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TWO-FLUID THEORY FOR MONOATOMIC GASES AND
THE PROPAGATION OF SOUND IN BINARY MIXT URES
R. Fernandez-Feria and J. Fernandez de la Moral’)

Summary; A two-fluid Chapman-Enskog thecry valid for arbitrary molecular interactions, and
its application to the acoustic problem are presented. Comparison is made with experiments on
sound absorption and dispersion in He-Xe mixtures.

1. Two-fluid Chapman-Enskog th

In the classical Chapman-Enskog (C-E) procedure of solving the Bolizmann equations for a binary
gas mixture, which schematically may be written &s

Doj = J;; (f;, f)) + Jij (f;, fj)’ i=1,2, j2i, (1)
the velocity distribution function f; of each species i is expanded around the local equilibrium
distribution f,; with a common temperature T and mean velocity U,

foi = (My/2kTn)3/2  exp[-m;ju-U|2/2kT]. (2)

This method is appropriate when the time of equilibration between mean velocities and temperatures
of each species by collisions, as well as the the mean free path and time between molecular
encounters of equal molecules, are very small compared to the characteristic macroscopic length
and time of the system. If the species of the mixture have very different molecular masses m;

(say, my << my), the inefficiency of coliisions between unlike molecules in transfering momentum

and energy with respect to collisions between identical molecules, results in that the former of the
above conditions is not satisfied in most cases of practical interest. In terms of the species Knudsen

numbers Kn;= wp/p; (o is @ macroscopic characteristic frequency of the system, y; and p; are the
viscosity and partial pressure of species i), it both partial pressures p; (i=1,2) are of the same
order of magnitude, the usual C-E method is only valid when Kn/M << 1 (M = my/ms << 1) or, in
other terms, when wt << 1, where 1 is the slow relaxation time between species which is a quantity
of order p;/Mp;. For concreteness, t will be defined by Einstein’s law

i= D12m2(n1+n2)/an1, (3)

where Dy, is the binary diffusion coefficient, n; the number density of species i and T the mixture
temperature.

To extend the theory to the same range of validity Kn; << 1 [or wt = 0(1)] of the C-E theory for
binary gas mixtures with similar molecular masses, temperature and velocity differences between
species have to be allowed. This, of course, is a well established fact and several two-fluid theories
have been proposed in the past (i.e., Refs.[12],[10],{8]). Recently, we have developed {4] a
two-fluid C-E theory, valid in first order in the temperatures and velocity differences, by rigorous
expansion of the distribution function f; of each species around its own local equilibrium distribution

f'gj with temperature T; and mean velocity U; :
fi=f'0i (1 +oi'+...)
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foi = (My2kTm)3/2 exp[-m; [u-U;2/2kT)). (4)

The substitution of these expressions into the Boltzmann equations yields linear integral equations
for the first order corrections ¢;". This was, in essence, the method of Goldman and Sirovich [10),

who solved the problem for the case of Maxwellian molecules (fifth power law of intermolecular
interaction).

Expansion (4) has the difficulty that f'y; is not a solution of the right-hand sides (collision
operators) of the Bolztmann Eq.(1), and exira terms of the form Jij Foir f'oj) appear. For this
reason we carry out the calculation in terms of the functions f; where
and fg; are the Maxwellian distributions (2) with a common mean velocity and temperature. The
linear integral equations for f; are the standard ones of the C-E theory for binary mixtures [3]

Dfi = K11 (89) + Ky2 (01 +02)
Dfp = Koy (81 + 02) + Koo (02) (6)

where the Kij are the linearized Boltzmann collision operators; however, the determination of the
terms Df; is not based on the Maxwellians fy; of the C-E expansion but on f'y; (Dfi=Dfg;). The
resulting left-hand sides thus involve the spatial gradients of the species variables T;, U;, rather

than the mixture variables T and U, as well as additional terms from the nonconservation of
momentum and energy of each species separately. An additional substantial difference with the C-E
theory is that it is now required that f'oj0’; does not contribute to the temperature T; and mean
velocity U; of the species i, instead of the C-E constraint that foi¢; have null T and U. In terms of
the standard inner product [f4(u),fo(u)] = Id3uf1(u)f2(u), this means that [1,fq; ¢7] = [u.T'g; 0]
= [u2,f'oi o5 = 0,1 =12, or, equivalently, since r0i ' = foi - f'Oi + fOi YIS in first order in
the temperature and velocity differences, we have

[ fgi 651 =0
[u, foi o) =mU;-U)  i=12 o
[U2y foi &;] = 3nik (T; - Tym;.

