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ABSTRACT

The main aim of this dissertation is the quantitative characterization of the contri-
butions of individual fluid elements (vortices) to aerodynamic forces, explaining and
quantifying the mechanisms by which both drag and lift are generated. For this pur-
pose, a vorticity forces formulation was used to the two problems addressed in this
thesis. Thus, a novel physical point of view of the flow dynamics is provided which is
expected to be useful for the Micro-Air Vehicles (MAVs) design.

Firstly, the well-known Magnus effect problem is studied. In this problem, the two-
dimensional flow past a spinning cylinder is investigated numerically using a vortic-
ity forces formulation with the aim of analyzing quantitatively the flow structures,
and their evolutions, that contribute to the lift and drag forces on the cylinder. The
Reynolds number considered, based on the cylinder diameter and steady free stream
speed, is Re = 200, while the non-dimensional rotation rate (ratio of the surface speed
and free stream speed) selected was α = 1 and 3. For α = 1 the wake behind the cylin-
der for the fully developed flow is oscillatory due to vortex shedding, and so are the lift
and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift
and (low) drag. Each of these cases is considered in two different transient problems,
one with angular acceleration of the cylinder and constant speed, and the other one
with translating acceleration of the cylinder and constant rotation. We characterize
quantitatively the contributions of individual fluid elements (vortices) to aerodynamic
forces, explaining and quantifying the mechanisms by which the lift is generated in
each case. In particular, for high rotation (when α = 3), we explain the relation be-
tween the mechanisms of vortex shedding suppression and those by which the lift is
enhanced and the drag is almost suppressed when the fully developed flow is reached.

On the other hand, the thrust efficiency of a two-dimensional flapping airfoil is stud-
ied computationally for a low Reynolds number via the same vortex force decomposi-
tion as the one cited previously. The auxiliary potentials that separate the total vortex
force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil.
With these auxiliary potentials, the added-mass components of the lift and drag (or
thrust) coefficients are also obtained analytically for any heaving motion of the airfoil
and for any value of the mean angle of attack α. The contributions of the leading- and
trailing-edge vortices to the thrust during their down- and up-stroke evolutions, are
computed quantitatively with this formulation for different dimensionless frequencies
and heave amplitudes (Stc and Sta) and for several values of α. Very different types
of flows, periodic, quasi-periodic, and chaotic, described as Stc, Sta, and α, are varied.
The optimum values of these parameters for maximum thrust efficiency are obtained
and explained in terms of the interactions between the vortices and the forces exerted
by them on the airfoil. As in previous numerical and experimental studies on flapping
flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermedi-
ate frequencies (Stc slightly smaller than one) and a heave amplitude corresponding to
an advance ratio close to unity. The optimal mean angle of attack found is zero. The
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corresponding flow is periodic, but it becomes chaotic and with smaller average thrust
efficiency as |α| becomes slightly different from zero.

Finally, some conclusions and some future work related to the MAVs design based
on the vortex force decomposition to study some other interesting flight mechanisms
are outlined.
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RESUMEN

El principal objetivo de este trabajo es la caracterización cuantitativa de las contri-
buciones de los elementos fluidos individuales (vórtices) a las fuerzas aerodinámicas,
explicando y cuantificando los mecanismos por los cuales se genera tanto la resistencia
como la sustentación. Para ello, se ha hecho uso de una formulación de fuerzas aero-
dinámicas basada en la vorticidad para abordar problemas concretos, ofreciendo un
punto de vista físico novedoso al estudio de la dinámica del flujo. Dicha aportación
pretende ser de aplicación en el diseño de micro-vehículos aéreos.

En primer lugar se estudia el conocido Efecto Magnus. En este problema se investiga,
numéricamente, el flujo alrededor de un cilindro que gira mediante una formulación de
fuerzas basada en vorticidad. El objetivo de ello es poder analizar, cuantitativamente,
las estructuras del flujo y sus evoluciones, las cuales contribuyen a las fuerzas de sus-
tentación y resistencia en el cilindro. El número de Reynolds que se ha considerado
en este problema, basado en el diámetro del cilindro y la velocidad de la corriente de
entrada, es Re = 200, mientras que los valores del parámetro de giro (relación entre
la velocidad en la superficie del cilindro y la velocidad de la corriente de entrada) que
se han seleccionado son α = 1 y 3. Para α = 1, cuando el flujo se ha desarrollado
por completo, la estela tras el cilindro, y con ella la evolución temporal de las fuerz-
as de sustentación y resistencia, se vuelven oscilatorias debido al desprendimiento de
vórtices tras el cilindro. Sin embargo, para α = 3, el flujo en estado permanente es
estacionario con valores constantes de la sustentación y la resistencia. En particular,
en este caso se genera una sustentación elevada y una baja resistencia aerodinámica.
Cada uno de estos casos se ha estudiado en dos problemas transitorios diferentes, uno
con aceleración angular del cilindro y velocidad translación constante, y la otra con
aceleración lineal del cilindro y velocidad de giro constante. Las constribuciones de
los vórtices a las fuerzas aerodinámicas se han caracterizado cuantitativamente, expli-
cando y cuantificando los mecanismos por los cuales se genera sustentación en cada
caso. En particular, para rotación alta (cuando α = 3), se explica la relación entre los
mecanismos de supresión del desprendimiento de vórtices y aquellos por los cuales se
produce una mejora de la sustentación y casi se llega a eliminar la resistencia, cuando
el flujo se ha desarrollado por completo.

Por otra parte, también se ha estudiado computacionalmente la eficiencia en la pro-
pulsión de un ala batiente bidimensional a bajo número de Reynolds, mediante la
misma descomposición de fuerzas en términos de la vorticidad. Se ha utilizado un ala
elíptica para poder obtener analíticamente los potenciales auxiliares que descomponen
la fuerza total generada por los vórtices en sustentación y resistencia (o propulsión).
Gracias a dichos potenciales auxiliares también se han obtenido analíticamente la parte
de masa añadida de los coeficientes de sustentación y resistencia (o propulsión), para
cualquier tipo de movimiento del ala y para cualquier valor del ángulo de ataque medio
α. Además, para diferentes frecuencias y amplitudes adimensionales del movimiento
(Sta y Stc), así como para varios valores de α, se han calculado computacionalmente
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las contribuciones a la propulsión que generan los vórtices de los bordes de entrada y
de salida, durante las diferentes batidas hacia arriba y hacia abajo del ala. Gracias a
este estudio, se han identificado tres tipos de flujos muy diferentes: periódicos, quasi-
periódicos, y caóticos para diferentes valores de Stc, Sta y α. De esta manera, y para
maximizar la eficiencia en la propulsión, se han obtenido y explicado en términos de
interacciones entre vórtices y de las fuerzas que éstos ejercen sobre el ala, los valores
óptimos de Stc, Sta y α. Al igual que en estudios numéricos y experimentales anteriores
de alas batientes a bajos números de Reynolds, se ha encontrado la eficiencia de pro-
pulsión óptima para frecuencias intermedias (Stc ligeramente menor que uno), y para
una amplitud de batida correspondiente a una relación de avance cercana a la unidad.
El valor óptimo del ángulo de ataque medio que se ha encontrado es cero. El tipo de
flujo correspondiente a este ángulo de ataque es periódico, y a medida que |α| varía
ligeramente de cero se vuelve caótico y con una menor eficiencia en la propulsión media.

