values in the plotted
domain�.

FIG. 6. �Color online� � at r=0.05 and two values of z �as indicated� as a
function of Re0. The letters A−E mark the different flow transitions.

FIG. 7. As in Fig. 5, but for Re0=34.
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flow rate mostly concentrated near the plane z=0, and turn-
ing upwards to exit the computational domain at its top. The
flow is upwards all along the axis. The swirl intensifies near
the axis, particularly near the plane, where the flow turns up.

As the Reynolds number increases, the flow becomes
more and more involved, especially close to the plane z=0,
undergoing several transitions in the form of vortex break-
down bubbles at the axis and other bifurcations. To visualize
these transitions, we use Fig. 4 together with Fig. 6, which
shows the value of � as a function of Re0 at two different
points near the axis �r=0.05� at two different heights z very
close to the surface. The maximum value of the Reynolds
number we have reached is Re0=216 �Re=2160�. There are
five main transitions, marked with the letters A−E in Fig. 6,
which are described next.

A. Vortex breakdown bubbles

At Re0=Re0
A
34 a breakdown bubble appears at the

axis, just above z=0.5 �see Fig. 7�. This is not a bifurcation

of the solution in the parameter Re0, but a smooth transition,
quite similar to the first appearance of a breakdown bubble in
Escudier’s cell, as described, for instance, by Lopez.23 The
appearance of this breakdown bubble is preceded, as dis-
cussed by Brown and Lopez,24 by a change in the sign of the
local vorticity �see Fig. 7 for ��.

As the Reynolds number increases above Re0
A, the break-

down bubble increases in size and moves downwards toward
the solid plane. Eventually, at Re0
38, a second breakdown
bubble appears just above the first one �see Fig. 8 for Re0

=40�. This transition is also smooth and very similar to that
in Escudier’s cell.23 As Re0 increases further, these two
breakdown bubbles coalesce �see, e.g., Fig. 11 discussed be-
low�.

B. Swirl intensification near the surface

At Re0=Re0
B
55, the swirl intensifies abruptly near the

surface z=0. This transition is not appreciated in Fig. 6, but
it is in Fig. 4 as a change in the rate at which vmax increases
with Re0. In fact, the circulation does not change apprecia-
bly, but the height z at which the maximum swirl is located
goes down abruptly at this Reynolds number �see Fig. 9�a��.
For Re0�Re0

B, the maximum swirl remains very close to the
surface �below z=0.01�. The location of the maximum swirl
also approaches abruptly to the axis at Re0=Re0

B �see Fig.
9�b��. This intensification of the swirl near z=0, which is a
consequence of the breakdown bubbles traveling toward the
floor, is relevant because it makes possible the bifurcation
described next.

C. First bifurcation, third breakdown bubble

Point C in Fig. 6 corresponds to a bifurcation in the
solution, where in a small interval of Reynolds numbers,
Re0

C1
65.58�Re0�Re0
C2
66.87 �see zoom in Fig. 10�,

three different solutions coexist for the same Re0. A close
view near the origin of the different solutions for Re0�66,
marked in Fig. 10 with 1, 2, and 3, is depicted in Figs. 11–13.
The solutions 1 and 2 are quite similar �Figs. 11 and 12�,
with a unique large breakdown bubble at the axis between

FIG. 8. As in Fig. 5, but for Re0=40.

FIG. 9. �Color online� Height z �a� and radius r �b� at which the swirl is a maximum in the whole flow domain as functions of Re0. These are the locations
of vmax in Fig. 4.
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z
0.075 and z
0.5, which comes from the coalescence of
the two previous breakdown bubbles. However, solution 3
�Fig. 13� is qualitatively different, with a new vortex break-
down bubble very close to the plane, small but very intense,
since the swirl is very concentrated at the axis near the plane
after transition B. The formation of this new vortex break-
down bubble is thus qualitatively different from the previous
smooth transition A, being similar to the vortex breakdown
bifurcation in pipes described by Beran and Culik25 and by
Lopez.26 As Re0 increases above Re0

