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NONLINEARITIES IN THE INTERSPECIES TRANSFER OF MOMENTUM AND
ENERGY FOR DISPARATE-MASS GAS MIXTURES AND SHOCK WAVE STRUCTURE

P. Riesco-Chueca, R. Fernandez-Feria and J. Fernandez de la Mora®

ABSTRACT

The large mass ratio mp/m in a binary mixture of monoatomic gases is exploited o obtain

expressions for the interspecies transfer of momentum and tensorial energy, valid for arbitrary
values of the slip velocity. Self-collision integrals for the heavy gas are obtained by using a
realistic model for the distribution function. The resulling formulation is applied to examine the
internal structure of a normal shock wave in a disparate-mass gas mixture by means of a
hypersonic and a near-equilibrium closure for the heavy and the light gas, respectively. In
agreement with He/Xe experiments a double hump structure is observed here for the density
profiles of the light gas. The evolution of the pressure tensor of the heavy gas is also followed
across the shock. Using the magnitude of the heavy gas temperature overshoot as a measure of
non-equilibrium, the influence of factors such as nonlinearity, molecular mass-ratio and density
ratio on the departure from equilibrium is studied.

1. Intr ion

Nonequilibrium phenomena arising in shock-waves of pure gases or gas mixtures in validate the
use of hydrodynamic theories for the description of the shock structure. Different approaches have
been used, such as the direct simulation Monte Cario method developed by Bird [1], or, under
special conditions, a continuum approach using two-fluid theories, which allow for large
temperature and velocity differences between the species. In this case, exchange equations
describing the energy and momentum transfer are required to couple the species. One possible
choice is to model the interaction by adopting Maxwellian molecules leading to simple, but
unrealistic transfer terms. The resulting equations are then solved for different asymptotic limits
in the density ratio. [4] In this paper we follow Ref. {7], where the large mass disparity is used to
obtain an expansion in the mass ratio for the interspecies transfer integrals. The resultis a set of
correlations for the cross-transfer terms, valid for the whole range of velocity and temperature
differences between the species and therefore suitable to describe the shock-wave structure.
Features such as the thickness of the wave and the heavy gas temperature overshoot are then
obtained and compared to available data. Conclusions are drawn about the validity of the linearized
expressions for the transfer terms.

2. Transfer terms
Consider the momentum and tensorial energy equations for the heavy species :

at(ppup) + V-(Pp+ppUpUp)= -ppb )]

a[Pp + V-(2qp+ UpPp) + (Pp, v) Up + ((Pp- V)Up)T= ‘pp(E + Eggyf)- (2)
We shall follow the notation and resulis of Ref. [7], m, p, U, P being the molecular mass, density,
mean velocity and stress tensor for the light gas, while the same notation with subscript p refers

to the heavy gas. For the evaluation of the heterotransfer terms b and E, knowledge of the
distribution functions f and fp of both species and specification of the interaction potential is

required. Rather than using an arbitrary approximation to the distribution functions, a rigorous
expansion in powers of m/mp is carried out to specify the distributions.  Avoiding cases of

extreme non-equilibrium, fis a Maxwellian to lowest order in m/mp, while all the required
information about fp is the specification of the hydrodynamic quantities of the heavy gas. Once a

model for the interaction potential is selected (Lennard-Jones in Ref.[7]), the cross-collision
integrals are completely defined and can be evaluated numerically. These integrals have an analytic
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expression in two limits:  for small velocity slip (v = *Up - Uj/(2kT/m)* 2«1 ) a linearization is

carried out, whereas in the opposite limit the techniques of asymptotic integration are used. An
optimal function can be filted to match the numerical results between the two limits, resulling in
simple correlations valid in the entire range of v.

To lowest order in m/mp, the collision terms b, E in Egs.(1-2) can be wrilten as:

b = dvg/t (3)

-E= 1/T[my-(T1- Tp)]S +TIp + 2m/mpT (Tp~8b)5 (4)
where 8= Uy - U, T, = 2KT [vg(l-e,e;)+vy e8] hmy and I, = Gms?y ,(I-3e,e;) remp.
The temperature tensor is defined TpumpPp/ppk as usual. Note that the equilibrium closure for
the light component permits to write the temperature tensor as T1. The superindex s denotes a
symmetrized tensor : AS = 1/2 (A+AT) and the unit vector ep points in the direction of the slip

velocity 8. G and t are constants given in terms of the Q-integrals of the kinetic theory; however
it is more convenient to express them in terms of the first approximation in Sonine polynomials of
transport coefficients. For instance, < is the usuai relaxation time of linear theories, 1 =
Dmp(n+np)/an , where D is the first approximation in Sonine polynomials of the diffusion

coefficient. The coefficients vg v, vy, contain the nonlinearities and they tend to unity as &

approaches zero. Only the expressions corresponding to the high temperature limit (T » e/k ,where
e is the depth of the Lennard-Jones well for the heavy-light interaction) are used here, since this is
the relevant limit in most shock wave problems. For instance, e/k takes the value 48.37k in the

case of He/Xe mixtures; which is very small ccmpared to the typical upstream temperature
(~300k} and higher values reached across the shock.