Por último, se exponen las conclusiones de esta tesis doctoral y se plantean trabajos
futuros relacionados con el diseño de micro-vehículos aéreos y con el estudio de otros
mecanismos de vuelo interesantes mediante la técnica de descomposición de fuerzas
basada en la vorticidad.
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1
INTRODUCTION

1.1 motivation and objectives

The unsteady aerodynamics of oscillating airfoils at the low Reynolds number range
of interest for small flying animals (mostly insects) has been widely studied theoreti-
cally, numerically and experimentally. The main motivation of many of these studies is
the understanding of the flow mechanisms by which the lift is greatly enhanced in re-
lation to the predictions of the quasi-steady aerodynamic theory, and the mechanisms
by which thrust or propulsion is generated. Traditionally, these studies were aimed to
the understanding of the biomechanics of insect (and small birds and mammals) flight
(see e.g. Maxworthy, 1981; Dudley, 2000; Sane, 2003 and Wang, 2005). But the interest
in the unsteady aerodynamics of flapping flight has significantly grown in the recent
years in relation to the design of Micro-Aerial Vehicles (MAVs), taking advantage of
the accumulated knowledge on animal flight (Ellington, 1999; Mueller, 2001; Pines and
Bohorquez, 2006; Ansari et al., 2009 and Jones and Platzer, 2009).

Therefore, different kinds of spatial patterns of vortices have been identified in sev-
eral forms of propulsion by aquatic animals (see Wu, 1961; Lighthill, 1969; Lighthill,
1970 and Lighthill, 1975). In addition, in many of the proposed thrust mechanisms,
the leading-edge vortex generated during the wing-beat plays an important role. It
is well known that the high lift coefficients characterizing most insects flight are due
to the low-pressure regions inside the leading-edge vortex generated temporarily, af-
ter a sudden change in the effective local angle of attack during flapping (Lighthill,
1975; Maxworthy, 1979; Dickinson and Götz, 1993; Ellington et al., 1996; Liu et al.,
1998; Sane and Dickinson, 2001; Minotti, 2002; Maxworthy, 2007; Shyy and Liu, 2007
and Pitt and Babinsky, 2013). To optimize this effect, most insects fly at the limit
of dynamic stall to generate a prominent leading-edge vortex. The relevance of the
leading-edge vortex for high efficiency thrust and propulsion by a pure heaving motion
was first acknowledged and studied in relation to simple models for fish swimming
(Streitlien et al., 1996; Anderson et al., 1998 and Triantafyllou et al., 2000).

On the other hand, the origins of MAVs date back to about 1997 (Ansari et al., 2006).
Since then, although smaller scales of the existing and conventional vehicles are proved
to be valid in outdoor scenarios, they suffer from efficiency and from effectiveness in
indoor flight. For instance, an aircraft model lacks of manoeuvrability in closed spaces
and it needs large distances to take off and land. However, a rotorcraft or a multi-
rotorcraft succeeds in agility but it results to be noisy and inefficient. On the contrary,
insect-like flapping vehicles are much more efficient and agile than the previous models
but equipping them with a long-life power supply is a challenge. In developing a MAV,
the main aim is to predict quantitatively the behaviour of the physical phenomena
occurring during the flight, being able of manoeuvring when needed in order to keep a
stable flight. Therefore, it is required to have a fully knowledge on the flow dynamics
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2 introduction

appearing in this kind of flight. The works studied in this thesis enlighten the study of
the flow mechanisms as well as the vortical interactions inherent to flapping flight, in
order to be useful e.g. when flapping-like MAV needs to flight in an optimum thrust-
mode or to develop a given lift.

To this end, two bidimensional problems are studied computationally in the present
thesis by using the open source code OpenFOAM® via the formulation of Chang (1992).
OpenFOAM® is based on the C++ programming language, so it offers the flexibility
and efficiency of an Object-Oriented language in programming. As an essential contri-
bution, as well as an example of the OpenFOAM® versatility, it is worth to remark
that the computation of the different contributions of the formulation of Chang (1992)
have been properly implemented within this software by using functionObjects (see
e.g. Stroustrup, 2013, OpenCFD, 2014 and Marić et al., 2014). In this manner, it is
possible to have access to every contribution in any time instant as the magnitudes
are computed during the runTime of the simulation, having a negligible computational
cost since 2D grids have been used in this thesis.

The first problem is addressed in Chapter 4 and it is based on the study of the
Magnus Effect, a classic problem in Fluid Mechanics. It serves as a preamble to set
up the laminar incompressible code coupled along numerically with the formulation
of Chang (1992). In this problem two unsteady effects are studied: (i) an accelerating
cylinder starting from rest to a given velocity with constant angular velocity, and (ii) a
constant inlet flow around a spinning cylinder accelerating from rest to a given angular
velocity.

The second problem (Chapter 5) is based on the investigation of the optimum thrust
efficiency for a two-dimensional, laminar and incompressible flow around an elliptic
foil performing a sinusoidal flapping motion. A wide range of characteristic frequencies
and amplitudes related to the motion are studied in order to finally generate a map of
the flight efficiency. In addition, three different flow dynamics are identified: periodic,
quasi-periodic, and chaotic or aperiodic. It is demonstrated to be dependent on both
the wing-beat amplitude and frequency.

Finally, the core of this dissertation is the analysis of the aerodynamics forces for
unsteady problems at relative low-Reynolds numbers by using the vortex force decom-
position originally developed by Chang (1992). This formulation provides the quanti-
tative contribution of each vortex flow structure to the force coefficients at any instant
of time (see Lee et al., 2012 and Martín-Alcántara et al., 2015). In this manner, it is
possible to explain better all the mechanisms by which lift and thrust are generated in
order to be applied to the MAVs design.