C2
66.87, the solution
changes abruptly from type 1 to type 3, with a new vortex
breakdown bubble very close to the plane. Conversely, if Re0

now decreases below Re0
C1
65.58, the solution changes

abruptly from type 3 to type 1, during which the lower
breakdown bubble disappears, thereby closing the hysteresis
cycle. This type of transition was theoretically studied for
inviscid swirling flows in pipes by Wang and Rusak.27 Solu-

tions of type 2 are unstable and would never occur in prac-
tice. From a numerical point of view, the Jacobian associated
to Eq. �27� becomes singular at Re0

C2 �Re0
C1�, requiring a

continuation method to pass through it in the solution curve
for increasing �decreasing� Reynolds numbers.19,25,26

D. Transition to Type II, or two-cell, solution

As Re0 increases further, the breakdown bubbles in Fig.
13 coalesce, and the recirculating zone increases in size up-
wards along the axis until, eventually, it reaches suddenly the
upper �exit� surface when Re0=Re0

D
113. For larger Re0,
the flow comes down at the axis from the upper surface z
=z1. The process is shown in Fig. 14, where the streamlines
for three increasing values of Re0 are plotted �note that the
full scale in z is now plotted�. The abruptness of the transi-
tion can be observed in Fig. 15, where we plot the height z of

FIG. 10. Detail of the curve for z=0.01 in Fig. 6 near the bifurcation C.

FIG. 11. Contour lines corresponding to the solution in point 1 of Fig. 10.
Re0=66.0. �Contours as in Fig. 5.�

FIG. 12. Contour lines corresponding to the solution in point 2 of Fig. 10.
Re0=66.0021.

FIG. 13. Contour lines corresponding to the solution in point 3 of Fig. 10.
Re0=66.0971.

067104-8 L. Parras and R. Fernandez-Feria Phys. Fluids 19, 067104 �2007�

Downloaded 20 Jun 2007 to 150.214.43.136. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



the upper stagnation point of the breakdown bubbles as a
function of Re0, showing a vertical asymptote at Re0
113.
Therefore, the computed value of this critical Reynolds Re0

D

is almost independent of the computational height z1, pro-
vided it is sufficiently large.

For Re0�Re0
D, most of the axis, from the top z=z1 to

almost the plane z=0, has negative axial velocity at the axis;
i.e., we have a two-celled solution in most of the flow, which
in the notation of the self-similar viscous solutions near the
axis is termed as a solution of Type II.11,12 Actually, the flow
becomes almost columnar near the axis once this critical
value has been surpassed �see Fig. 16 for Re0=125�, with the
central downdraft region in almost solid body rotation. The
swirl in the annular updraft region becomes intensified as

Re0 increases. This behavior can be observed in Fig. 17,
where we plot the radial profiles of the azimuthal and axial
velocity components at z=2 for increasing values of Re0.
The intensification of the swirl in a transition from a one-cell
to a two-cell flow structure is a well known phenomenon in
the tornado literature.28,29 However, the maximum swirl in
the whole domain, which is located near the solid plane �see
Fig. 9�, decreases after this transition �Fig. 4� because the
central slow downflow now approaches the ground. Another
consequence of this transition is the formation of axial, axi-
symmetric standing waves in the lower part of the annular
updraft region, which can already be observed in Fig. 16 for
Re0=125. As we shall see below, these spatial undulations
are intensified as Re0 increases. They are typical of the vis-
cous interaction of a solid-body rotating flow, like that inside
the annular updraft, with the ground, or Bödewadt-type
flows.1,16,18

E. Second bifurcation, self-similar solutions

As the Reynolds number increases further, the flow near
the axis and far from the ground must approach Long’s self-
similar solutions. In fact, according to the results of the
above section III D, they must approach a two-celled, or
Type II, self-similar solution, with negative axial velocity at
the axis. We find that this is the case but, before that asymp-
tote is reasonably accurate, there exists a second bifurcation
in the flow similar to that in C: in a small interval of Rey-
nolds numbers, Re0

