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Abstract

The far-from-equilibrium Brownian motion of wam: particles or
heavy molecules inmersed in a o::..moﬁ. gas may cn.ammo:_uoa by closed
hydrodynamic equations in the limit where their mmona of :6_.:&_
agitation is much smaller than their convective <n_no:< (a hypersonic
closure). The corresponding hyperbolic governing equations are
studied in this paper through the method of n:mwmnﬁo:m:o? __., 1Wo-
dimensional and axisymmetric problems, the original system of seven
partial differential equations is reduced to a ,ﬁﬁ.oﬂ seven .o_.a:::.z
differential cquations along five different characterisuc directions :.::
we determine algebraically. Three of the characternistic ?_..:.m coincide
with the particle trajectories, and the two other pairs originate from
two distinct signal propagation modes. The _:Q:og. is ::_U_Q:GEQ_
numerically in two problems (Prandil-Meyer expansion and O::mm._m:
wake), leading to an excellent agreement between .:6 ::Enn._o:_
results from the characteristic equations and m_S.Q:S__ solutions
derived by asymptotic integration om.::w kinetic mowxm_.-w_ssow
equation. The Prandil-Meyer ?.czﬁ.s H::mﬂ.::n.m the .mm::a om. the
hypersonic closure, when used blindly 5.:6 vicinity of singular points,
though the associated errors in the density are tolerably small.

I. Introduction
“The motion of a far-from-equilibrium phase of small particles or

heavy molecules inmersed in a light carrier gas cannot be aamc_._cwa “d\
the standard near-equilibrivm Chapman-Enskog closure of the
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hydrodynamic equations for binary gas mixtures. Instead, more
complex kinetic formulations such as those provided by the Fokker-
Planck equation have to be used. | Fortunately, in many problems of
interest, the smallness of the particles’ thermal speed compared to
typical values of the mean velocity, opens the door to a hypersonic
closure of the hydrodynamic equations, even in situations where the
carrier gas is subsonic.2:3 The thesis of Ferndndez-Feria2 (sec also
Ref. 3) revicews previous instances where the hypersonic condition of
gases has becn used to close the hydrodynamic cquations. In
particular, the moment cquations can be closed by dropping the heat
flux term in the cquation for the pressure tensor while retaining (in
contrast to previous deterministic formulations4) the pressure term in
the momentum equation, thus accounting for the Brownian motion or
diffusion of the particles2-3:

DAp + V-Up=0 (h
—ﬁ .

DTp+ (Tp-V) Up + (T VY Up)T = 2(T1 - Tp)it - (3)

where v(c = log(pp/Pp0), pPpO is n reference density for the particles,
9t + Up-V
and T is the relaxation time, related to the first approximation of the
diffusion coef-ficicnt D given by the Chapman-Enskog theory for
binary mixturesd by

1]

Up and U are the mean particle and fluid velocity, D

T=mpD(n + :cv\ﬂzr\j

The quantities n and np are the number densities of carrier gas and
particles, respectively, k is Boltzmann's constant, mp is the mass of
the particles, and the superscript T denotes a transposed tensor. It
can be shown? that, away from singular points, Eqs. (1-3) yield
errors of the order of ?:%w for the density and the mean velocity and
OAZv-J for the lemperature, where

ZC“C_V\A—A‘:‘«\SJUV_\N >> 1 A.Av

is a sort of a Mach number or speed ratio of the particles and Tp=
._,:F.aqbv\w. Moreover, these errors are considerably reduced [to
OCS@LJ and OQ,\:U-NY respectively] when the heat flux term
vanishes initially,

In this paper, the hyperbolic nature of Eqs. (1-3) when Mp is
sufficiently large, is exploited to reduce them from a system of partial
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differential equations into a set of ordinary differential equations a.xlong
the characteristics of the problem. In the case of lyoﬂim;:nsxgnal
(2D) and axisymmetric steady problen.ns. the clmraclgnsnc directions
at a given point are obtained explicitly as a function of the loc?l
particle density, velocity and temperature tensor. We shall 'show in
Sec. II, that three of the seven characteristic deg,'cnerate into the
particle trajectories. and the remaining two pairs intersect the
streamlines at angles whose interpretation is .Slmllﬂl' to that of th.c
Mach angle in supersonic gas dynamics: the sine of these ’anglcs is
the ratio between the transversal propagation of perturbations at a
speed ci = (YikTyn/mp)1/2 and the particles' mean veloc.ity Up. Tnn is
the component of the temperature tensor perpendicular to the

streamline and vj is 1 for one pair of characieristics and 3 for the other.
The expression for cj is an approximation based on the smallness of
Mp: . N |