1.2 thesis outline

This document is organized as follows.
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First of all, Chapter 2 introduces the vortex force decomposition developed by Chang
(1992). It is initially done in a generic form to be then characterized for each of the
problems studied in this thesis.

Chapter 3 serves as a numerical introduction to the OpenFOAM® basics as well as
to the Finite Volume Method and the way in which is implemented in this open-source
toolbox.

Chapter 4 provides an analysis on the Magnus Effect. Some conclusions on the lift
generation and on the unsteadiness or steadiness regimes in the vortex shedding are
drawn from the point of view of the vortex force decomposition.

Chapter 5 presents a parametric study on the influence of the amplitudes, frequen-
cies and angles of attack on the thrust efficiency of a two-dimensional wing in forward
flapping flight. The optimum parameters are selected and a sensitivity study on the
different flow regimes is provided.

Finally, to conclude, Chapter 6 gathers all the contributions provided in this docu-
ment as well as some suggestions for future works related with the thesis.





2
CONTRIBUTION OF FLU ID ELEMENTS TO THE L IFT AND
DRAG COEFF IC IENTS : A PROJECT ION METHOD

2.1 introduction

The present chapter is devoted to introduce the formulation developed by Chang
(1992). The use of this formulation allows to understand how the onset of vortices in
the flow contributes to the aerodynamic forces through the vorticity in the flow field.
This analysis has been firstly applied in this thesis to the well-known Magnus Effect
problem (see Chapter 4), and then to a problem based on a two-dimensional flow past
a heaving foil (see Chapter 5).

Two auxiliary potential functions need to be introduced to obtain the contribution
to the force coefficients: one of them associated to the drag coefficient and the other
one to the lift. After some manipulations involving the auxiliary potentials, the force
coefficients are separated into four parts: one due to an added-mass term (see Yih,
1977), one due to the motion of the body, another one due to the vorticity within the
flow field, and the other due to the surface vorticity. The third one is the most relevant
to identify flow structures contributing to the lift and to the drag.

Finally, for the sake of clarity, a generic description of the vortex force decomposition
will be first introduced in Sec. 2.2 to be later characterized in Subsecs. 2.2.1 and 2.2.2,
according to the problems studied in Chapters 4 and 5, respectively.

2.2 mathematical formulation

The non-dimensional Navier–Stokes equations governing an incompressible viscous
flow can be written as:

∇ · v = 0, (2.1)

q
∂v
∂t

+ v · ∇v = −∇p+ 1
Re∇

2v, (2.2)

where v is the non-dimensional velocity, p is the non-dimensional relative pressure
(scaled with ρU2

0 , being ρ the fluid density and U0 the freestream speed). A unsteady
acceleration parameter q = l/(U0tc) and the Reynolds number Re = ρU0l/µ are intro-
duced for a given chord-based length l, acceleration time tc and fluid viscosity µ.

Then, to write the lift and drag forces only in terms of velocity and vorticity (without
the intervention of the pressure field), one makes use of auxiliary potentials satisfying
Laplace’s equations with appropriate boundary conditions (Chang, 1992; Lee et al.,
2012). The solution is required to vanish at infinity, where the fluid is at rest (see
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Fig. 2.1 for a sketch of the general geometry). Then, the auxiliary harmonic function,
e.g in the case of the lift coefficient, must satisfy

∇2φ = 0 in V, (2.3)
|x|→ ∞, φ→ 0, n · ∇φ = −n · ey on S. (2.4)

S

O x

y

V

n

nR

SR

R

1

Figure 2.1: Definition sketch for fluid extending to infinity and at rest there.

Making the scalar product of the momentum equation (2.2) with ∇φ and integrating
over the volume V (area in this case), which for operational purposes is limited by the
body surface S (curve) and an outer surface SR given by |x|= R → ∞; after some
vector operations and the application of the Gauss theorem as well as the definition of
φ in (2.3) and (2.4), one obtains (note that n is the outward unit vector normal to S
as seen from the body, while in Gauss theorem the outward unit vector to S as seen
from V , −n, is used instead)

− 2q
∫
S
φ
∂

∂t
v · n ds+

∫
S
v2n · ey ds− 2

∫
V

(v ∧ ω) · ∇φ dV

= −2
∫
S
pn · ey ds+ 2

Re

∫
S

(n ∧ ω) · ∇φ ds,
(2.5)
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where the second and last terms of (2.2) have been rewritten using the mathematical
identities v · ∇v = ∇v2/2− v ∧ ω and ∇2v = −∇ ∧ ω (when ∇ · v = 0). Note that
the integrals over the surface SR vanish because the solution to (2.3) and (2.4) satisfies
|∇φ|∼ 1/|x|2→ 0 as |x|→ ∞. Thus, it is found that the y−component of the pressure
force over S in terms of some surface and volume integrals of the velocity and vorticity
fields, so that the lift coefficient is given by

CL ≡ −2
∫
S
pn · ey ds+ 2

Re

∫
S

(ω ∧ n) · ey ds

= −2q
∫
S
φ
∂

∂t
v · n ds+

∫
S
v2n · ey ds− 2

∫
V

(v ∧ ω) · ∇φ dV

+ 2
Re

∫
S

(n ∧ ω) · ∇φ ds ≡ CLa +CLm +CLv +CLs,

(2.6)

where the pressure field is absent. Note that the last surface term CLs has a contri-
bution from the pressure forces and another one from the viscous forces, while the
remaining terms come from the pressure forces. The term involving a volume integral,
CLv, which is the most relevant one in the present study, is related to the projection of
Lamb’s vector ω ∧ v on the direction of ∇φ. The other two terms, CLa and CLm, are
added-mass (e.g., Yih, 1977) and rotational contributions to the lift force, respectively.

Alternatively, defining the function φ satisfying

∇2φ = 0 in V, (2.7)
|x|→ ∞, φ→ 0, n · ∇φ = −n · ex on S, (2.8)

one may write the non-dimensional drag (x−component) force as

CD ≡ −2
∫
S
pn · ex ds+ 2

Re

∫
S

(ω ∧ n) · ey ds

= −2q
∫
S
φ
∂

∂t
v · n ds+

∫
S
v2n · ex ds− 2

∫
V

(v ∧ ω) · ∇φ dV

+ 2
Re

∫
S

(n ∧ ω) · ∇φ ds ≡ CDa +CDm +CDv +CDs.

(2.9)

A detailed characterization of the vortex force decomposition is shown next in Sub-
sects. 2.2.1 and 2.2.2. The reader can find in Chapters 4 and 5 a more complete de-
scription of this formulation fitting the problems studied in these Chapters.

