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Nonparallel spatial stability of shallow water flow down an inclined plane
of arbitrary slope
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E.T.S.Ingenieros Industriales, Universidad de Malaga (Spain)

ABSTRACT: Roll waves are known to occur in the frictional flow of a thin layer of water down an inclined
solid surface. For a layer of constant depth, the formation of these waves on a solid plane with small slope
angle have been explained as a hydrodynamic instability occurring above a critical Froude number by analyzing
the temporal stability of the constant velocity flow. Here we analyze the linear, spatial stability of the shallow-
water flow down an inclined plane of arbitrary slope including the first order effects of the gradients of both the
velocity and the water depth. For constant water depth (parallel case) we reproduce previous results of the temporal
stability analysis. Then we apply the nonparallel stability formulation to the kinematic wave approximation of
the shallow-water flow down an inclined plane of arbitrary slope and characterize, analytically, the frequency
and the wavelength of the most unstable waves as a function of the Froude number, slope angle, velocity and
velocity gradient. We find important qualitative differences with respect to the parallel (constant depth) case.
These stability results are used to discuss the numerical solution to the nonlinear shallow-water flow equations
for the dam-break problem on an inclined surface of arbitrary slope. A good agreement between the waves
resulting from the numerical simulations and the predictions of the stability analysis is found.

1 INTRODUCTION Dressler (1949) confirmed this stability result and
constructed finite-amplitude roll waves by piecing
A thin layer of water flowing down an inclined sur-  together smooth solutions separated by discontinu-
face may undergo, in some circumstances, a transition  ous shocks. Experiments by Brock (1967) showed the
to an oscillatory movement where a train of surface  formation of roll waves for Fr > 2. Further linear sta-
waves propagates downstream. The amplitude of these  bility results for the uniform turbulent flow down open
waves increases, and eventually break into the form  inclined channel include both temporal (Brock 1967;
of a train of hydraulic bores at quite regular inter- ~ Whitham 1974; Berlamont and Vanderstappen 1981)
vals, as they propagate downstream. These so-called  and spatial stability analysis (Di Cristo and Vacca
roll waves where first scientifically observed in open ~ 2005). All these stability results do not modify Jeffrey’s
channel flows by Cornish in 1904 (Cornish 1934),and  basic finding that the uniform flow becomes unstable
have been subsequently documented in many man-  for Fr > 2.
made and natural shallow water flows (Kenyon 1998; In this work we consider the spatial stability anal-
Chanson 2004). The presence of these waves is gen-  ysis of the shallow water flow with friction down an
erally undesirable from the hydraulic engineer point  inclined plane. The two features introduced here that
of view because they can produce overflow from the  have not been considered before are that the basic flow
channel sides and because excessive intermittency at  is valid for arbitrary slope of the channel, and that non-
the outlet. Therefore the interest in determining with  parallel effects accounting for the slow streamwise
precision the conditions under which they appear. variations of both the basic flow and the perturba-
Since the early work of Jeffreys (1925), these roll  tion are taken into account. Earlier stability analysis
waves are known to be originated by inertial instabil-  of the shallow water flow down an open inclined
ities of the turbulent shallow water flow in a channel. ~ channel used the St. Venant one-dimensional shallow-
Particularly, this author analysed the linear, temporal  water equations, valid for small slopes of the channel
stability of the St. Venant one-dimensional model for  (Stoker 1957; Whitham 1974). Recently, Bouchut et al.
the uniform flow over a plane, including a drag term  (2003) and Keller (2003) have generalized these shal-
proportional to the square of the velocity, and found  low water equations for arbitrary slopes of the bottom
the instability condition 7 > 2, where Fr is the Froude = ofthe channel. But, for a constant (but arbitrary) slope,
number (see below for its definition). Subsequently,  the equations are formally the same as the St. Venant
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equations, provided that appropriate variables are used
(Savage and Hutter 1991). Therefore, this generalisa-
tion to an arbitrary slope of the inclined plane does
not modify, as we shall see, the basic Jeffreys’s stability
result. However, we find that the inclusion of nonparal-
lel effects in the stability analysis qualitatively modify
the stability properties of the flow. Therefore, the crit-
ical parameters at which roll waves are predicted in a
non-uniform flow may be substantially different from
those in an uniform flow.