The fact that the characteristic directions are known algebraically
allows for a relatively simple numerical implementz}tion of the method
following the algorithm described in the Appcndl.x. In Sec.'II.I,. the
method is applied to two problems: The dispersion (?F an initially
concentrated distribution of particles (we shall refer to it as the wake
problem) and the two-dimensional version of this same prpblem when
the initial distribution of particles is a siep-function (which we shall
denote as the a Prandil-Meyer problem by analogy to the Prand.ll-
Meyer expansion of a pure gas into a vacuum). Explicil (asymptotic)
kinetic solutions of the Fokker-Planck equation for these two
problems are given here for the first time. Thc'cxccllcnt agreement
obtained when comparing the two pairs of kinetic qnd hydrodynamic
solutions for both problems confirms the reliapilny (\Vbtlleyer no
strong singularities are present) of the hypersonic approximation (1-
3) as well as the usefulnessof the method of characterls-tlc§ as a_lool
to analyze Brownian motion in more complex gas flow cor}flgura.uons.
On the other hand, the limitations of Eqs. (1-3) used blindly in the
vicinity of singular points are illustrated in the Prandil-Meyer problem.

II. Mcthod of Characteristics

A. Description of the method ' ' .

The hypersonic truncation of the moment cquations carricd out in
Egs. (1-3) relies on the smallness of th‘ler[lCICS thcrmu'l speed
compared to their mcan velocity. Notice ‘thal, folllowxng the
development in Ref. 2, the heat flux term, which is O(Mp~!) compared
to the convective term, has been dropped in Eq. (3), buF the pressure
term (proportional to k/mp) in Eq. (2) has been retained §0‘ as to
account for the Brownian motion of the particles, even though it is a.lso
small compared to the leading DUp term. The close connection
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between this pressure term and Brownian motion is physically
evident from the fact that both are direct consequences of thermal
agitation. Bringing Eqs. (1-3) to normalized form displays the small
parameter underlying the truncation. The variables arc replaced by
their dimensionless counterparts

Up(—Up/UR,TpHTp/TR, UeU/Ug, T<T/TR, xex/Lg (5)
where Ur, LR, Tg are characteristic values of the velocity, geometric

scale, and temperature in the flow, respectively. Only steady
problems are considered and the following parameters are introduced:

S = URT/Lg, €2 = kTR/(mpUkz) (6)

where S is the so-called Stokes number and €. proportional to the
inverse of Mp. is very small. Equations (1-3) then become

Dlp = -V-Up (7)
DUp + &2 [(Tp-V)hp + V-Tp ] = (U - Up)/S (8)
DTp+(TpV)Up+((Tp-V)Up| T=2(TT -Tp)/S (9)

Under the assumption that the geometry of the flow is 2D or
axisymmetric, Eqs. (7-9) can be rewritten in a canonical matrix form.,
Let (x,y) be the axial and radial coordinates in axisymmetric problems
(or any plane coordinates in 2D), and let z stand for the azymuthal
coordinate or the direction perpendicular to the plane, respectively.
From symmetry considerations, Txz = Tyz =0, and the velocity com-
ponent along z is zero. If (u,v) are the components of the particle
velocity at (x,y) and (u',v") their carrier gas counterparts, Eqs. (7-9)
can be written as

A Qw/ox + B-dw/dy = b (10)
where

(l):{XP,U,V.Txx.Txy.Tyy,Tzz}T

b={-Bv/y.(u'-u)/S-e2BTxyly (v'-v)/S-e2B(Tyy-Tz2)ly.
2(T-Txx)/S.-2Txy/S,2(T-Tyy)/S 2(T-Tz2)/S-2vPT2z/y) T
B=0.1 for 2D and axisymmetric geometries, respectively, and

F. 1 0 0 0 0 0
€2Txx U 0 € 0 0 0
eTxy 0 u 0 €20 0
A= 2Txx 0 u 0 0 0
0 Txy Txx 0 u 0 0
0 0 2Txy 0 0 u 0
0 0 0O 0 0 0 LJ
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v 0 ] 0 0 0 0
e2Txy v 0 0 €0 0
e2Tyy 0 v 0 0 €0
B =10 2Txy 0 v 0 0 0
0 0 070 0 0 v