The nonlinear factors Vg Vq, and Y,

100
vg = (1 +0.4596v2)173 (5) 1
vy, = (1+2v2 + valogoghavivg (6)
vy, = (1+0312v3)173 (7)
are plotted in Fig. 1, together with a more
10
convenient approximation for v, provided 3
by the correlation [
v, = (1 + 1.34v18)10673,
The evaluation of the self-coliision integrals I
Eggf cannot be simplified by the
above-mentioned mass-ratio expansion
0

technique, so that specification of fp is

unavoidable. Nonequilibrium in problems with
axial symmetry around the flow direction is
Fig. 1. Nonlinear factors as a function of v
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generally accounted for by assuming an ellipsoidal Maxwellian (Gaussian) distribution with
different parallel and perpendicular temperatures as parameters:

fo="p (Mg/2rKTp))) 2 mp/2nkTp_Lexp(- mp,2kTp“(upH-Up):’ - mp/ZKTpLUpLQ)- (8)

Even though the range of situations where Eq.(8) is a realistic model for fp is not well defined,

possible inaccuracies arising from it will be shown 1o be unimportant, since cross-collision terms
are dominant. .
Using Eq. (8). Eggys can be writien as: [9], (10}

-Egelf = np(mp/2k)3/2Tp“"/?Tp,;‘_I:(2kTg/mp)5/2(3n?-1)Q?](Tg)dn (l-e.e.) (9
where Tg = Tp_l_/“'(TpH'Tp_L)’\?/TpH) and Q.. is defined in Hirschielder et al .[5] The high

temperature limit is again chosen so that the repulsive part of the Lennard-Jones potential
prevails and Q,, takes an analytic form which can be substituted in Eq.(9).

3. Governing equations

This paper deals with one-dimensional steady shock waves with density ratio o_f the heavy
component up to order unity. Following reference (2], the mixture conservation equations can be
written as

pU = m (10)
ppUp = em (11)
pU2 + ppUp? + pkT/m - 4w/3 dUidx = P (12)
pUUZ/2+e) + ppUpy Up?/2 + U(eKT/m - 4u/3 dUidx) - AdT/GX = E, (13)

where the heavy gas pressure tensor, heat flux and internal energy have been neglected with
respect to their light gas counterparts, which are O(mp/m) larger. Additionally, a near

equilibrium closure for the light component permits to express the pressure and heat flux terms as
functions of the light gas velocity and temperature field. Strictly speaking, this closure is only
uniformly valid across the shock for M close fo unity. However, for the range of density ratios
considered (e <1), the evolution in strong shock waves from upstream to downstream conditions
takes place in two different scales. In the first one, light-light collisions are dominant and the light
gas is compressed as in a pure gas shock wave. In the second scale a slower interspecies
relaxation takes place and both species are compressed to the final state. Since most of the
deceleration of the heavy gas takes place in this second scale, which is also the broadest one
because of the mass disparity, the light gas hydrodynamic closure is used throughout the shock.
Accordingly, results in the first scale will be only qualitative for strong shocks, but the remaining
relaxation is realistically described. At the same time, the near-equilibrium assumption for the
light gas permits to use the above described transfer terms and therefore close the problem.
Equations (10-13) are complemented with the following relaxation equations:

Up dUp/dx = b (14)
kimg (Up(dTp /dx(1-e5e,)+d Ty /dx e,e, 1+2Tpy dUp/dx ey }= -E-Eggy.  (15)

In Egs.(14-15) the heavy gas pressure tensor and heal flux have been neglected because of the
large mass disparity, which causes the heavy molecules to remain in hypersonic conditions across




t2
=
l=a)

the shock.
The boundary conditions are, at x —-= p=p,, Pp = €Py. U= Up =U,, T= Tp||= TpL =T,

while downstream the conditions are given by the Rankine-Hugoniot relations together with the
condition of equilibrium: x 5« T = TDH = Tp_L= T, U= Up =U,.