2.2.1 Detailed formulation of the problem studied in Chapter 4

The two-dimensional unsteady incompressible flow around a rotating cylinder is con-
sidered. Unsteady accelerating effects are also considered. The Navier–Stokes equations
(2.1) and (2.2) governing this problem can be written in a relative frame fixed to the
body as

∇ · v = 0, (2.10)

q
∂

∂t
(v−Uex) + v · ∇v = −∇p+ 2

Re∇
2v, (2.11)
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being Uex = U(t)ex the non-dimensional accelerating velocity in the freestream direc-
tion. Notice that, in this case, the characteristic length is defined to be the radius a of
the cylinder whereas the Reynolds number is based on the on the cylinder’s diameter
2a, i.e. q = a/(U0tc) and Re = ρU0l/µ.

Thus, the non-dimensional force (scaled with 1/2ρv22a = ρv2a) that the fluid exerts
on the cylinder surface r ≡ |x|= 1 can be written as the sum of the pressure and
viscous friction forces as

F = −
∫
r=1

pn ds+ 2
Re

∫
r=1

(ω ∧ n) ds, (2.12)

where n is the outwards unit vector normal to the cylinder surface (n = er) and ω =
∇ ∧ v is the non-dimensional vorticity. Since we are considering a two-dimensional flow,
v = vrer + vθeθ in cylindrical polar coordinates, the vorticity is perpendicular to the
flow, ω = ωez ≡ (1/r)[∂(rvθ)/∂r−∂vr/∂θ]ez, where ez is the unit vector perpendicular
to the plane of the flow, and ω ∧ n = ωeθ. Thus, the x− and y−components of F, i.e.
the drag and lift coefficients, respectively, can be written as

CD = −
∫ 2π

0
p1 cos θ dθ− 2

Re

∫ 2π

0
ω1 sin θ dθ, (2.13)

CL = −
∫ 2π

0
p1 sin θ dθ+ 2

Re

∫ 2π

0
ω1 cos θ dθ, (2.14)

where p1(θ, t) ≡ p|r=1(θ, t) and ω1(θ, t) ≡ ω|r=1(θ, t).

We shall obtain the drag and the lift coefficients using the formulation developed by
Chang (1992) that allows for a quantitative identification of the contributions of the
different vortex flow structures to these forces (see Lee et al., 2012). This formulation
is based on the use of auxiliary potentials, one for the lift and the other one for the
drag, that transform the surface integrals in (2.13) and (2.14), containing the pressure,
into volume and surface integrals incorporating the velocity and vorticity fields [see
(2.9)]. In the case of the lift force, the auxiliary function φ for the present problem is
given by (2.3) and (2.4) with the analytical solution φ = (sin θ)/r. Substituting into
the general expression for the lift (2.6) and taking into account that S is now the
circumference |x|= 1, with n = er , and the volume V corresponds to r ≥ 1, one
obtains that CLa = CLm = 0 (i.e., there is no contribution to the lift force from the
velocity and acceleration of the cylinder), and the lift coefficient is given by

CL = CLv +CLs =
∫ ∞

1

∫ 2π

0
δLvr dθ+ 4

Re

∫ 2π

0
ω1 cos θ dθ, (2.15)

with

δLv = vθ ω sin θ+ vr ω cos θ
r2 . (2.16)

Note that the friction force [second term in (2.14)] is just half of the surface integral
CLs in the lift coefficient (2.15), while the other half of that surface integral, together
with the volumetric integral CLv, comes from the pressure force term in (2.14). The
quantity δLv can be interpreted as a kind of volumetric density of lift force, decay-
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ing quadratically with the distance to the origin (and to the cylinder). It will be one
of the main quantities to be computed below as a measure of the contribution of the
different parts and structures of the flow to the lift force on the cylinder at each instant.

Similarly, the auxiliary function φ for the drag satisfying (2.7) and (2.8) has the
analytical solution φ = (cos θ)/r. The contributions to the drag coefficient (2.9) are
similar to those described above for CL, except for the fact that now there is an
additional contribution to CDa associated with the non-dimensional acceleration of
the cylinder dU = dt:

(2.17)
CD = CDa + CDv + CDs

= πq
dU
dt +

∫ ∞
1

∫ 2π

0
δDvr dθ dr − 4

Re

∫ 2π

0
ω1 sin θ dθ,

with

δDv = vθ ω cos θ− vr ω sin θ
r2 . (2.18)

As before, the friction force [second term in (2.13)] is just half of the surface integral
CDs in the drag coefficient (2.17), while the other half of that surface integral plus the
volumetric integral CDv and the acceleration term CDa comes from the pressure force
term in (2.13). The quantity δDv is a density of drag force, decaying also quadratically
with r. Note that the term CDa only appears in the case (ii), and that an accelerating
cylinder in a fluid at rest, i.e. the case considered here, is not equivalent to a cylinder
at rest within an accelerating freestream.

It is worth noticing that for a potential flow with circulation Γ = 2πa2Ω0, i.e. for
a flow with a non-dimensional velocity field given by vr = cos θ(1− 1/r2) and vθ =
− sin θ(1 + 1/r2), all the terms of CD are obviously zero, and the only non-vanishing
term in CL is CLm [see (2.6)], which does not appear in (2.5) for the viscous flow. In
fact, on substituting the potential velocity field into (2.6) yields

CL = CLm =
∫ 2π

0

v2
θ |r=1

2 sin θ dθ = 4πa, (2.19)

which is the Kutta–Joukowski lift formula for the given circulation. This expression
is not of interest here because of the relatively small value of Re considered in this work.

2.2.2 Detailed formulation of the problem studied in Chapter 5

The two-dimensional unsteady and incompressible flow of a uniform current over an
oscillating ellipse is investigated numerically. In this case, the ellipse, which represents
a wing element with chord length c and thickness e, forms an angle α with the current
of constant speed U and performs a sinusoidal heaving motion perpendicular to the
current with amplitude h0 and frequency f , given by

h(t) = h0 sin(2πft), (2.20)
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and by the following parameters:

Re = ρUc

µ
, Sta = h0f

U
, Stc = cf

U
. (2.21)

Then, taking into account (2.1) and (2.2), and that there is no accelerating term in
this case, the Navier–Stokes equations governing this problem are given by

∇ · v = 0, (2.22)
∂v
∂t

+ v · ∇v = −∇p+ 1
Re∇

2v. (2.23)

In the same manner, (2.6) and (2.9) were solved so the drag and lift coefficients, in
terms of the formulation of Chang (1992), can be written for this problem as

CL = −2
∫
S
φ
∂v
∂t
· n ds+

∫
S
v2n · ey ds− 2

∫
V

(v ∧ ω) · ∇φ dV

+ 2
Re

∫
S

(ω ∧ n) · (∇φ+ ey) ds ≡ CLa +CLm +CLv +CLs,

(2.24)

and

CD = −2
∫
S
φ
∂v
∂t
· n ds+

∫
S
v2n · ex ds− 2

∫
V

(v ∧ ω) · ∇φ dV

+ 2
Re

∫
S

(ω ∧ n) · (∇φ+ ex) ds ≡ CDa +CDm +CDv +CDs,

(2.25)

given, respectively, by (2.3)–(2.4), and (2.7)–(2.8).