Equation (10) is a first-order system of nonlinear partial differential
equations where all derivatives enter linearly. The slope y' of its
characteristic direction results from solving the associated eigenvalue

problem
A-B=y'A-A (rn)

If Eq. (10) is muliiplied on the left by one cigenvector A, and y' is
rewritten as
y'=tan® (12)
the following results:
A-A-(cosO oy + sinh wy) = A-b cosd (13)

Then, along each characteristic direction 8 (determined by each of
thecigenvalues y'), an ordinary differential equation can be written as
AA-dw/ds = A-b cosH (14)

where s is the length measured along the characteristic defined by y'

Although the characteristic equation associated with the
eigenvalue problem (11) is of order seven, the determinant of B - y'A
may be factorized exactly to yield the following equation for y'":

?-%.cvu { ?rw.:vm-mma,:-mw.,ﬂxv\+v~.m%xxvH
{(v-y'u)2-3e2(Tyy-2y Txy+y 2 Txx) ) =0 (154)

Explicit expressions for each one of the seven eigenvalues and corre-
sponding eigenvectors can be derived from Eqs. (11) and (15a):

1

v\

C<n‘<mM.‘—Jx<nl_um¢—.<waA~_4xv\m«w—,xx\—AKu\v+<ﬁ<wx—4xx+~_wu—4<wﬁw—._<s—4x<v_

(15b)
u2-¥e2T

where 7y takes the values 0, 1. or 3.
In particular, the eigenvalue y'g=tan6( =v/u is triple, indicating

that the particle trajectory is a triple characteristic. An alternative
implicit expression for the remaining four eigenvalues y' is provided by
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the equation

B = arcsin(1/M") (16a)
where, for a given characteristic, y' = tan(@¢gxp) and M' is a Mach
number based on the temperature normal to the characteristic, defined
as

M’ = UK Tpmm/mp) (16b)

with qu)\?vw;}vwv. and the transversal speed of disturbances is, as
one would expect, proportional to the square root of the component of
the temperature tensor normal to the characteristic direction

%:.:.:n:_.w‘._:umm:woﬁxx-w sin® ccmc,_..é+ncmw®‘ﬂ§

where m is the unit vector normal to the characteristic direction given
by y".Equation (164) is implicit because Tpmm is dependent on y'. It is
informative to write the equation for y' in this form because it is
strictly parallel to the definition of Mach angle in supersonic
equilibrium flow of simple gases. An approximate form of Eq. (16a)
can be helpful in the hypersonic limit where € is very small. Then.
with errors of order €2, the four characteristics cross the particle
streamline at symmetric angles £p] and #u2: 6] 2 = arctan y'1.2 =00
+11, 83 4= arctan y'3 4 =60 £u2. The twin characteristics are
deflected with relation to 8¢ by a small angle uj (of order €) related to
the Mach number of the particles by
Wi = arcsin(1/My) , i=172 (17a)
where two modes of propagation of signals give rise to corresponding
Mach numbers. In physical magnitudes these Mach numbers may be
expressed as
. . 112
Mi = Up/(YikTpan/mp)'/2) , y1=1. 12=3 (17b)

where the transversal speed of disturbances is now based on the
normal component of the temperature tensor,

Tpnn=n+Tn nmmzwoc,_,xx-w sinBg oomoowﬂ:loc,ﬁmmoﬁi

where nis the unit vector normal to the particle streamline. It may be
observed that Eqs. (16b-17b) are exactly coincident with the usual
definition of the Mach angle if Tpnn is replaced by the scalar

temperature and yj takes the value of the ratio of specific heat

coefficients (y = 5/3 for monatomic gases). It is clear that the two
modes arise because of the breakdown of the isotropy in the
temperature tensor, and that further modes would be present in a 3D
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problem lacking symmetry. Values of 1 and 3 for the coefficient y
correspond, respectively, to isothermal progagation anq oa p.roblfcm
with only 1 degree of treedom (one-dimensional). This last situation
arises when the mechanical work put by the pressure term in a
particular direction is not redistributed by colisions, heating up only
the corresponding component of the temperature tensor. . '

As sketched in the Appendix, the seven differential equations
(along different paths) obtained from Eq. (14) can be s:qlved
numerically by meuans of a characteristic mesh._ The only‘ ad(ll’(lOllZl]
difficulty with respect to traditional chnractcnsuq solutions is the
increassed complexity of the grid. In the next section the characte.r-
istic method is applicd to two problems for which asymptotic
analytical solutions are available.