Introducing the dimensionless variables n = U/U,, &= Up/U], 6=T/T, 8 = Tplfrl 0
Tp“/Tl, ep =(20, + e”)/3, ds = 3mdx/4p, Egs. (10-15) become:

dn/ds =n -1 +¢e(E- 1)+ 14M2 (o/m - 1) (16)

[3/2P1(y - 1)M?]de/ds =-(n - 1)2+¢ (E-2n+1)(E-1)+ 2[6+(v-1)n ~y}¥(y-1)M?2 (17)
g dé/ds = 6 (n-&)og mF (18)

&do, /ds = 20/F {(0 -0, )vg + Gv28vry, + Ben 05! Veg-173 (0 -6 )vg /§e||"2e L} (19)

£ doy/ds + 20 de/ds = 20MF {(6 - 8)ory;- 2Go’euy, + 29”v2\>B -
2 Ben op“/69‘1’3 (8p - 01 )vg/ 20, 1%0,3.  (20)

The dimensionless parameters Pr, F, B, G are functions of the Q-integrals of the kinetic
theory. Only the Q-expression for G is given here:

G=15 o221 (21)
where the Q correspond to the cross interaction between light and heavy molecules . For the

remaining parameters, an exact and more convenient representation is obtained by combining the
first order approximation in Sonine polynomials of transport coefficients

Pr=pky/(A(y-1)m) . F= 3~,mpM2/4m8c . B= w2uySc (22)

where Sc= w/[m(n + np)D], approximately uniform in the high temperature limit considered (T >>
e/k). B and G are evaluated at the upstream point T = T,. For the high temperature limit the
following values are obtained in the case of a He-Xe (He - Ar) mixture: F = 18.52 M? (7,215M?),
G =0.4569 and B = 0.164 (0.297). Alternatively, direct experimental values of y, Hpr D, can be
inserted in Egs. (21-22) to approximate F, B, and G. The fact that B « 1 shows that, when e< 1,
self-collisions are not dominant and therefore the choice of the model for fp is not critical for the

accuracy of the final results.

A particular feature of the system of differential equations (16-20) is that both the starting
and ending points are singular. A direct numerical integration of the whole set is not feasible
because of unstability problems. The first three equations are uncoupled so that the discussion on
stability in Ref. [2] applies. In a second step, Egs. (19-20) are solved to yield the heavy gas
temperature tensor.

Egs. (16-18) can be written in phase space

[(n—E)og/MEF] dn/dE = -1+ € (&~1) + (8- 1/n)iM2 (23)

[3(n-&)vp/2nzFPr(y- 1)M? Jde/ds = -(n-1)> = &~ 1) (E-2n+ 1) +
206+ (v- 1)n - iAly- 1)M? (24)
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For weak shocks, the approximate conservation of entropy across the wave permits to reduce the
number of equations and obtain a a numerically stable set [2]. When M"- 1 - 1 Eqgs. (23-24) show
that the small value of F1<<1canbeusedto generate a perturbation solution. The lowest order
outer solution, corresponding 1o the region where dn/ds, de/dz < 0(1) is obtained by neglecting the
differential terms in Egs. (23-24). An algebraic expression giving n, 6 as functions of ¢ can be
easily deduced. The resulting formula corresponds to a two-fluid Euler-level in the brogd
relaxation region (outer scale) . Higher order approximations to the outer solutions can be readily
obtained by using a regular perturbation scheme [2].

However, the assumption of small gradients is no longer valid in the starting region of the
shock, where the light gas undergoes a shock, practically unaffected by the heavy component. in
this region (inner scale) the upstream velocity of the heavy gas is approximately conserved (g =1).
Therefore taking n as independent variable, and expanding 8 and & in Egs. (23-24) as 6 = 8 + F 04

+...and £=1+ F"E,1 + ... ,the resulting lowest order equations are obtained for the inner
scale:
dog/dn = 2Pr (y- 1)M2 [2(8g + (v- 1)n - Wiy~ 1)M?) - (- 1)?] (25)
3~ 1+ (8g/m - 1)AM?)
dzy/dn = (n - 1) vgop/fnin - 1+ @g/n - 1) AM?)]. (26)