E3
156.65�Re0�Re0
E1
158.5 �see

zoom in Fig. 18�, three different solutions coexist for the
same Re0. That marked in Fig. 18 with 3 for Re0=157.8 is
depicted in Fig. 19. The other two solutions, marked in Fig.
18 with 1 and 2, are quantitatively very similar, because the
intensity of the bifurcation is in fact very small, and are not
shown. But there exists a qualitative difference in the evolu-
tion of the solutions after this bifurcation that affects all the
subsequent solutions for Re0�Re0

E1.
This bifurcation corresponds to the Reynolds numbers at

FIG. 14. Contour lines of � for Re0=105 �a�, 110 �b�, and 113 �c�. Note that
the whole domain in z is now plotted, while only the interval 0�r�0.5 is
shown.

FIG. 15. �Color online� Evolution with Re0 of the height z of the uppermost
stagnation point at the axis of the breakdown bubble.

FIG. 16. Contour lines of �, �, and � in the �r ,z� plane for Re0=125, L
=�2, and �=0.1. Of each variable we plot 21 equidistant contour lines
between zero and their maximum values, and 20 equidistant contour lines
between their �negative� minimum values �if they exist� and zero.
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which the downdraft region reaches the ground, with the
lower stagnation point below the region of recirculating flow
jumping from the axis to the solid plane �Fig. 19�. We ob-
serve in Figs. 4, 6, and 9 that once this bifurcation is passed
for Re0�Re0

E1
158, the global behavior of the flow
changes, in the sense that its subsequent evolution as Re0

increases becomes smooth, particularly near the ground.
Thus, for instance, the solution for Re0=175 shown in Fig.
20 is qualitatively very similar to that shown in Fig. 19. In
fact, as we shall see next, suddenly starting from Re0

E1, the
flow far from the ground compares very well with Long’s
similarity solutions. That is to say, this transition seems to
mark the onset for the self-similar behavior of the solutions
for large Reynolds numbers at large z.

To make this comparison, we first look for a representa-
tion of the numerical solutions, which allow us to see how
far we are from a similarity solution at all. To that end, we

define the variables

� =
r

rmax�z�
, V =

v
vmax�z�

, W =
w

vmax�z�
, �31�

where vmax�z� is the maximum value of the azimuthal veloc-
ity component for a given height z and rmax�z� is its radial
location. Figure 21 shows V and W as functions of � for
several heights z between 3 and z1, and for four values of Re0

�the same values considered in Fig. 17 for z=2�. We observe
the collapse of the solutions, especially for the last three
values of Re0, which are larger that Re0

E1, thus showing that
the solution far from the ground tends to a similarity solu-
tion, the more so the higher the Reynolds number. These
variables �, V, and W correspond �are proportional� to
Long’s similarity variables if9,11

FIG. 17. �a� Radial profiles of the azimuthal velocity at z=2 for different values of Re0. Also plotted is the inviscid behavior L /r �boundary condition at
r=1�. �b� Radial profiles of the axial velocity for the same values of Re0.

FIG. 18. �Color online� Detail of the curve for z=0.1 in Fig. 6 near the
bifurcation E.

FIG. 19. Contour lines near the origin corresponding to the solution in point
3 of Fig. 18. Re0=157.8. �Contours as in Fig. 5.�
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rmax�z;Re0� � � z

Re0
	n1

, vmax�z;Re0� � �Re0

z
	n2

�32�

for large z and Re=Re0/�, with n1=n2=1 for Long’s vortex
�m=1 in the notation of Ref. 11�. Figure 22 shows that, for

Re0=216, the above behavior with rmax a power function of z
is very accurate, but with n1 slightly smaller than unity. In
fact, as is shown in Fig. 23, where the powers n1 and n2

obtained numerically are plotted as functions of Re0, both n1

FIG. 20. As in Fig. 16, but for Re0=175.

FIG. 21. �Color online� V��� and W��� at z=3,3.18,3.32, . . . ,5.7 for Re0=150 �a�, Re0=175 �b�, Re0=200 �c�, and Re0=216 �d�. With dashed lines we show
the corresponding Long’s self-similar solution.