I Examples: Gaussian Wake and Prandtl-Meyer Expansion

In this section, two problems are considered for which asymptqtic
analytical solutions are uvailable. The building unit is an expression
describing the spread of particles emanating from a steady point
source in a uniform background gas at temperature Ty which travels at
velocity Up in the x direction.3  This exact solution results from a
numerical convolution integral of a known solution of the Fokker-
Planck equation for the evolution in time of a pulse of particles.0:7 In
the limit e<<1, the convolution integrals reduce asymptotically to
stmple algebraic expressions tor np and Up. These results may (llS.()
be obtained by a near-axis boundary layer analysis of the hypersonic
Eqs. (1-3), which provides also explicit expressions for Txy and T).,y_3
The asymptotic results for the steady source problem uare summn{lzed
here: If particles at the source are produced at a rate 0’ and Wl.[h a
Maxwellian distribution with mean velocity UQ (also in the x direc-
tion) and temperature T, the particle phase magnitudes at a point (x.
y) [where y £ O(ex)] can be written in terms of parametric variables

(IS’;

Txx=E(s): Tyy=d(s)/a(s)

X=XO(S); U=U()(S);
2
N a0 e (. —Y ),
- 2me=als) | exp(- '
=g 2meas)] exp( 2a(s)e?

where nd = 2 or 3 in 2D and axisymmetrical problems, respectively. In
the preceding equations, the same normalization defined in Eq. (5) is
used, with Ug = Up, Lr = Upt, TR =Tp, so that S = 1, and the
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following functions are introduced:

XO() =s+8(1-e %)y ugs) = xg'(s) =1+8¢-S (194,b)
als) = o (1 - 0‘5)2 +25-3-¢28 4+ 4e-8 (19¢)
sy = ()2 =(1-e9)(1-eS+ oe$S) (19d)

d(s) = ol 1-de$+(25+3)e 28] 42548 "5- (25 +4)c- 28 (19¢)

E(s) = e 28[e28- L+ (148)2+48(eS- 1)+2825]/up(s) (19f)

with o = To/Th , 8 = (U - Up)/Up . N' = n't. No closed-form expres-
sion for Txy hus been yet obtained, but in the vicinity of the source
(s<<1), Txy = ay/[(l + 8)s] for o # 0 und Txy = 5y/13(1 + 8)]
otherwise. Equations (18) can be considered a fundamental solution.
from which more complicated problems can be solved by convolution.
The fundamental solution for N' = 1 is denoted with a subscript F: ng

=n, Ug = Uex + vey, TE = Txxe.\'('x + Tyy(‘\'(‘\f + T’\’y((.'x(iy + eyeyx).

A, Dispersion of an Iuitially Gaussign distribution of particles
(Goussian VWake)

Particles are seeded in the plane x = 0 ar a dimensionless rate N'
with a Gaussian concentration profile, so that at s = 0,

' 2
= 2. (12 ye e
= 5005 (2re-a()) exp(- 2:l()zt2 ) ug =148, v=0

Txx = T'y)' = TZZ = Q, Txy =) (20)

n

where a() is a constant. As particles evolve in the uniform (Th.Up)
back-ground, their Brownian motion broadens the concentration
profile. From a convolution argument, the field quantities are

n(x) = fdsi(x') ni(x')u()i(x’) nE(x-x") (21la)
n(x) U(x) = [ dsi(x) ni(xYupi(x) nE(x-x') UR(x-x') (21b)

n(x)7T(x) =s-2|sti(x')ni(x')uoi(x')np(x-x')Up(x-x')Up(x-x')
- U)UX)] + [ dsi(x) ni(x)ugi(x') TE(x-x") (21¢)

where the superscript i refer to the initial condition given in Egs. (20),
and the integration is carried over the seeding plane [ds!(x") is the
differential element of surface centered around x']. Performing the
integrals (21). the following is obtained for the particle magnitudes
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' 1 1 1 1
Guussian 5.__3 :_x_,mv::;
_ \
el e=0.1 a=16=0 |1
L~
|~
0.84 \ |
v |~ \\
0.8 < \ L
\ L
0.4 \\
\\u\\\\ll\\l
"1
0.2+ | "]
VAA
o.oo 1 2 3 4 . 5 6 7 8 9 10 N

Fig. 1. Trajectories and density profiles for axisymmetric O::m&:: wakes.
Marked curves correspond to Eq. (22). —— numerical integration of the
hypersonic equations by the method of characteristics. €=0.1; a=1; 8=0.

downstream from the seeding plane:

q
2 Q-ng)2e o[ —L—— (22a)
n= 0 [2re=(a+np)] oyvm N?i_ovmm u
e d, w0 e @)
U = u0ex *+¢y fragy Tyy =32 " atatag) . *X7 <

No expression for Txy is given because it i1s not available in the

fundamental solution. As before, a, ¢, d, &, and up are functions of x,
implicitly defined as xo(s)=x [Eqs. (19)]. . . .