The details of the theory are given in Ref.[4], and we only outiine here some of the results.
Essentially, to satisfy the conditions (7), six free parameters in the vector function (¢4.00) are

needed. As in the C-E theory, four of them are obtained by linear combinations of the collision
invariants (1,0), (0,1), (mqu,m,u) and (m1u2/2, m2u2/2). These four parameters are enough to

fix both number densities n; (i=1,2), the center of mass mean velocity U and the mixture

temperature T. In the present theory we need two more parameters in order to allow for velocity
and temperature differences. These two parameters are shown to be the momentum and energy
transfer between species [4}

Aw [m1u, K12 (01 + 02)]
o = [Mmqu2/2, Kyg (01 + 0p)l, (6)

which enter in the integral equations for ¢4 and ¢, as a result of non-conservation of momentum and

energy for each species separately. In fact, taking moments of the Boltzmann equation (1), the
conservation equations for species i may be written as



2,01 +7 (piU;) = O (9)
3 t(p’Ul) + V. (plUlUl + Pl) = )'i (10)
ad t[p|(8|+U|2/2)] + V[plul (ei+U12/2) + P‘ UI + QI] =0 (11)

where pj= [mi,fi], pIUI = [miu,ii], P= [mi(u~Ui)(u-Ui),f~], pi€; = Pi1|/2 = 3n|kT|/2, Ql =
[milu—UiIQ(u-Ui)/Z,fi], Ay =-hp =% andoy =-0p=0c. Then, introducing expansion (5) into the

Boltzmann equation and using (3-11), in first order in the temperature and velocity differences, the
equations for ¢y and ¢, become [4]

K161 + Kyoleq +02) = Grady + fg;[c2 +o (m102/3kT-1)]/n1kT,
K21 (¢1 + 02) + K22¢2 = Grad2 - f02 [C‘)\. +0 (m202/3kT‘1)]/n2kT, (12)

where Grad; is the term appearing in the C-E theory for a pure gas
Grad; = fg; [m; cC:VeUyKT + c-vinT; (mc2/2kT - 5/2)] (13)

and ¢ = u- U. The other terms in the right-hand sides of Eqs.(12) result from the transfer of
momentum and energy between species and contain the free parameters » and ¢. From the linear
integral equations (12), using the constraints (7}, it results(4]

P; = nikT; - 2 V°Uy - 210 V<Uy (14)
Q; = -Ajq VTq - AioVTs +nkTkyi(Uy - Up) (15)
A = -NKT(kp1VINT; + kToVInTo) - pypo Ap(Uy - Up)my (16)
o =-nlo_ (Ty - To). (17)

The general expressions for the transport coefficients Hijr xij, kTi *p and o, and the
variational principles which can be used in their evaluation are given in Ref.[4]. The Appendix of the
present work reports the calculated values in the first order of the Sonine polynomial expansion. All
these coefficients, except o, can be expressed in terms of the ‘bracket’ integrals appearing in the
C-E theory [3]. In fact, p = Hiq+ Hoo +2u12, A= 11 1+X22+ 2)\12, kT = kT1+ kT2’ and
My=KT/my(nq+n5)Dqp, where p and A are the mixture viscosity and thermal conductivity and kt is

the thermal diffusion ratio in the classical C-E theory. Thus the conservation equations (9-11) with
(14-17) are equivalent to those of the classical C-E theory in the limit T, = T, = T, if we also make

Uy = Uy = U in Eq.(14). The coeficient o, obviously does not enter the C-E theory but, to first
order in the Sonine polynomial expansion, it can be related to Dyo by [o.]4 = 3k2Tx1x2/n(m1 +
mo)[D45]y, where n=ny + ny and x; = ny/n.