The structure of the paper is as follows. In the next
section we formulate the spatial stability problem. We
consider non-parallel effects for a general non-uniform
flow down an inclined plane of arbitrary slope. Then
we reproduce the known stability results for a uniform
flow when non-parallel effects are neglected, but for
arbitrary slope of the channel. Detailed stability prop-
erties of non-uniform flows, when non-parallel effects
are included, are given for the case when the kine-
matic wave approximation (Whitham 1974) is used
for the basic flow. These stability results are then com-
pared with the outcome of some numerical simulations
for the dam-break problem on an inclined surface of
arbitrary slope, and with some available experimental
results. Finally, some conclusions are drawn in the last
section.

2 FORMULATION OF THE PROBLEM

We consider here the one-dimensional flow over a con-
stant slope bed. In the shallow-water approximation,
the dimensionless equations for the mass conserva-
tion and momentum in the direction of the flow can be
written as [see Fig. 1]

on onU

Ly 7 1
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ou ou on . Sf
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where 6 is the angle between the bed and the horizon-
tal, ¢ is the time, X is the coordinate along the bed, 7 is
the depth of the water measured along the coordinate
Y perpendicular to the bed, U is the depth-averaged
velocity component along X, and sy is a dimension-
less bed friction (see below). All the magnitudes in
these equations have been non-dimensionalized with
respect to a length scale 1, corresponding to some ini-
tial depth, and a velocity scale Uy = ,/gno, where g is
the acceleration due to gravity. Equations (1)—(2) are
formally the same as the classical St. Venant equations
for the shallow-water in a channel with small angle of
inclination 6 (Stoker 1957). However, it can be shown
(Savage and Hutter 1991; Bouchut et al. 2003; Keller
2003) that these equations, written in the present coor-
dinates X and Y (see Fig. 1), are valid for any slope

Sketch of coordinates and variables.

Figure 1.

tan 6 of the constant-slope bed, not just for small chan-
nel slope, provided that the characteristic length scale
of'the flow in the direction of the coordinate X is much
greater than the characteristic length scale in the ¥
direction.

To compute the friction term, sy = (75 / pU(%), where
7, 1s the bed shear stress and p the fluid density, we
shall use the Darcy-Weisbach friction factor £, so that
sr may be written as

sfzéuﬂU. 3)

The factor f is a function of the local Reynolds number,
based on the velocity U and the hydraulic diameter of
the channel, and the relative height roughness of the
bed. However, to simplify the present analysis we shall
assume that the friction factor f* is constant in what
follows.

Here we shall analyse the spatial stability of a flow
governed by Egs. (1)—~(2). To that end, if n=H(X,¢)
and U =V(X,¢) is a solution to these equation, the
perturbed flow is decomposed, as usual, as the sum
of the basic flow solution plus a small perturbation,
n'(X,1) and U'(X, 1),

n=H+n, U=V+U, 4)

where the (non-dimensional) perturbations satisfy

|| < H, and |U'|<V. (5)
We shall also assume that the streamwise variation of
the basic flow is small,

ov
<1, ‘— <1. (6)

0X

on
0X

Substituting (4) into (1)—(2), taking into account that
[H, V1] is a solution to the equations, and neglecting
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second order terms in both the small perturbations and
the streamwise derivatives of the basic flow, one is
left with the following set of linear equations for the
perturbations:

on'  OHU'  oVy

Z — 7

o " ax Tax Y M

U avU oy fVE(W o\

o tax Txtsm\vow) "
(8)

The perturbation s =[r'(X, ), U'(X,t)]", where the
superscript 7' denotes transposed vector, is decom-
posed in the standard form

s(X, 1) = S(X)x (X, 1), ©)
where the complex amplitude

o= (1)

depends only on the streamwise coordinate. In accor-
dance with (6), we shall assume that |dS/dX | <« 1. The
other part of the perturbation is of exponential form
and describes the wave-like nature of the disturbance,

(10)

X
x(X,t) = exp [/ a(X")dXx' fiwt} , (11)

Xi

where X; is an initial or reference value of the coordi-
nate X . The non-dimensional, complex wavenumber a
is defined as

a(X) =v(X) +ia(X). (12)
The real part y(X) is the local exponential growth rate,
and the imaginary part «(X) is the local wavenumber.
A non-dimensional frequency w has also been defined
in(11).