As in Subsect 2.2.1, the “drag density” δDv is here also introduced. It is defined as
the integrand of CDv in (2.25), i.e.,

CDv =
∫
V
δDv dV, δDv ≡ 2(ω ∧ v) · ∇φ, (2.26)

where δDv is negative in the points where the flow contributes to the thrust of the
airfoil and positive in the points that contribute to the drag. Note that δDv is twice the
projection of Lamb’s vector ω ∧ v, which is responsible for this vortex force (Saffman,
1992), on the gradient of the auxiliary potential φ. This ensures that δDv decays rapidly
as we move away from the airfoil, because, according to (2.7) and (2.8), far from the
(moving) 2D body, ∇φ decays quadratically with the distance to it, as can be seen in
Hsieh et al. (2010). In the present 2D flow, δDv can be written as

δDv = −2ωv∂φ
∂x

+ 2ωu∂φ
∂y
, (2.27)

since v = uex + vey and ω = ωez.

On the other hand, in the case of an elliptic surface S, Laplace’s equation in (2.3)–
(2.4) and in (2.7)–(2.8), can be solved analytically by separation of variables using
elliptic coordinates (see Morse and Feshbach, 1953), in a reference frame moving with
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the ellipse. For an ellipse with its main axis of length unity in the x−axis (i.e., α = 0),
the elliptic coordinates (ξ, η) are related to (x, y) through

x = 1
2
√

1− ε2 cosh ξ cos η, y = 1
2
√

1− ε2 sinh ξ sin η, (2.28)

where ε is the minor axis length in the y−axis, and the ellipse S is given by ξ =
ξ0 ln[(1 + ε)/(1− ε)]/2, and 0 ≤ η ≤ 2π. In these coordinates, the solutions to problems
(2.3)–(2.4), and (2.7)–(2.8) can be written, respectively, as

φ = 1
2

√
1 + ε

1− εe
−ξ sin η, φ = ε

2

√
1 + ε

1− εe
−ξ cos η, (2.29)

which on the ellipse are

φ = φ0 = 1
2 sin η, φ = φ0 = ε

2 cos η. (2.30)

For an ellipse at an angle −α with the x−axis, like in Fig. 5.1, one only has to rotate
the coordinate axes in boundary conditions (2.4) and (2.8) on the surface of the ellipse
to get

φ = 1
2

√
1 + ε

1− εe
−ξ(cosα sin η− ε sinα cos η),

φ = 1
2

√
1 + ε

1− εe
−ξ(sinα sin η+ ε cosα cos η),

(2.31)

φ0 = 1
2(cosα sin η− ε sinα cos η), φ0 = 1

2(sinα sin η+ ε cosα cos η), (2.32)

where (ξ, η) are the elliptic coordinates of the “rotated” ellipse.

For any surface S moving with a velocity V that does not vary along the surface
(it may depend on time like in the present sinusoidal heaving motion), the “m” (or
rotational) components of CD and CL in (2.9) and (2.6) vanish, respectively, i.e.

CDm =
∮
S
v2n · ex ds = V 2(t)

∮
S

n · ex ds = 0, (2.33)

and similarly for CLm, where the circle in the integral symbol has been included to
emphasize that S is a closed surface. On the other hand, the “a” components in the
case of an ellipse can be obtained analytically using auxiliary potentials (2.32) on the
ellipse,

CDa = −2
∫
S
φ
∂v
∂t
· ds = −2dV

dt ·
∫ 2π

0
φ0eξhη dη

= −π2

[
(1− ε2) sinα cosαdVy

dt + (sin2 α+ ε2 cos2 α)dVx
dt

]
,

(2.34)

where use has been made of n = eξ =
√

1− ε2(sinh ξ0 cos η i + cosh ξ0 sin η j)/(2hξ)
over the ellipse ξ = ξ0, with i and j the unit vectors along the axes of the ellipse, and



12 on the contribution of fluid elements to the lift and drag coeffi-
cients: a projection approach

hη = hξ. Note that the components of V on the (x, y) axes have been projected on i
and j. Similarly for CLa,

CLa = −2
∫
S
φ
∂v
t
· n ds = −2dV

dt ·
∫ 2π

0
φ0eξhη dη

= −π2

[
(cos2 α+ ε2 sin2 α)dVy

dt + (1− ε2) sinα cosαdVy
dt

]
.

(2.35)

Clearly, these are added-mass terms of the hydrodynamic forces (Yih, 1977).

In the present vertical heaving motion (Vx = 0), one has

CDa = −π2 (1− ε2) sinα cosαdVy
dt , CLa = −π2 (cos2 α+ ε2 sin2 α)dVy

dt , (2.36)

that for a horizontal ellipse (α = 0) yields

CDa = 0, CLa = −π2
dVy
dt . (2.37)
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Figure 2.2: Comparison of CDa and CLa obtained numerically with (2.39) and (2.40) for an
oscillating ellipse with ε = 1/8, α = 45◦, Sta = 0.16, Stc = 1 and Re = 500.

Finally, for the heaving motion described in (2.20),

Vy = dH
dt = 2πSta cos(2πStct), (2.38)

it is found that

CDa = 2π3StaStc(1− ε2) sinα cosα sin(2πStct), (2.39)
CLa = 2π3StaStc(cos2 α+ ε2 sin2 α) sin(2πStct). (2.40)
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We checked in several and quite different cases that the numerical results for CDa
and CLa coincide exactly with these analytical expressions (e.g., Fig. 2.2). Note that
these analytical results for CDa and CLa are independent of the Reynolds number.

2.3 concluding remarks

In this chapter the formulation developed by Chang (1992) is briefly described and
applied to the two particular 2D problems considered in Chapters 4 and 5. This force
decomposition enables us to determine the contributions to drag or lift coefficients by
fluid elements through the vorticity field.

Some comments on the implementation of this formulation within the OpenFOAM®
framework are made in the next Chapter.