FIG. 22. Computed values of rmax�z� for Re0=216 �dots� which are adjusted
with rmax=0.0441��z+8.245� /Re0�0.95.
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and n2 are very close to unity for Re0�Re0
E1
158, and tend

�slowly� to unity as Re0 increases.
To make a quantitative comparison of the numerical ve-

locity profiles with the self-similar solutions, we have to ad-
just the proportionality constants missing in �32� to those
appearing in Long’s similarity variables. In addition, Long’s
similarity solution is not unique, but there exists a multiplic-
ity of solutions, each of them characterized by a different
value of the nondimensional axial velocity at the axis, which
in Ref. 11 is termed as 2A1. One of the best ways to adjust all
this is by computing Wmax/Vmax �=Wmax since Vmax�1 by
definition� for each Re0, and selecting the value of A1 in
Long’s similarity solution for the same value of Wmax/Vmax.
Figure 24 shows Long’s similarity solution for different val-
ues of A1,11 and Fig. 25 depicts the ratio Wmax/Vmax com-
puted from that figure as a function of A1 in its negative
range −1/�2�A1�0. On the other hand, Fig. 26 shows
Wmax/Vmax obtained from the numerical simulations as func-

tion of Re0. �Note in this figure how the behavior changes at
the critical Reynolds number Re0=Re0

E1
158, as com-
mented on above.� Thus, comparing Figs. 25 and 26 we can
select the corresponding values of A1 and, therefore, the cor-
responding member of the family of Long’s self-similar so-
lution for each value of Re0 �see Fig. 27�. Making use of
these values A1�Re0�, we have included with dashed lines in
Fig. 21 the corresponding Long’s self-similar solution for
each value of Re0. It is observed that the agreement is quite
good, particularly for the three last cases; i.e., for Re0

�Re0
E1.

In Fig. 28, we have plotted the nondimensional flow
force M in Long’s vortex corresponding to each A1 �i.e., Fig.
2 in Ref. 30, which is reproduced here for convenience�,
showing the existence of two different solutions, termed
Type I and Type II,12 for each value of M. Clearly, the solu-
tions found here numerically are of Type II with A1�0.
Making use of this figure, together with Fig. 27, we have
plotted in Fig. 29 the corresponding Long’s nondimensional

FIG. 23. Computed values n1 �continuous line� and n2 �dashed line� as a
function of Re0.

FIG. 24. �Color online� Long’s self-similar velocity profiles for W��� �a� and V��� �b� for different �nonpositive� values of the axial velocity at the axis.11 In
particular, the nondimensional axial velocity at the axis is 2A1, and we plot the profiles for A1=0, −0.1, −0.2, −0.3, −0.4, −0.5, −0.6, −0.65, −0.67, −0.69, and
−0.7. The minimum possible value, corresponding to A1=−1/�2
−0.7071, is plotted with a dashed line in �a�.

FIG. 25. �Color online� Wmax/Vmax as a function of A1��0� for Long’s
self-similar solution �from Fig. 24�. We have marked with a horizontal
dashed line the case corresponding to Re0=216, and with a vertical dashed
line the minimum value of A1, −1/�2.
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flow force M of the numerical solutions as a function of Re0.
It is observed that, for Re0 larger than approximately Re0

E1,
the flow force evolves linearly with Re0. This seems to indi-
cate that as Re0→� the solution far from the ground tends to
Long’s self-similar solution with the lowest possible axial
velocity at the axis, i.e., with A1→−1/�2. However, we have
not been able with our computer facilities to reach values of
Re0 larger than approximately 216 �Re=Re0/�=2160�.