Figures 1 and 2 show density ?o.:_am and trajectories as
calculated from Eqs. (22) compared with the m.ow::w from the
numerical integration of the hypersonic equations using .:6 _:Qr.o.a of
characteristics (sec the Appendix). Two different inidal conditions
(both with €=0.1) are displayed for axisymmetric flows. A very close
agreement is observed in the density profiles for both cases, as <<o.:
as for the corresponding 2D situations (not m:o.isv. The agreement in
the velocity and the temperature, not shown, is even better than for
the densities. The mesh size used in the numerical method was
Ax=0.01 for x<5 and Ax=0.1 for x>5. The convergence of the numerical
method (see the Appendix) was very fast typically, after two
iterations the error was smaller than o.:?&w.
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Guussian wake (axisyn.)
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Fig. 2 Like Fig. I, but with €=0.1; 0=0.5; §=-0.5.

B. Dispersion of a Step-like Particle Distribution (Prandtl-Mever
Problem)

In this section we consider the analog of a 2D Prandtl-Meyer
expansion.Particles are uniformly seeded only in the upper half of the
plane x=0, so that there is a discontinuous step in their concentration
at x=0. The propertics of the carrier fluid are uniform everywhere.
Although it is not included here, the axisymmetric counterpart of this
problem corresponds to the expansion of particles uniformly seeded in
a circle at plane x=0. With the help of Eqs. (24) and (25), and
carrying out similar integrations as before, the following asymptotic
results are obtained:

n=erfc(-N)2, Txx=§ (234)

C wamv 1/2

U=ugex+ey o (— exp(-n2)/ferfc(-n) (23b)

]acwm:ox_x.gmvumz_x.:mv
Pyy=7= .I.T-_| _— vu_
,.,_éa_.ié 9.5-3

=

where we have delined the variable
n=yN(2ue?) (23d)

and erfe is the complementary error function.8 To avoid the singularity
at the origin, the numerical integration is started slightly downstream
from x=0 {at x=0.25 in Fig. 3) using Eqs. (23) as initial conditions
(from the starting behavior of the fundamental solution TxyF. it
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RN

Prandtl-Meyer expansion e=0.1 a=186=0

A

0.25

0.00 ==

%

a
/

-0.25 \
N\

N

0,00 025 050 0.75 1.00 1.25 1,50 1.75 200 225 250 275 3.00

X

Fig. 3. Trajectories and density profiles for a Prandu-Meyer expansion with
€=0.1, a=1 and 8=0. Marked curves correspond to the analytical solution
(Eqs. 23) of the Fokker-Planck equation; —— numerical integration by the
method of characteristics, started at x=0.25 using the analytical solution (23).

follows that Txy = 2av/(1+8) for small x) and the results for €=0.1
are presented in Fig. 3, together with the solution (23). The mesh
size used in the numerical integration was Ax=0.01. The agreement
between both solutions for the velocities and temperatures (not
shown) is also excellent,

While Eqs. (23) are only restricted to small values of €, a note of
caution is required when using the hypersonic truncated sct of Eqs.
(1-3) in problems such as the Prandil-Meyer expansion where very
large gradients occur near the originzv3 (this is why our numcrical
integration has to be sturted downstream from x=0). Indeed, from
Eqs. (1-3) and through a boundary layer analysis near y=0, a solution
can be obtined for x<<1 for v=Up.ey, A, and Tyy in terms of the
similarity variable

K=y/(V3 ex) (242)
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1.0

0.8 - Prandtl-Meyer expansion

0.6 1
np

0.4 1

0.2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Y3k

Fig. 4. Comparison of the solution via the Fokker-Planck cquation |12q. (23))

with the direct solution [Eq.(24)] to the hypersonic equations in the vicinity of
the Prandil-Meyer corner.

which for k<V3 can be written as
v

V3 1 1
W= =51, exp(ho)=5(1+K); Ty =g(x+1 )2 (24b)

This solution, though rigorously derived from Eqs. (1-3), is incorrect
because the temperature and density jumps at the start of the
expansion give rise 10 a singular transversal heat fux that cannot be
neglected in the energy cquation. Nonetheless, as shown in Fig. 4,
even in this irrcgular case the hypersonic solution (24) is not
intolerably different from the asymptotic solution (23).