Substituting (9)—(12) into (7)—(8), the resulting set
of two linear equations may be written in the matrix
form

s

A- B- B-— = 13
S+aB-S+ e 0, (13)
where

B —iUJ+VX HX
a=(e L) e

vV H
B:<cos9 V)’

— OH — oV
andHX = W’VX = :)_X

15)

The retained terms in (13) account for two different
non-parallel effects on the stability of the perturba-
tions: the effect of the non-parallelism of the basic
flow and of the amplitude of the perturbations, and the
effect of the history, or convective evolution, of the
perturbations. This last effect is described by the d/dX
terms of the stability equation. All these effects are
negligible in the parallel limit of uniform basic flow
with uniform perturbations.

As it stands there is some ambiguity in the par-
tition of the perturbations (9) into two functions of
the coordinate X. To close the problem one has to
enforce an additional normalization condition which
puts some restriction on the streamwise variation of
the perturbation amplitude (Bertolotti et al. 1992).
We shall perform here a local spatial stability anal-
ysis (Fernandez-Feria 2000): Given a real frequency
w, Eq. (13) and its X -derivative will be solved locally
for each location X =X with the normalization con-
dition [da/dX ]x=x, = 0. This condition will restrict, as
required, the downstream variation of the perturbation
amplitude (eigenfunction), yielding, for each X = X,
the local growth rate and the wavenumber (or the phase
speed of the disturbance). To that end, the eigenfunc-
tion S is expanded in a Taylor series about X = Xj,
where only two terms are retained to be consistent with
the approximation made in Eq. (13):

ds
S(X) ~ S(X| X —Xo)—=
(0 =800+ (X=X 2|
This expansion is now substituted into (13) and its
X-derivative to obtain two equations for Sy and S;
(IS1] < IS0 ). Using the local normalization condition
[da(X)/dX]x = x, =0, one has a set of four homoge-
neous linear equation that may be written as

F-T=0, a7

where

([ A+aB B _( So
F_(C+aD E+aB)’ T:(Sl)’ (18)

c 0 0
"\ L5 (HVx —VHx) = (HVx-VHy) )’

10z
(19)
_( Vx Hx
D_( A ) (20)
- —iw+2VX 2HX
E’( -IZ —z’w+2vx+%)' @n

For a given basic flow, and given w and X =X
(for simplicity, in the above expressions, and in what
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follows, we write X for the local value Xj), the
homogeneous equation (17) constitutes an eigenvalue
problem for the complex eigenvalue a and the complex
eigenfunction 7'. That is to say, the homogeneous equa-
tion (17) has nontrivial solutions only when the deter-
minant of F vanishes, yielding a dispersion relation of
the form

D (a,w;0,f,V,H,Vx,Hx) =0, (22)
that determines the eigenvalue a.

One is interested in looking for convective insta-
bilities propagating towards X > 0, i.e. in the same
direction as the basic flow. Thus, for a given posi-
tive value of the real frequency w, one is interested
in modes whose eigenvalue a has both its real and
imaginary parts positive. According to (11)—(12), this
ensures that the perturbation grows exponentially as
it propagates towards increasing X (y > 0), with phase
velocity directed downstream (i.e. ¢, = w/a > 0). As
a matter of fact, one has to consider the sign of the
group velocity,

cg = s (23)

instead of the sign of the phase velocity c,;, in order
to determine the propagation direction of the pertur-
bations. But, as we shall see, the sign of ¢, always
coincide with the sign of ¢, in all the cases consid-
ered below (all the instabilities found are convective
instabilities, with both ¢, and ¢, positive). On the
other hand, the frequency range of study can be
reduced to just non-negative values because the real
and imaginary parts of the linear operator F,

F(w,a,7) =Fr(7) +iFs (w,q), 24
have the property
F(a,w)=F (a,-w), 25)

where (-) denotes the complex conjugate, and both
Fy and Fy are real functions. Thus, if a is the eigen-
value corresponding to the real frequency w, a is also
an eigenvalue of the problem, corresponding to the
frequency —w. So that one has to consider only non-
negative values of w to fully analyse the linear stability
of the flow.