It must be noticed that the above results are valid for arbitrary intermolecular interactions.
Moreover, there is no restriction with respect to the mass ratio M.

2. Application to sound propagation in binary mixtures

It has become a tradition to first test any two-fluid theory on the acoustic problem. The reasons
are, obviously, its simplicity and the availabilily of experimental data. Thus, the two-fluid C-E
theory of Goldman and Sirovich [10] was applied to the acoustic problem by Goldman [11] and
compared with He-Ar absorption experimental data of Prangsma et al.[17]). Although Goldman and
Sirovich developed their two-fluid theory for Maxwellian molecules, Goldman in Ref. [11] uses
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realistic values for the resulting transport coefficients and introduces 'ad hoc' the thermal diffusion
which is missing in this model, so that his predictions are practically equivalent to ours. The
two-fluid theory of Goebel et al.[9] (based on Grad's thirteen moments approximation) has been used
by Huck and Johnson [14,15] and subsequently compared by Bowler and Johnson [1,2] with He-Xe
experimental data. They predicted two modes of sound propagation for moderately high frequencies
but such that et = 0(1) and, thus, within the range of validity of the theory. Similar features were
predicted recently by Fernandez de la Mora and Puri [5] by means of a simpler Euler-level two-fluid
theory (that is, putting P; =In)kT; and Q; = 0 in Eqgs(9)-(11)), obtaining excellent agreement with
He-Xe experimental dispersion data for x4 > 0.6.

The present two-fluid theory, which we are about to test with He-Xe dispersion and absorption
experimental data, is a natural extension of the above two-fluid Euler-level calculation to the next
order approximation (Navier-Stokes-level} within the framework of the C-E procedure, to include
viscous, heat flux and thermal diffusion effects. As pointed out in Refs.[16] and [5], except for the

heat flux in the light gas energy equation, all these terms are, at most, of order Mwr { ~ Knudsen
number) with respect to the leading terms in the corresponding Euler-level equations and,
consequently, they only introduce small corrections of order M when wt =0(1). However, the heat
flux due to the light gas temperature gradients in the light gas energy equation, is of order (Mx{ +
Xo) wt with respect to the first term in Eq.(11) and introduces corrections of order wt when the
heavy gas molar fraction x, is not small. Then, the inclusion of the dissipative effects in the
Euler-level equations must correct significantly its predictions on the absorption of sound up to
frequencies wt = 0(1). However, similarly to the classical Kohler analysis of sound propagation in
binary mixtures (see, e.g., Ref.[7]), since dispersion is a quadratic effet in the frequency, to obtain

a rigorous higher order correction to the dispersion given by the Euler-leve! theory, one must also
take into account the next order (Burnett-level) of the C-E procedure in order to include terms of

order (@ M)2 (an expansion of the original Boltzmann kinetic equations in the frequency, similar to
that of Ref.[7], is limited to wt << 1). Nevertheless, the dispersion predicted by the Euler-level

theory (Ref.[5] and Fig.2 of the present work) is quite satisfactory (up to frequencies wt = 0(1))
when x<0.6. Moreover, as we shall see, in the region of weaker dispersion (x,>0.6) where the
Euler-level dispersion predictions fail, the dispersion of sound obtained with the present two-fluid
theory agrees rather well with experimental data.