3
Op enFOAM® AND THE F IN ITE VOLUME METHOD

3.1 introduction

This chapter is devoted to give a brief overview of the computational toolbox Open-
FOAM® (Open source Field Operation And Manipulation). The OpenFOAM® pack-
age is foremost a C++ library based on the Finite Volume Method (see Ferziger and
Perić, 2001), used primarily to create executables, known as applications. The applica-
tions fall into two categories: solvers, that are each designed to solve a specific problem
in continuum mechanics; and utilities, that are developed to perform tasks that involve
data manipulation.

One of the advantages of using OpenFOAM® lies on the Open-Source General Pub-
lic License (GPL) which means that OpenFOAM® can be freely handled and modified
when needed by the user. Besides, the development of new solvers and utilities is a
straightforward task for an user with a minimal C++ and Object Oriented Program-
ming (OOP) background, which involves terms such as abstraction, inheritance and
polymorphism (see Stroustrup, 2013). As a result, the OpenFOAM® community has
widely grown in the past few years as well as the documentation on the use and devel-
opment of this package.

On the other hand, a disadvantage of using OpenFOAM® is the larger amount of ef-
fort required in learning how it works when compared to many other CFD commercial
codes. Despite the fact that CFD commecial codes are easier to use and learn, they
can be considered as a black-box since the code written in them is not accessible or
freely modified by the user.

Finally, both the Finite Volume Method and the PISO algorithm (Issa, 1985) are
introduced in the next sections of this chapter in the way they are implemented in
OpenFOAM®.

3.2 the finite volume method in OpenFOAM®

As any discretization method, the aim of the Finite Volume Method (FVM) is to
discretize a set of partial diferential equations into an algebraic system. In this case,
the physical properties that define an incompressible, iso-thermal fluid flow governed
by Navier–Stokes equations (see Weller et al., 1998),

∇U = 0, (3.1)
∂U
∂t

+∇ · (UU)−∇ · 2νD = −1
ρ
∇p, (3.2)

15
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where U is the velocity field, p the pressure and D = 1/2(∇U +∇UT ). Due to the
nonlinearity in (3.1) and (3.2), the fluid flow problems with analytical solutions are
really scarce in Fluid Mechanics (e.g., the Couette flow or the Hagen–Poiseuille solu-
tion), hence the most of them can only be solved by using computational methods. It
means that (3.1) and (3.2) need to be discretized in a system of algebraic equations
able of being solved. The solution technique used in OpenFOAM® is the Finite Vol-
ume Method (see e.g. Ferziger and Perić, 2001) consisting of two parts: domain and
equations discretization. Both steps are briefly described in the following sections, 3.2.1
and 3.2.2.

3.2.1 Domain discretization

Figure 3.1: Control volume (Source: Jasak, 1996).

The domain discretization process for the Finite Volume Method (FVM) requires a
given computational domain split into several control volumes (cells), e.g. see Fig. 3.1.
This process is directly related to the meshing task which can be performed within the
OpenFOAM® environment or by using a third-party software compatible. Note that
in Fig. 3.1 the owner and a neighbour cell centres are labelled with P and N, whereas
S is the face area vector of the shaded face f. Different kind of spatial discretizations
depending on the different finite volume mesh topologies can be found: structured,
block-structured and unstructured. The mesh topology may have a significant impact
on the efficiency and accuracy of the solution as well as on the parallelization aspect.

Once the mesh is build, (3.1) and (3.2) are integrated over the control volumes to
be solved. The divergence terms in (3.2) are computed by using the Gauss’ theorem
which converts them into flux terms integrated over cell surfaces. This manipulation
makes easier the process as the problem is simplified to find difference approximations
for the fluxes on the cell-surfaces, known the cell-center values (Weller et al., 1998).
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3.2.2 Equation discretization

Once performed the domain discretization, the Navier–Stokes equations (3.1) and
(3.2) can be discretized in OpenFOAM® by using a large number of numerical methods.

The OpenFOAM® toolbox converts the Navier–Stokes equations into a set of alge-
braic equations which can be written generically as

AΨ = B, (3.3)

being A the discretization matrix which holds the matrix coefficients, Ψ the vector
of variables, and B the discretization source term including the boundary boundary
conditions. The matrix A needs to be inverted in order to solve (3.3). Matrix inversions
can be considered as a bottleneck when dealing with numerical methods as it is the
most time consuming step when solving a given problem. This obstacle is solved in
OpenFOAM® by using sparse block matrices, in particular A is build to be a lower-
diagonal-upper matrix (see lduMatrix and fvMatrix classes within OpenFOAM®).

The nonlinear terms in (3.2) are first linearized and then solved iteratively until the
convergence criteria are reached. The iterative process is done in an efficient manner
as a result of the previous sparse matrix approach. A large list of numerical methods
are implemented in the OpenFOAM® framework to treat properly the solution of the
different terms in (3.1) and (3.2). But it is out of the scope of this thesis a deep review
on the different numerical methods implemented in OpenFOAM® (see, e.g., OpenCFD,
2014, Marić et al., 2014). In any case, the numerical details used to solve each problem
are collected in Chapters 4 and 5.

3.3 the icoFoam solver and the piso algorithm

As stated in the previous section, OpenFOAM® performs a linearization in order
to compute the nonlinear convective term in (3.2). Hence, according to Jasak (1996),
∇ · (UU) can be expressed as

(3.4)

∇ · (UU) =
∑
f

S · (U)f (U)f

=
∑
f

F (U)f

= aPUP +
∑
N

aNUN ,

where F , aN , aP are the fluxes of momentum through the faces, the matrix coefficient
corresponding to the neighbour N , and the central coefficient, respectively. Note as
well that the subscript f is related to the cell faces whereas N to the neighbours and P
to the centroid of the cell. It is noteworthy that the fluxes F must satisfy the continuity
equation (3.1).

The operator H(U) is introduced for the representation of the "temporal part" and
the "source terms",
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(3.5)H(U) = −
∑
N

aNUN + Un−1

∆t .

Further information on the assembling of H(U) and mathematical manipulations of
the momentum equations can be found in Jasak (1996).

1: procedure Predictor Step

2:
Un(∗) −Un−1

∆t +∇ · (φUn(∗)) +∇ · (ν∇Un(∗)) = −∇pn−1

3: end procedure
4: for PISO loop do
5: procedure First Corrector Step: solve the Poisson problem

6: ∇ · [∇pn(∗)] = ∇ ·H
(
Un(∗); Un−1

)
7: end procedure
8: procedure Second Corrector Step: explicit correction

9: Un(∗∗) = Un(∗)− 1
aP
∇p

10: end procedure
11: if convergence criteria reached then
12: Un = Un(∗)

13: pn = pn(∗)

14: break
15: else
16: Un(∗) = Un(∗∗)

17: go to 4

18: end if
19: end for

Algorithm 1: PISO algorithm in OpenFOAM®.