Appendix: Sketeh of the Numerical Method
Alter solving the eigenvalue problem (11) with y' given by Eq.

(15). Eq. (13) yiclds the following threc equations on the trajectorics
(defined by y'=tanBg=v/u):

U dT,/dsy =2(T-T,)/S (A1)
(l [0} 'BV SinO() (’1."1“;“() C()SO() (T-Tyv)
Mdsg ~y * ST, i STy (A.2)
. dw -cosBp T T

C2 I = 5 LT, T Ta)+2Tay + j-f—\t')“'r-'l‘yy)] (A.3)

a
<
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where
] Tyx tanf -Txy u tanbg u
~1=(U; + : S 0,- 570 A4
C=Um g™ T, Ty 2h O ). (A4)
~ ~ w—.x /JAT -H,,Av\..—)s |C..~.7 :1—‘:
Ca=(0Tyy - T, Txx - Ty 2T, U T, ,0) (A.5)
U=V(u2+v2)=u/cos0q: Ty=cos0Txy-sinBoTxx (A.6.T)

Ty=c0os0¢Tyy-5in00Txy, (A.8)
and sg is the coordinute along the trajectory. The other four equations
along the characteristics defined by y'i=tan0j, i=1.2,34, may be
writlen as

do Bv. w-u €, viev E3B

Digy; L-ﬂ,_xlml. STy il 5 Uy T+
Tl o, T T-T,, . Ty

+2A45 m. - .m».ﬂlmﬁi. A2 m\\ -2v vaw_comc_ (A.9)

with
Di={uh i +62(Txa+TxyA i), M1i+u+ 2T Aai+ TayAsi, udzi+vAsi
+27T sy A6, £2 + ukg;, €2 A3; + uAs;, ulgi. uk7; |
A = lai2 +e2(biyi -c)/2aiy')
Aai = | a2+ 2G3biyi e /(2e2eiy' D hai = €2yin;
Asi=-10i2+e23biy + )M 2ein)ikai=lait+e2(3biyi-cd/2eiyi'u))

1

ai=v-yiuy b =Ty -yi' Taxi i =Tyy - ¥i' Txy

To solve these equations numerically, a grid is adapted to the
particle flow as follows: in the first place a set of curves x = Ex(y) (k =
0.1.2...) is defined in such a way that they are not tangent to the

{rajectories at any point. For instance, in the case of the examples in
Sec. 111, these curves are vertical straight lines x = xi = const. The

first of these lines x = Eg(y) has to be coincident with the boundary at
which initial conditions are given, so that o is known at k = 0. Along
the first line, grid points (0, m) are defined (see Fig.5): the next row
of grid points (1. m) is located by intersecting the particle :.M_,._oﬁc_._nm
through the corresponding points in the previous row (0. m) with the
curve £1(x). The properties w at the new points are still unknown,
but an iterative technique allows to determine them: the iteration is
started by assuming (1, m) = @(0, m), from which the slope of
the characteristics through (1,m) can be obtained. The intersection of
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(0.n)

Trajestory

x=§(y) x=E,(y) x=§,(y) x=£,(y)

Fig. 5. Sketch of the grid and the procedure used in the numerical
implementation of the method of characteristics.

the curve Ep(x) with straight lines shot from (I.m) with the
characteristic slopes identifies five predecessor puoints whosce
propertics can be evaluated by means of o spline interpolation along

the £g(x) curve. Now, a finite-difference formulation of Eq. (A9) can
be written linking the properties at (1,m) with those at the prede-

cessor points along Eo(x). A first nontrivial approximation for
o(1,m) is thus obtained, and the process of backward shooting,
interpolation, and finite-difference reevaluation of w(l,m) can be

repeated until a convergence criterion is met. In our case. the
iterations have been stopped when the euclidean norm of the

difference between two consecutive values of w(l,m) is less than

(Asg)2, where Asg is the increment in the streamline coordinate sg
between the two points (O,m) and (1.m). This process is repeated

each time when jumping from a curve Eg.) into a new &,
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