3 RESULTS

3.1 Parallel flow: Roll waves

Before undertaking the non-parallel stability analysis
of'a non-uniform flow down an open inclined channel,

it is convenient to consider first the simplest case of
an uniform flow, thus reproducing previous stability
results. This analysis will also serve as a reference
for better understanding the results given in the next
section.

For an uniform and steady basic flow, H = constant
and V = constant, one has dS/dX=S,=0 in (17)—
(18). In fact, the second equation in (17) becomes
unnecessary, and the linear stability equation is just
(13) with dS/dX=0. The dispersion relation (22)
reduces then to

det (A 4 aB) =0, (26)
with Hy = Vy =0 in (14).

For an uniform and steady basic flow, the solution
to (1)—(3) relates the constant values of H and V' by

fv:
H= . 27
8sin @7
It is convenient to use the Froude number
\% 1% 8
Fr=—=——— = /- tand, 28
c vV H cosf f 28

instead of the friction factor f, where ¢ =+/H cosf
is the non-dimensional wave speed for small sur-
face perturbations. Substituting (27)—(28) into (26),
one obtains the following dispersion relation for the
complex eigenvalue a and the real frequency w:

1
a’V (l - _FTQ) +a(3sinf — 2wV4i)

2sin fw
2 ) —
o= (29)

The number of parameters may be reduced to just one,
the Froude number, if one makes the following changes
of variables valid for sin 6 # 0:

aV? wV
=— =— 30
=5’ Y sne’ 0

so that (29) reduces to
21— g) +e(3 — 2wi) —w® — 2wi =0, (31)

where, for convenience, we use the inverse of the

square of the Froude number,
1

Fr2’

Y (32)

The new growth rate o and wavenumber € are defined
as [see (12)]

_ aV?

€= ——.
sin 6

e=o0+1e, (33)
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Figure 2. Contour lines for constant growth rate in
the (w,Fr) plane for the parallel flow case. Continuous
lines: 0 =0,.001,.01,.2, .4,.6,.8,1,1.2,2,3. Dashed lines:
o= —.001,-.01,—-.05,—.1,—.15, —.2, —.25.

The neutral curve for instability, corresponding
o =0, may be easily obtained by substituting e =ie
into (31). The imaginary and real parts of the resulting
equation yield, respectively,

e nd _! 34
e=zw and g=-7. (34)

The flow is stable (o < 0) for o > o, = 1/4, while it is
(convectively) unstable (o > 0) for any value of the
frequency w if o <1/4. This obviously reproduces
Jeffreys (1925) instability condition F7 > 2: any per-
turbation is unstable above the critical Froude number
2. In addition, one obtains that the phase velocity of
the neutrally stable waves,

w wV 3
Gh=—=—=5
P « € 27

(35)
is three times larger that the surface wave speed ¢ for
the critical Fr =2, c=V/Fr="V/2.

Figure 2 depicts the neutral curve in the plane
(Fr,w), which is just the vertical line Fr = 2, together
with some contour lines for constant growth rate o.
This figure qualitatively explains why Brock (1967)
did not observed the formation of roll waves for Froude
numbers below 3.5, approximately, in his experiments
for an uniform flow in an inclined channel. For Fr close
to the critical value F7. = 2 the growth rate is so small
that a extremely long channel would be required for
the developments of the waves (note that for Fr < 3.5,
o < 0.5, approximately).

To finish this section it is worth to mention that for a
horizontal channel (sin 8 = 0), Eq. (29) does not yield
unstable solutions (i.e., solutions with o > 0 together
with € > 0).

3.2 Nonparallel flow: Kinematic wave
approximation

‘We now turn to the general nonparallel stability formu-
lation (17). In order to obtain some quantitative results,
but without recurring to any particular basic flow, we
shall consider here the ’kinematic wave approxima-
tion’to the shallow-water flow equations (Lighthill and
Whitham 1955; Whitham 1974), which have proved to
be very useful for approximating the long time behav-
ior of the flow down an open inclined channel (Hunt
1983).