In the acoustic limit, we linearize the conservation equations (9-11) and (14-17) around the
unperturbed densities pqq, poq. velocities Uy3=Upg=0 and temperature Tg. The perturbed

hydrodynamic quantities are assumed to be plane waves propagating in the x direction, thatis
¥ =Yg+ '3 exp [i(ot - Kx}],

where ¥ represents any of the variables p;, U; (x-component of the velocity) and T; (i =1,2); wis

the frequency and K is the wave number. The resulting linearized conservation equations for the
perturbed quantities ¥ can be written, in a dimensionless compact form, as

(A +¢B)X=0, (18)

where X is the column vector formed with the dimensionless perturbed velocities and temperatures,
X*= (Y1, ¥2: 29, 2), yy=Uq'le, yo=Us'le, 24 =TTy, 2o=To'/Ty, and c=w/K is the
complex speed of sound; the rows of the matrices A and B are

(M+x5/B, -x5/8, 0,0)
(-x{/B, 1+x4/8, 0, 0)
(-(213) (ky4/x1+1), 2k-|—1/3x1_ 1+E/8, -E/B)
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(-2kT2/3X2' (2713)(kTo/xp-1), -Exq/B x5, 1+EX{/B X5)
and

(-1-4MBS1 113x%4. -4MBS1 2/3x4, -1-kyq/%qy, “k10/Xq)

(-4MBSq0/3x5, -1-4MBS95/3x9, ky1/Xp, -1+kTo/X0)

(0, 0, -2pL4 /3%y, -2pL40/3%4)

(0, 0, -2pL45/3x5, -2BLo0n/3x5)

where Sij =pnii KT, Lyj= ).b).ijm1/k2T0, E = 20./3x{ Mk, All the transport coefficients are
calculated at the unperturbed temperature Tq and molar fractions x;. B is the dimensioniess
frequency

B= i0)X1m2/lbp1o (21)
and ¢, the eigenvalue in EQ.(23), is
¢ = KTg/c2m,. (22)

The condition for the existence of nontrivial solutons of EQ.(18). i.e., det[A + { B] = 0, yields the
complex eigenvalues ¢ as functions of 8 and, thus, the dispersion relation c=c(w). For real
frequencies ®, the imaginary part of ¢ is related to the absorption coefficient , a=1m(-K) =
Im(-w/c), while the real part is related to the speed of sound propagation cg by c,:"1 = Re(c“).

2.1 Low freguency limit
Using Eq.(3) for T with D45 given by the first order approximation in the Sonine polynomial
expansion (Ref.[3] Eq. (9.81.1)), thatis

1 = 3M16Mny a4l 1), (23)
the parameter g may be rewritten as
B= i(x)TX«l/aO =is /aO (24)

with ag = 3a,/1 6912(1 1) 21, Inthe limits = wtx¢y <<1, we can solve Eq.(18) by expansion in the
small parameter 8:

X = XO + BX1 +62X2 + ...

C = C’O + BC1 + B2§2 + e (25)
At the zeroth order we obtain

Lo = 3(MX1 + X2)/5 (26)

which, obviously, corresponds to the equilibrium sound speed of the mixture (Laplace expression for
low frequencies):

in the first and second order, we have
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41/ = AMS/5+4(Mxy+xp)LU25 + XqXp(M-1-2a,£4/3)2/(Mx 4 +Xo) (28)

+ X{Xp Ay AYoloy + L1 Z1/5 + 2L(5gZ4 + 264/3L0)/3, (29)

where S = 811 + 822 + 281 2 L= L1 1+ L22 + 2L1 2 U.T = (kT1+ kT2)/X1X2, Ay-l = M-1 '2@00.,1./3,
21 = 4(MX1+ X2)L/15 + 2AY1X2(1 'X1 C!T)/S, and 'X2AY2 5521/3 + 4Ml;0 (81 1+S12) /3)(1 -+ (1 +
Xo0,)0nZq + 284a xo/3. If we write the real and imaginary part of the expansion (25) as

celcp = Re(Utg) /2 = 1 - dos? + ...
acolo =-Im(Eg) 112 = dys + ..,

the coefficients d4 and d, can be related to ¢y and ¢, by

d-' =-{4 /230@0 (30)
da = aftg - (51/259)2)/2a92. (31)

Equations (30) and (28) yield Kohler's expression (see, e.g., Ref.[7]) for the absorption
coefficient at low frequencies, derived from the classical C-E theory. This is not surprising
because, in this limit et << 1, the classical C-E theory is correct to first order in the frequency.