IV. SUMMARY AND CONCLUSIONS

We have considered here the interaction of a quite gen-
eral type of axisymmetric free vortex with a solid plane per-
pendicular to its axis by solving numerically the full incom-
pressible Navier-Stokes equations. For high Reynolds
numbers, and far from the plane, this family of vortices cor-
responds to the inviscid outer behavior of Long’s vortex,
commonly used as a model of tornado-like vortices.12,31 As
the radial inflow boundary condition far from the axis, we
have used this inviscid solution matched asymptotically with

the corresponding viscous boundary layer on the plane.8 The
problem is formulated in such a way that it depends on a
unique Reynolds number Re0. For moderately low Reynolds
numbers, we find smooth, one-celled solutions. As the Rey-
nolds number increases, several vortex breakdown bubbles
with flow recirculation are formed at the axis relatively close
to the plane. The last breakdown bubble formed as the Rey-
nolds number is increased, which is the closest to the plane,
is associated with a bifurcation of the equation with multi-
plicity of solutions, similar to that found by Beran and
Culik25 and by Lopez26 for vortex breakdown in a pipe.
Eventually, all the breakdown bubbles coalesce and, for a
Reynolds number above a critical value, the flow acquires a
two-celled structure, with a downdraft axial flow at the axis
and an annular updraft region around it where the swirl is
intensified. This two-celled structure is in agreement with the
observed flow in mature tornadoes. After a second bifurca-

FIG. 26. �Color online� Wmax/Vmax as a function of Re0 from the numerical
computations.

FIG. 27. �Color online� A1�Re0� computed from Figs. 25 and 26.

FIG. 28. Flow force M in Long’s vortex as a function of A1 showing the two
different types of self-similar solutions for each M �from Ref. 30�.

FIG. 29. �Color online� Flow force M as a function of Re0 computed from
Figs. 27 and 28. The dashed line corresponds to M 
0.0013Re0+4.1258.
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tion, the axial downdraft reaches the ground and we find that
far from the solid plane the two-cell flow structure compares
quite well with Long’s self-similar solutions of Type II,9,11,12

with negative axial velocity at the axis �A1�0� and a flow
force �M�, which depends almost linearly with the Reynolds
number Re0. As Re0 increases, A1 decreases and M increases,
in such a way that for Re0→� the flow above the ground
tends to a two-celled structure with an almost quiescent po-
tential vortex core surrounded by an annular updraft of infi-
nite intensity, corresponding to M→� and A1→−1/�2 in
Long’s self-similar solution.

ACKNOWLEDGMENTS

This work has been supported by the Ministerio de Edu-
cación y Ciencia of Spain �Grant No. FIS2004-00538�. The
numerical computations have been made in the computer
facility “Taylor” at the ETSII of the University of Málaga.

1U. T. Bödewadt, “Die drehströmung über festem grunde,” ZAMM 20, 241
�1940�.

2H. Schlichting, Boundary Layer Theory, 6th ed. �McGraw-Hill, New York,
1968�.

3G. I. Taylor, “The boundary layer in the converging nozzle of a swirling
atomizer,” Q. J. Mech. Appl. Math. 3, 129 �1950�.

4W. S. King and W. S. Lewellen, “Boundary-layer similarity solutions for
rotating flows with and without magnetic interaction,” Phys. Fluids 7,
1674 �1964�.

5O. R. Burggraf, K. Stewartson, and R. J. Belcher, “Boundary layer in-
duced by a potential vortex,” Phys. Fluids 14, 1821 �1971�.

6R. J. Belcher, O. R. Burggraf, and K. Stewartson, “On generalized-vortex
boundary layers,” J. Fluid Mech. 52, 753 �1972�.

7T. S. Prahlad and M. R. Head, “Numerical solutions for the boundary
layers beneath a potential vortex,” Comput. Fluids 4, 157 �1976�.

8R. Fernandez-Feria and J. C. Arrese, “Boundary layer induced by a coni-
cal vortex,” Q. J. Mech. Appl. Math. 53, 609 �2000�.

9R. R. Long, “A vortex in an infinite fluid,” J. Fluid Mech. 11, 611 �1961�.
10R. Fernandez-Feria, J. Fernandez de la Mora, M. Perez-Saborid, and A.

Barrero, “Conically similar swirling flows at high Reynolds numbers,” Q.
J. Mech. Appl. Math. 52, 1 �1999�.