On the other hand, since unsteady computations have been performed in the prob-
lems studied in this thesis, the predictor-corrector PISO method (Issa, 1985) is the
choice of OpenFOAM® to deal with the pressure-velocity coupling in (3.1) and (3.2)
when a temporal advancement is present. The algorithm is shown in Alg. 1 in the way
it is implemented in OpenFOAM®, and can be summarized as follows:

• The momentum equation is solved first. As the pressure value of the present step
is unknown, the value of the previous step is used instead. The solution of this
step gives a new predicted velocity field.

• The operator H is assembled with the previous velocity estimate and the Poisson
equation is solved. This step provides a new guess of the pressure field.

• The velocity field is corrected by using the previous pressure guess. From this
step onwards the previous values of p and U are set as the n−th solutions if
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the convergence criteria are satisfied. Otherwise, the algorithm returns to the
previous step.

// --- PISO loop

for (int corr =0; corr < nCorr ; corr ++)
{

volScalarField rAU (1.0/ UEqn.A());

volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
surfaceScalarField phiHbyA
(

"phiHbyA",
(fvc :: interpolate (HbyA) & mesh.Sf ())
+ fvc :: interpolate (rAU)*fvc :: ddtCorr (U, phi)

);

adjustPhi (phiHbyA , U, p);

for (int nonOrth =0; nonOrth <= nNonOrthCorr ; nonOrth ++)
{

fvScalarMatrix pEqn
(

fvm :: laplacian (rAU , p) == fvc :: div( phiHbyA )
);

pEqn. setReference (pRefCell , pRefValue );
pEqn. solve ();

if ( nonOrth == nNonOrthCorr )
{

phi = phiHbyA - pEqn.flux ();
}

}

# include " continuityErrs .H"

U = HbyA - rAU*fvc :: grad(p);
U. correctBoundaryConditions ();

}

Listing 3.1: Code snippet of the PISO method in icoFoam.

Finally, as an example, the code snippet in List. 3.1 includes the PISO algorithm
coded as in the icoFoam solver, which solves (3.1) and (3.2) for unsteady laminar
incompressible fluid flows. It is remarkable that this solver has been used in each
problem addressed in this thesis.

3.4 concluding remarks

A brief summary of the Finite Volume discretization technique implemented in Open-
FOAM® is given in this chapter. It allows to solve the Navier–Stokes equations treating
nonlinear terms by using a face addressing.

The basics of the domain discretization and matricial assembling followed in Open-
FOAM® are summarized in subsections 3.2.1 and 3.2.2, respectively. The icoFoam
solver and the PISO method are also described in section 3.3 for being used to solve
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the problems studied in this thesis.

On the other hand, the different contributions appearing in the formulation by Chang
(1992) have been computed at the runtime by coding functionObjects (see, e.g Strous-
trup, 2013) within the OpenFOAM® environment. The drag and lift densities are
essential when analyzing the flow field as they provide and intuitive and meaningful
representation of the physics of the problem in terms of the volumetric force. Original
discussions on the configuration of the vortical structures for the different thrust effi-
ciency rates are shown in Chapters 4 and 5 by using this approach.

For further information on the OpenFOAM® framework the reader is addressed to
Weller et al. (1998), Jasak (1996), Juretic (2004) and Jasak et al. (2007). See also Marić
et al. (2014) for getting started with OpenFOAM® coding.



4
ON THE DEVELOPMENT OF L IFT AND DRAG IN A
ROTATING AND TRANSLATING CYL INDER

4.1 introduction

The flow around a rotating circular cylinder is a quite well studied fluid flow. Not
only for its intrinsic interest, but also because its relative simplicity facilitates the un-
derstanding of several interesting phenomena associated with the interaction of a fluid
with a moving solid surface. For instance, the mechanisms of the near-wake formation
and the development of the von Kármán vortex street behind a rotating cylinder were
analyzed by Coutanceau and Ménard (1985) and by Badr and Dennis (1985). The
basic patterns of vortex shedding and its kinematics in an impulsively started rotat-
ing and translating circular cylinder were studied by Chang and Chern (1991) and
Chen et al. (1993). Two-dimensional (2D) numerical simulations by Chew et al. (1995);
Kang and Choi (1999); Stojković et al. (2002) and Mittal and Kumar (2003) showed,
using quite different numerical approaches, that the von Kaŕmán vortex shedding is
suppressed when the rotation is high enough, depending on the Reynolds number Re.
Particularly, Mittal and Kumar (2003), who carried out computations at Re = 200
for non-dimensional rotation rate γ in the range 0 ≤ γ ≤ 5 (see next subsection for
the definitions of Re and γ), showed that vortex shedding ceases when γ ≤ 1.9, but
reappearing again for 4.34 ≤ γ ≤ 4.7 with a much lower frequency. This new vortex
shedding mode for high γ was further analyzed by Stojković et al. (2003) for a wide
range of Re, showing that the amplitudes of the fluctuating lift and drag coefficients are
much larger than those characterizing classical vortex shedding, sometimes generating
negative values for the mean drag, i.e. generating mean thrust. The instability mecha-
nisms that trigger the first and second modes of vortex shedding in the 2D flow were
analyzed by Pralits et al. (2010), identifying the region of the flow where the global
instabilities were produced. The structure of the steady flow for very large values of γ
was analyzed, also from 2D numerical simulations together with boundary-layer anal-
ysis, by Wang and Joseph (2006) and by Padrino and Joseph (2006) with the main
aim of connecting it to the potential flow theory. Three-dimensional transitions were
considered by El Akoury et al. (2008), and recently the three-dimensional instabilities
in the wake behind the rotating cylinder have been investigated in a series of papers
(Rao et al., 2013a; Rao et al., 2013b; Pralits et al., 2013; Radi et al., 2013). A very
recent review of all these transitions in the wake of a rotating cylinder is given by Rao
et al. (2015). In their Fig. 1 these authors present curves demarcating the regimes of
instability for 0 ≤ Re ≤ 350 and 0 ≤ γ ≤ 7.