The other three eigenvalues of Eq.{18) are non-propagating at low frequencies since they tend to
infinity as the frequency (B) goes to zero. In particular, two of them behave as § ~ {'g/p for B <<1,

with ¢'g given by the two roots of {'n(¢'g-1)L - kT2§‘0/x1x2 - 5(¢'g-1)/2 = 0. Neglecting the
thermal diffusion term in this equation, one obtains t'p = 1and g’ = 5/2L which, in physical
variables, yield the low frequency dispersion relations K2=-im(n10+n20)(5k/21) and K2=-im/D12.

corresponding to the thermal and diffusion modes, respectively (which in fact are weakly mixed
through thermal diffusion). The third non-propagating eigenvatue behaves as ¢ ~ ¢ /132 for g << 1,

where gy = 3ELx¢/2(L4 Ly - Ly02).

3. Comparison with experiments and discussion.

In Figs. 1 and 2 we compare the numerical solution of Eq.(18) which at low frequencies is given
by Eqs.(25), with experimental data in He-Xe taken from the Ph.D.thesis of Bowler [1] and that of
Fuentes Losa [8]. Notice that the labels of x4 in the experimental data of Fuentes Losa are based on

the extrapolated sound velocity at zero frequency using Eq.(27) (see Refs. [5] and [8]). All the
numerical results are computed at Tp=300K, M = 4/131.3 and using a Lennard-Jones

intermolecular potential (see, i.e., Ref.[13]; we have taken from this reference the values of o; and

g; while the values of o, , and ¢, , are from Ref.{14]). For some values of the light gas molar fraction
Xy, the Euler-level solution is included.

Fig.1 contains the comparison with the absorption coefficients (acelco) obtained experimentally

by Bowler. We note that the agreement is very good up to frequencies w/p=60 MHz/Atm (or even
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more for some values of x4), which corresponds to s = wtx4= 1 and, thus, is within our
expectations. In Fig.2 we plot ¢q/cg (where ¢4 is the light gas equilibrium sound speed, 012 =
5kTqg/3m4) versus the squared dimensionless frequency, s2. Notice that the slope of the curves at
s2=0is cydolCy, where d is given by Eq.(31). Remarkably enough, despite the fact that a rigorous

correction of the Euler-level dispersion must include the next (Burnett) C-E approximation, for the
values of x4 where the Euler theory is poorer (xy< 0.6, specially x4 < 0.3), agreement with

| experiments is quite good up to s = 0(1). However, for low heavy gas concentrations, particularly
! for x4 between 0.7 and 0.95, the Euler-level predictions seem to be better. For x4 near unity (x4>

0.95), both theories almost coincide and agree with the experiments.

in Figs. 1 and 2 only that eigenvalue of Eq.(18) which is physically relevant at low frequencies
(sound root) is represented (except for x4=.45 and .5 for which the diffusion mode is also included).

T ~ T T R
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\ " :
‘ 3 b '/ 7 3 r ¢ 7]
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/) _ , | />
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/ / a
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SIS ] 1r / 7
! / / — T ~———
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| 1 ! 1
50 100 50 100
w/p (Miz/Atm) w/p (Milz/Atm)
Fig.1 Absorption in He-Xe for some values of the He molar fraction. :sound root; - - -:sound
root in the Euler-level; ----- diffusion root; « ¢ + experimental data of Bowler [1].