11R. Fernandez-Feria, J. Fernandez de la Mora, and A. Barrero, “Solution
breakdown in a family of self-similar nearly inviscid axisymmetric vorti-
ces,” J. Fluid Mech. 305, 77 �1995�.

12O. R. Burggraf and M. R. Foster, “Continuation or breakdown in tornado-
like vortices,” J. Fluid Mech. 80, 685 �1977�.

13M. Perez-Saborid, M. A. Herrada, A. Gomez-Barea, and A. Barrero,
“Downstream evolution of unconfined vortices: Mechanical and thermal
aspects,” J. Fluid Mech. 471, 51 �2002�.

14W. R. C. Phillips, “On vortex boundary layers,” Proc. R. Soc. London, Ser.
A 400, 253 �1985�.

15W. R. C. Phillips and B. C. Khoo, “The boundary layer beneath a Rankine-
like vortex,” Proc. R. Soc. London, Ser. A 411, 177 �1987�.

16A. Hirsa, J. M. Lopez, and S. Kim, “Evolution of an initially columnar
vortex terminating normal to a no-slip wall,” Exp. Fluids 29, 309 �2000�.

17R. D. Sullivan, “A two-cell vortex solution of the Navier-Stokes equa-
tions,” J. Aero-Space Sci. 26, 767 �1959�.

18J. M. Lopez and P. D. Weidman, “Stability of stationary endwall boundary
layers during spin-down,” J. Fluid Mech. 326, 373 �1996�.

19J. Sanchez, F. Marques, and J. M. Lopez, “A continuation and bifurcation
technique for Navier-Stokes flows,” J. Comput. Phys. 180, 78 �2002�.

20H. B. Keller, “Numerical solution of bifurcation and nonlinear eigenvalue
problems,” in Applications of Bifurcation Theory, edited by P. Rabinowich
�Academic, San Diego, 1977�, pp. 359–384.

21E. Sanmiguel-Rojas, J. Ortega-Casanova, C. del Pino, and R. Fernandez-
Feria, “A Cartesian grid finite-difference method for 2D incompressible
viscous flows in irregular geometries,” J. Comput. Phys. 204, 302 �2005�.

22C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Meth-
ods in Fluid Dynamics �Springer-Verlag, New York, 1988�.

23J. M. Lopez, “Axisymmetric vortex breakdown. Part 1: Confined swirling
flow,” J. Fluid Mech. 221, 533 �1990�.

24G. L. Brown and J. M. Lopez, “Axisymmetric vortex breakdown. Part 1:
Physical mechanisms,” J. Fluid Mech. 221, 553 �1990�.

25P. Beran and F. Culik, “The role of nonuniqueness in the development of
vortex breakdown in tubes,” J. Fluid Mech. 242, 491 �1992�.

26J. M. Lopez, “On the bifurcation structure of axisymmetric vortex break-
down in a constricted pipe,” Phys. Fluids 6, 3683 �1994�.

27S. Wang and Z. Rusak, “The dynamics of a swirling flow in a pipe and
transition to axisymmetric vortex breakdown,” J. Fluid Mech. 340, 177
�1997�.

28P. Dergarabedian and F. Fendell, “One- and two-cell structure in torna-
does,” in Proceedings of the Symposium on Tornadoes: Assessment of
Knowledge and Implications for Man, edited by R. E. Peterson �Texas
Tech University, Lubbock, 1976�, pp. 501–530.

29D. S. Nolan and B. F. Farrell, “The structure and dynamics of tornado-like
vortices,” J. Atmos. Sci. 56, 2908 �1999�.

30R. Fernandez-Feria, “Viscous and inviscid instabilities of non-parallel self-
similar axisymmetric vortex cores,” J. Fluid Mech. 323, 339 �1996�.

31V. Shtern and F. Hussain, “Hysteresis in a swirling jet as a model tornado,”
Phys. Fluids A 5, 2183 �1993�.

067104-14 L. Parras and R. Fernandez-Feria Phys. Fluids 19, 067104 �2007�

Downloaded 20 Jun 2007 to 150.214.43.136. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