Eqg. (25) is formally identical to the expression of a pure gas shock wave between the (v, 0)
points (1,1) and (n,. 0,), where n,, 8, are the downstream Rankine-Hugoniot values for a pure

gas, because setting £ = 1 eliminates the influence of the heavy component. A backwards integraion
starting at (n,, 6,) is required to avoid instabilities. On the other hand (n,, 6,) is also the limiting

value of the algebraic external solution as & - 1. EQq. (26) gives a first approximation to the
breadth of the inner scale. Note that this function is singular at (n,, 8,). This feature permits to

obtain the transition from the outer to the inner scale analytically by linearizingine-6,and n-n,.
The following equations result:

dn'/de’= (1-1AM 2 0"+ 0'AM 2 -e &', (27)

do’/de” = 4Pr[(v1)n +6 - e(1n v(y-1)M,2 & /2113y (28)

where M, is the downstream Mach number for & pure gas shock wave with upstream Mach number
M,and n ={n-n,)m,B, 0 =(8-90,)/6,B, & =- 1)/B, with B =(1-n,)vg,8,/M,F and vg, =
vg( =1,n=n,).The complete solution takes the form:

n =np )+ Aneds (29)

6 =6p(E)+ Ag e (30)
where o ep is a particular solution linear in & which can be interpreted as the local first

correction to the lowest order downstream algebraic solution. Matching with this downstream
algebraic solution is achieved automatically by rejecting the contribution from the nondecaying
exponential and keeping only the exponential term associated to the other eigenvalue A. (n ,»8,)is
the corresponding normalized eigenvector, while the constant A can be determined numerically by
matching with the solution of Eq. (17-18) as n »n, and 6 - 8,. The matching is carried out

neglecting the algebraic term, so that A does not depend on . Some values of A are A= .84, 1.13,
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1.25, 1.31, 1.34, 1.36, 1.38, 1.39, 1.40 for respective values of M=2, 3,4 56,7, 8,9, 10.
The resulting values of n, 8 as a function of ¢ are then substituted in Egs.(18-20) to yield the
heavy gas temperature tensor evolution and the complete structure in the physical plane.

Fig. 2 shows the results, using the above-outlined technique, for the density profiles of both
species in a mixture of Xe in He. The conditions for this example are taken from the experiments of
Gmurczyk et al [3]; this particular use has also been modeled by means of a modified BKG theory
{6] and a numerical simulation [8] , with conflicting resuits. Fig. 2 shows the two-scale structure
consisting of a sharp region where the light gas undergoes a pure gas shock wave, while the heavy
component is approximately unaffected, together with a long tail where both species relax to the
final equilibrium state. The values of p used to integrate Eq.(18) are taken from Vargatftik (11].
Our results do not show the overshoot in the helium density profile reported in the experiments
which is probably caused by measurement inaccuracies at the tail of the shock.

p=p Fig. 2. Density

— profile for a He
P27
fXe shock wave:
e=1.014, M=
2.7828, .= .46
mm (upstream
0.5} mean free paih).

Analytic

computation.
----- Linearized

solution.

N R Gmurczyk
30 x/x

experiments.

A two-step or double hump structure, which can be characterized by the occurrence of three
inflection points (dent) in the density profile, instead of one, is apparent in the figure. The location
of the first step approximately corresponds to the end point of the light species_pure gas shock
wave, (1/m,-1)/(1/m,-1). The dent becomes less visible as the Xe concentration increases or the
Mach number decreases, because this causes the two scales to merge. Good agreement exists with
the experiments regarding the shock thickness (measured in units of upstream mean free paths of
the mixture) [3]. A rough estimate for the breadth of the scales is given by Lo, ~ uM/pU

(self-collisions dominant) and Lg er ~ U 72 (cross-collisions dominant), where t, represents
the downstream relaxation ime kzmp/Scmnsz:,. If a 2/3 pow/er dependence on the temperature for
W is assumed (high temperature limit) and the strong shock relations for T,/T, and n,/n, are used,
the relation between the scales becomes

Louter’Linner = © (mp/mSC) (MI(1 + )1 (31)

where C is a constant taking typically values one order of magnitude below'unity. A generalized
formula for a shock not in the strong limit would involve a more complex function of Mande.
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However Eq. (31) and the sequence of profiles in Fig. 3 .iilustr‘atg the evolution of the
thickness ratio. First, against what we might naively expect, this ratio is smaller than mp/m

(except for very large M), as shown in Fig. 3. Besides, the thickness ratio grows as M increases,
and as the heavy gas dilution increases.

Figure 2 also includes the resulting profile when a linearized model for the coliision terms is
used (v, =vg,=vg=vg=1, higher terms in v neglected). As can be observed, the difference is
3 2

small, because the only nonlinear correction in Eq.(18) is vg which, for the most extreme case

(very strong shock with v = 1/(y»1)‘2 ), takes the value 1.2 (see Fig.1) . Therefore, the Iinfaar
approximation gives a good description of the density field. As will be shown in the next section,
this is not the case for the temperature field.