In the kinematic wave approximation, one neglects
the left hand side of Eq. (2) and, after using the fric-
tion law (3), obtains the same relation (27) between H
and V. But now, H and V' are not constant, they must
satisfy the continuity equation (1) and the initial and
boundary condition of the particular problem under
consideration. Substituting (27) into the left hand side
of Eq. (2) and using (1), one obtains the following
condition for the validity of this approximation:

sin 6 7 (36)

on
0X

cosf — %sin&

which in the case f < 2tan# may be simplified to
[0H /X | < f/2.

With this approximation, one can eliminate the
dependence on H and on Hy of the dispersion rela-
tion (22) by using (27) and its derivative with respect
to X:

fv?
H—
8sinf’

[V

- . 37
X7 4sing 37

In addition, the explicit dependence on the angle 6 and
on the local flow velocity V' can be eliminated from
the dispersion relation by using the same change of
variables (30) together with

_ WV

(3%

sinf

Thus, taking the determinant of F (18) and using
the above notation, the dispersion relation may be
written as

D (e,w; 0,0) = do + di¢ + dotp® + d3¢* + dyo* = 0,
(39)

where

dy = [62 (0—1) +w? + 2iew + (21w — 36)]2 , (40)

dy =2 [3iw3 +2¢* (0 —1)% + dew® (0 —2)
+7ie*w (o — 1) — 13e* (0 — 1) — 12w?

+2iew (50 — 12) + (12e — 11iw)], 41)
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Figure 3. Neutral curves (o0 =0) for different values of
¢ > 0 (as indicated).

dy = —13w? + 8¢% (0 — 1)° + diew (40 — 5) + 36

—2[iw (27 — 40) + e (220 — 25)] (42)
dy = —4[3iw+2e(0— 1) +2(30—5)], (43)
dy =4, (44)

and where use has been made of the Froude num-
ber (28) and (32). In the new variables, the validity
condition (36) for the kinematic wave approximation
reads

2
|| < ‘m‘ - (45)

The neutral curves for instability, corresponding to
vanishing real part of e(c =0) in (39), depend on w,
o (or Fr), and ¢. Figure 3 shows these neutral curves
in the (Fr, w) plane for several values of ¢ > 0. As it
is observed, there exists marked differences with the
neutral curve for the parallel flow case ¢ = 0. Firstly,
the flow is always stable for very small frequencies
[for w < weo(¢)], independently of the Froude number.
Secondly, the minimum, or critical, Froude number
for instability, Fr.; (¢), corresponding to the frequency
we1(@), is always less that 2 when ¢ > 0. This critical
Froude number tends to zero as ¢ decreases, though
the frequency range around w,; for which the flow is
unstable is small, vanishing as ¢ — 0. As in the paral-
lel case, the flow is unstable for almost any frequency
when Fr > 2 (except for very small frequencies, as
commented on above). In fact, there exists another
critical value of the Froude number, Fr.(¢) < 2, cor-
responding to the frequency w.,(¢), above which the
flow is always unstable provided that the frequency is
not too small (Fr., — 2 and wy, — 0 as ¢ — 0). For
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Figure 4. w1, we, and wy, as functions of ¢.
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Figure 5. Fr.;, and Fr, as functions of ¢.

high frequencies the stability region shrinks to disap-
pear for very high w, the larger the smaller ¢. But
these very high frequencies, like the very small ones
W < Weo, are too extreme to be physically meaningful.
Thus, the two pairs of critical values (Fr.;,w.;) and
(Fre, we) are the most significant physical results.
Figures 4 and 5 show these critical values (together
with ws) as functions of ¢(>0).

To have an idea of the most unstable frequencies,
Fig. 6 shows contour lines of constant growth rate o
for a particular value of ¢. It is observed that, though
the critical Fr is much smaller than 2 for low frequen-
cies, the growth rate for Fr <2 is always quite small
(except for very high, unrealistic frequencies). This
explains why we have to use a very long channel and
leave the flow evolve during a quite long time in our
numerical simulations of the next section to observe
the formation of roll waves for Fr < 2.