Fig.2 Dimensionless sound speed ¢4/cy versus dimensionless frequency s in He-Xe for some values

of He molar fraction. :sound root; - - - :sound root in the Euler-level; ---- :diffusion root;
- experimental data of Fuentes Losa [8]; = + = :experimental data of Bowler [1] (from top to botom,
x4=.2, .3, 4, 45, 5, 6, .7, .8).
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As pointed out by Huck and Johnson [15,16], for frequencies larger than a critical value (for He-Xe
at 300K we obtain o.=2.2/1x,, with the critical light gas molar fraction x, . between .450 and

.455) there is another eigenvalue of Eq.(18) which must be taken into account. Under the present
conditions, this other eigenvalue becomes the diffusion mode at low frequencies (see the end of
previous section). This seems reasonable since at the Euler-level of the theory, at which the
dispersion is so well predicted for x4> 0.6, it is aiso the diffusion mode which inteferes for w >w,

[5] (the thermal mode is obviously missing at the Euler-level). Bowler and Johnson [11], using

Grad's thitreen moment approximation with Maxwell molecules model, obtained the thermal mode as
the interfering one. However, using other intermclecular potentials, but still Grad's method, they
also obtained the diffusion mode (private communication).

In conglusion, the two-fluid theory here presented predicts satisfactorily the absorption of
sound in He-Xe mixtures up to frequencies ot = 0(1), improving the classical C-E theory (Kohler)
valid for wt << 1. As expected, it corrects rather well the poor absorption predictions of the
Euler-level. For dispersion, a higher order theory including two-fiuid Burnett corrections is needed.
However, the predictions at the present level compare quite well with experiments. In relation to
previous works, the present two-fluid theory uses a more realistic potential of molecular
interaction (Lennard-Jones molecular model vs. the Maxwell or hard spheres model; see, however,
previous comment on Goldman's work). The present approach results from a rigorous asymptotic
expansion rather than from Grad's thirteen moments. However, it is limited (as previous two-fluid
theories) to small slip in the velocities and temperatures with respect to the characteristic (sound)
velocity and temperature (which, nevertheless, is a fairly good assumption in the acoustic problem).

Appendix. Expressions for the transport coefficients in the first order of the Sonine polynomial
expansion are listed below. The Q-integrals for the Lennard-Jones potential are tabulated, i.e., in
Ref.[13] pp.1126-27.

Byq)y = [x12 (273 + M{A{/Myp) + X1 X5B{/215/Qy
ool = [0 (2/3 + MaA{/My) + X1 xpB4/2p41/Qy
1]y = 2]y = xyxp (23 - A4)/Q4

[A11]y = (75 x{k2T/64mQy) (P5 - P1P7 / Pg)

[Apoly = (75 xok2T/64moQy) (Ps - P4Pg/Pg)

[A121 = [Aoq]q = - (75 xok2T/ 64moQy) (Pg + P4Pg/Pg)

(k1)1 = - 5 My x1X5 P7 /2X3Pg, [kroly = -5 My x52 Pg/ 2x4Pg

[Aplq = - 16 MyQu/3 xq P, [o]y = 16 k MyMoxyxp Q45(1:2),

where

Qq = x12(213 + MyA{ /Moy + x52(213 + MpA; /My Mo + X Xp (By/2 ming + 4A/3B;M{My)
1y = 5kT/8Q,(2:2), Ho = 5 KT/8Q,(2:2)

Ay =225 0,,(11), By = KT/8M;MoQ {1+ 1)

02 = BM2 X0 P1+ (X1 E+ M2X2 C) P2 + M12 M2 Xo G PS

Py =M32 M,3/2 B (x5 Fxy My + D - M2 G)

Py = MY2 x5 [My (M{2 B2 - A D)/x, - A Flxq)

Pg = (M{M5)32 (A G - B2) xg /xo

Ps = M1%2 x [My (My2 B2 - A C)/xq - A Efxo]

Pg = M2 [(x{E /x5 + My C) (xp Fixq + M{D) - My3 M3 G2
P, = M2 x4 B [My Fixy + M{My (D - My2 G)/xy]
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P8 = M1/2 X0 B [E X4 M1/X2 + M1 M2 (C - M22 G /X2
A=Q12(1,1)‘ B-= 5912(1.1)/2 -912(12)

E-= 91(2'2)/2, F= 92(2'2)/2
G=55 912(1 ’1)/4 - 5Q12(1 ’2) + Q12(1-3) -2 Q12(2,2)
Xg=Myxq + Max, M=m/my, Mj=my/(m+m,).
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