Fig.3. Analytical density profiles

i

for a He-Xe mixture withe=0.5

and different Mach numbers. ° "1
P,Py
(¥ = 4 M/3M) 2
-------- M=2
M:
3 0.5
et MeB
.............. M=1 0

4. Structure of the temperafure tensor

The evolution of the temperature components across the shock wave is governed by
Eqs.(19,20) which clearly show the sources of temperature non-equilibrium. The parallel
temperature rises as a consequence of compression heating (-2e| ldg/ds) and friction heating (power
supplied by the drag force, 466“ v?uB /mF ). While these terms increase the nonequilibrium, the

relaxation and self-collision terms bring the species closer 1o equilibrium. The final overshoot
(Fig. 4.) in the paralle! temperature results from the action of all these terms.

The importance of nonlinear heating in strong shocks is evident from the figure: the linearized
solution is only valid for M below 1.2-1.3. Note that the friction heating term is absent in a
linearized theory. This, together with the above-mentioned balance determining the overshoot,
explains the sensitivity of the heavy gas profile to the description of nonlinearities. Fig. 5 also
includes the results obtained by Bird [1] using a Monte Carlo simulation ( He-Ar, e=1). His dala,




1

30 x/A'

Fig. 4. Heavy and light gas temperature profiles (s, 9 8,) in a e=0.5 He-Xe mixture
—M=2, - M=3, - - - M=5

originally a function of the mixture Mach number Mg [Mg’~M-(1+¢)], are here replotied as a

function of the light gas Mach number M. Several differences are noticeable. According to Bird,
overshooting takes place as soon as Mg>1. Our results on the contrary show that the overshoot

exponentially decays to zero as M—1, at values larger than Mg=1. This is confirmed by the

1.04

1.09

Linear

1.047

1 M 10
Fig. 5. Heavy gas temperature overshootin e=1 He-Xe (——) and He-Ar (e ) mixtures
Bird's simulation for He-Ar: -----
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coincident trend of the linearized equations close to M=1. An additional difference consists in the
overall larger values for the overshoot obtained by Bird. However, the curves are qualitatively
similar and both tend to a limiting value 8pmax/8p ~ 1.1+1.12 as M gels large.The

corresponding values for the parallel component of the heavy gas temperature are much larger (in
the asymptote, 0”/92=1.46). The influence of the mixture mass-ratio can also be observed

(overshooting increases with mp/m). However our results are subject to the constraint of large
mp/m, so that they are less reliable in the case of He-Ar mixtures. An additional source of
discrepancy with Bird might be the different interaction potential adopted.

Figure 6 shows the same curve in the case of a very dilute mixture (e=0.0001) for He-Xe and
He-Ar. The large increase in the overshoot with respect to the results for e=1 is mainly due to the
strong dependence of the light gas temperature profile on . The choice of the parameter
represented (epmax/%) also causes an apparent magnification of the non-equilibrium as -0,

because 8, drops down to 0p- An additional, minor contribution to non equilibrium is provided by

the absence of equilibrating heavy gas self-collisions when e«1. The same differences with the
linearized approximation are patent. In this linear limit, the additional neglect of self-collision
terms permits to obtain an explicit analytic expression for the heavy gas temperature tensor.
The calculations are carried out assuming an irstantaneous pure gas shock (n, 8,) followed by a
relaxation of the heavy species towards {n, 8,)=(n, 0,). Defining u=§-n,n,=l-m,, the
expressions for s, 9“ and ¢, are:

s = -nF(up,+nin{ui,)) /6 (32)
6” = (u/f;)?' [1/;112 - 20[In _u/u‘ -2n(1/u - 1/;1[) -n22(1/? - 1/;.112] (33)
8, = 0+ (1-8)avu,)? (34)
egmax
8
2
1.4] —
//
Non—line://
//
1.3] 7
7/
%
/
1.21L //
Va
/ Linear N
/
// _ Egs. (33-34)
1.11 /S
il
//
S
1 T T 1o

Fig. 6. Temperature overshoot in the dilute limit (e=.0001).
He-Xe  ------ He-Ar -weeeeeeses Eqgs. (32-34)
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These functions are ploited in Fig. 6. The agreement with the numerically obtained linearized
solution is good except for M = 1 where the assumplion of an independent an instantaneous pure
gas shock is not realistic.
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