In all the numerical computations we have made
where roll waves are formed in a nonuniform flow
(some of them reported in the next section for the
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Figure 7. Neutral curves (o =0) for different values of
¢ <0 (as indicated).

dam-break problem on an inclined channel), the waves
develop in regions of the flow where the kinematic
wave approximation applies and where ¢ > 0, i.e. in
regions where the velocity (and the height) increases
downstream. Nonetheless, we include here the stability
results for ¢ < 0 for completeness. Figure 7 shows the
neutral curves in the (Fr, w) plane for several values
of ¢ < 0, while Fig. 8 depicts contour lines of constant
growth rate o for a particular value of ¢ < 0.

As in the cases with ¢ > 0, the flow may be unstable
for Fr < 2 and the stability properties are very sensi-
tive to the non-uniformities of the flow: with very small
values of |¢|, the region of instability changes dramat-
ically with respect to the parallel flow case. However,
the growth rates for Fr < 2 are very small, except for

10 f:

z 100
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107

Figure 8. As in Fig. 6, but for ¢ = —107*.

very high unrealistic frequencies (Fig. 8), as it also
occurs for ¢ > 0. There are, nonetheless, some impor-
tant differences between ¢ >0 and ¢ < 0. First, for
¢ < 0 there no exists the frequency wy,, and the flow
is always unstable as w — 0. In fact, the stable region
in the (Fr,w) plane is closed, so that the flow is unstable
for any frequency when Fr is very small (Fig. 7). How-
ever, for these very small values of the Froude number
the kinematic wave approximation is no longer valid
because condition (45) implies

Aol .

Fr> ~
2+ 9]

(46)

This applies for both ¢ < 0 and ¢ > 0. This restriction,
together with the very small growth rates for Fr <2
in both cases, explain why it is difficult to observe the
development of roll waves when Fr < 2, in spite of the
fact that the critical Froude number for instability can
be much smaller than 2 for both positive and negative
values of ¢.

4 COMPARISON WITH NUMERICAL
RESULTS FOR THE DAM-BREAK PROBLEM

As an example on the formation of roll waves in a
nonuniform flow, we have considered the dam-break
problem in an inclined channel (Fernandez-Feria 2006;
Bohorquez and Fernandez-Feria 2006). Actually, our
interest in the present stability problem originated
from the observation of roll waves in some numerical
simulations for that non-uniform flow problem. Basi-
cally, a finite mass of water like that sketched in the
inset of Fig. 9 is released at # = 0 on an inclined plane
of angle 6. The equations (1)—(2)are solved numeri-
cally by using a high-resolution TVD finite-volume
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X

Figure 9. Water depth n(X) for different instants of time
in the dam break problem for 6 = 1° and Fr =2.5. The dif-
ferent curves are for =0, 140, 288, 454,638, 841, 1061,
1298, 1550, 1817,2097,2392,2699, 3018, 3349, 3691, 4045,
4409, 4784,5167,5542,5901,6267,6637,7012,7394,7779,
8172, 8568, 8966. Also included is a sketch of the initial
configuration of the dam-break problem.

method like that described in Burgete and Garcia-
Navarro (2001) (see the above mentioned references
for the details of the formulation of the problem and
the numerical method used). We have started a sys-
tematic search for the instabilities and the formation
of roll waves in that flow, and we present here some
preliminary results.

We have not found the spontaneous formation (i.e.,
with the only forcing of the round-off numerical noise)
of roll waves in our numerical simulations for Froude
numbers less than 2. This is explained by the small
growth rate of the unstable perturbations when Fr is
less than, approximately, 2 (see Figs. 6 and 8), so that
a very long channel is needed for the roll waves to
develop. In fact, we have observed perturbations grow-
ing downstream for Fr <2 when disturbances with
much higher amplitude than the numerical noise are
introduced upstream. But these waves never reach the
stage of a roll wave for Fr <2.5 with the channel
lengths used so far. In any case, to our knowledge,
no roll waves have been documented before from
experimental observations for Froude numbers less
than approximately 3.5, whence the interest of the
numerical results given below.

Figure 9 shows the evolution of the water depth
for several instants of time after the break of the dam
in a channel with 6 =1° and for Fr =2.5 (a sketch
of the initial configuration is also shown in the fig-
ure). For # ~4400, the instability in the free surface
begins to be appreciated in the numerical simulations,
originated just from numerical noise, as it is clearly
evident in Fig. 10 for # =4784. For these instants of
time, the kinematic wave approximation is already
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Figure 10. n(X) for  =4784 (from Fig. 9).
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Figure 11.  Comparison between the numerical results for
the velocity (line) and the kinematic wave approximation
(circles), for the flow depicted in Fig. 9 at r = 4045.

valid in all the flow domain (in fact, it is very accurate;
see Fig. 11), so that one may use the stability results
obtained in the last section. Eventually, the amplitude
of the instability waves grows to reach the stage where
the free surface has the aspect of the classical roll
waves (see Fig. 12).

The frequency of the initial waves developed after
the instability of the flow can be obtained by plot-
ting the velocity perturbation at a given location as
a function of time. Figure 13 is such a plot for
X =2342, starting from ¢t = 4400, the instant at which
one begins to observe numerically the formation of
the instability waves at the surface. The velocity per-
turbation, U’ = U — V, has a frequency w~0.1924,
which remains almost constant for a long period of
time. Taking into account that during the period of
time considered in Fig. 13 V" and its gradient vary, in
the location considered, in the ranges 0.28 < V' < 0.37
and 1.9 x 1073 <¢ < 3.3 x 1073, respectively, that
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Figure 13.  U(t) at X = 2342 for the flow depicted in Fig. 9.
Also shown is an extrapolation of the mean velocity without
perturbation, ¥V (¢) (dashed line).

frequency corresponds to 3.1 <w <4.1, approxi-
mately. For these values of w, ¢ and Fr, the sta-
bility analysis predicts that the eigenvalue e =0 + €i
ranges between 0.1136 4 2.163iand 0.1591 + 2.8922;
(0.0203 4+ 0.3687i and 0.0253 4 0.4814i in terms of
a =y + «i). This corroborates, first, that the growth
rate o cannot be too small in order to observe the insta-
bilities in the numerical simulations (o is larger that
0.1, which in Fig. 6 only occurs if Fr is sufficiently
larger than 2, if the frequency w is not too large).
On the other hand, the wavelength A =2n/a given
by the stability analysis ranges between 13 and 17,
approximately. This agrees quite well with the wave-
length in the numerical simulation, which from the
inset in Fig. 10 can be estimated as the ratio between
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the space domain length to the number of crests to be
370/27 ~ 14.

5 CONCLUSIONS

We have analysed the spatial stability of the shallow-
water flow in an inclined surface of arbitrary slope. We
have developed a local analysis that takes into account
the effect of the local gradients of both the velocity
and the water depth. In particular, we have considered
the kinematic wave approximation, that is shown to
be a very good approximation to any non-uniform and
non-steady frictional flow for sufficiently long times.
The stability results depend only on two dimensionless
parameters: the Froude (Fr) number and a parameter
¢ characterizing the local gradient of the water depth.
Since the stability analysis is a spatial one, we have
characterized the frequency ranges in the parameter
space (Fr,¢) for which instabilities develop. The main
result is that the stability properties of the flow change
qualitatively (substantially) when the non-parallelism
of'the shallow-water flow is taken into account. In par-
ticular, instabilities can be present for Froude numbers
smaller than 2 in some frequency ranges that depends
on ¢ (for a parallel, constant-depth flow, the instabil-
ity condition is Fr > 2). However, the growth rate for
the unstable modes is so small when Fr < 2 that, with-
out artificially disturbing the initial flow, we have not
observed the formation of roll waves in our numerical
simulations for the dam-break problem in a inclined
surface when Fr <2. We have been able to simulate
numerically the formation of roll waves in the dam-
break problem in an inclined surface for Fr=2.5.
The instability waves, and the subsequent roll waves,
develop from just the numerical round-off noise at this
Froude number, and for larger values of Fr. This is also
a relevant finding because, to our knowledge, there
are no previous observations of roll waves in physical
experiments for Fr less than approximately 3.5, due
to the above mentioned fact that the growth rate of
the perturbations is very small when F¥ is close to its
critical value for instability. Finally, we find that the
reported numerical results compare very well with the
predictions of the stability analysis.
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