The interest of the rotating cylinder in aerodynamics and aeronautics for the gen-
eration of lift forces by the Magnus effect (Prandtl, 1926; see also Seifert, 2012 for a
recent review, and references therein) is also well known. It is in this context that we
consider here this flow, as a relatively simple model example to try to understand the
generation, reduction or suppression of lift and drag in non-steady flows associated
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with moving solid surfaces. For complex geometries and movements this is a hard task
because of the intricate structures of the associated unsteady three-dimensional flow.
However, the two-dimensional flow structures around a rotating cylinder for relatively
low Reynolds numbers are more easily analyzed. To identify the vortex elements as-
sociated with the generation and development of lift and drag we use the vorticity
formulation originally developed by Chang (1992), as already done for other simple
models (e.g., Hsieh et al., 2009, Hsieh et al., 2010, Lee et al., 2012). This is even more
interesting in the case of the rotating and translating cylinder because the lift can be
increased substantially by increasing the rotation rate, changing also from oscillatory
to steady, while the drag may decrease substantially to almost vanishing, so that one
might gain insight on the flow structures that generate lift and on those that reduce
drag. This insight could be applied to understand the mechanisms of lift enhancement
and drag reduction in more complex body shapes, especially for rotating bodies (e.g.,
Jimémenez-González et al., 2013).

4.2 formulation of the problem

We consider here the two–dimensional unsteady incompressible flow around a ro-
tating cylinder. In particular, we analyze two different unsteady flow problems: (i)
Starting with the flow of a uniform stream of speed U0 around a static cylinder of
radius a (or a cylinder translating with a constant speed U0 in a fluid at rest), study
the unsteady flow generated by the rotation of the cylinder from rest to a final angular
velocity Ω0 during an interval of time tc , and (ii) starting from a rotating cylinder
with an angular velocity Ω0 in a fluid at rest, analyze the unsteady flow generated by
the moving cylinder from rest until it reaches a final velocity U0 in a time tc.

Using the radius a of the cylinder and the steady-state free stream speed U0 as the ref-
erence length and velocity, respectively, the non-dimensional Navier-Stokes equations
and boundary conditions governing the incompressible flow in the reference frame mov-
ing with the cylinder of Fig. 4.1 can be written as

∇ · v = 0, (4.1)

q
∂

∂t
(v−Uex) + v · ∇v = −∇p+ 2

Re∇
2v, (4.2)

subject to

|x|→ ∞, v→ U(t) ex, p→ 0, (4.3)
|x|= 1, v = −γΩ(t) eθ, (4.4)

where v is the non-dimensional velocity, p is the non-dimensional relative pressure
(scaled with ρU2

0 , being ρ the fluid density), and ex and eθ are the unit vectors in the
direction of the free stream velocity and in the azimuthal direction, respectively (see
Fig. 4.1).
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Figure 4.1: Sketch of the non-dimensional geometry and coordinates.

In the above equation we have defined the following non-dimensional parameters:

Re = ρU02a
µ

, γ = Ω0a

U0
, q = a

tcU0
, (4.5)

i.e., a Reynolds number based on the diameter 2a, a rotation rate parameter and an
acceleration parameter, respectively, with µ being the fluid viscosity. The dimensionless
functions U and ω in the cases (i) and (ii) described above can be written as:

(i) U = 1, Ω(t) =

t, 0 ≤ t < 1

1, t ≥ 1,
(4.6)

(ii) Ω = 1, U(t) =

t, 0 ≤ t < 1

1, t ≥ 1,
(4.7)

where a linear increase of the angular velocity and of the free stream velocity, respec-
tively, have been assumed in each case. Note that U and Ω are obtained from the
dimensional free stream velocity and the dimensional angular velocity divided by the
characteristic velocity U0 and the characteristic angular velocity Ω0 , respectively. Thus,
γ, defined in (4.5), is the dimensionless parameter resulting from scaling Ω0 with the
characteristic velocity and the characteristic length. The actual boundary conditions
implemented numerically in the computational domain (Fig. 4.2, see also next section)
are the following:

v(x, t) = U(t)ex, x ∈ Σi, (4.8)
v(x, t) = −γΩ(t)eθ, x ∈ Σw, (4.9)
n · v = 0, x ∈ Σs, (4.10)
p(x, t) = 0, n · ∇v(x, t), x ∈ Σo, (4.11)

treating the pressure implicitly by means of the incompressibility condition (4.1) at
Σi , Σw and Σs . The initial conditions (t = 0) for solving (4.1)–(4.7) are those corre-
sponding to the fully developed flow with U = 1 and Ω = 0 in the case (i), and U = 0
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and Ω = 1 in the case (ii) (see next section for further numerical details).
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Figure 4.2: Sketch of the non-dimensional computational domain.

For the sake of clarity, the reader is referred to Chapter 2 where the formulation
related to the vortex force decomposition of Chang (1992) is gathered.

4.3 numerical method

Equations (4.1) and (4.2) were solved numerically with the software OpenFOAM®
within a computational domain already used by Padrino and Joseph (2006), i.e. with
an ’O-type’ mesh as shown in Fig. 4.2. OpenFOAM® is an open source Computa-
tional Fluid Dynamics (CFD) software based on the finite volume method, which has
been validated with success in some previous numerical works (e.g., Muñoz-Esparza
and Sanmiguel-Rojas, 2011; Sanmiguel-Rojas and Mullin, 2012; Martín-Alcántara et
al., 2014). The reader is referred to Chapter 3 for further information on the Open-
FOAM® framework.

For the spatial discretization we used second order accuracy linear interpolation for
the diffusion term, and a Total Variation Diminishing scheme, TVD, with a van Leer
limiter, for the convection term. This hybrid scheme is set in order to avoid numerical
oscillations in grid regions where local mesh Reynolds number is high (far field in ra-
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dial coordinates, since cells are clustered around the body to improve resolution within
the boundary layer and near wake zones) and convection dominates over diffusion. On
the other hand, the temporal discretization was performed by blending a second or-
der Crank-Nicolson scheme with implicit Euler integration, to ensure boundedness of
the solution. Moreover, the pressure-velocity coupling has been treated through the
pressure-implicit split-operator (PISO) algorithm (Issa, 1985), using a small temporal
step to keep the Courant number CFL ≤ 0.6.

Table 4.1 shows the properties of the different meshes considered in the numerical
computations. The dimensionless domain radius R varied between 30 and 250. Two
different cell sizes were used for R = 150, as characterized by the radial step size of
the first layer of cells attached to the wall, h1

r . The number of cells around the cylinder
r = 1, Na was 160 for the coarse mesh, with h1

r = 0.005, and Na = 220 for the fine
mesh, with h1

r = 0.0025. The total number of cells varied between 15 680 and 42 848.
The time step ∆ was selected such that the Courant number was always less than 0.6.
Note that the mesh with R = 150 is reported with two different time steps.

Mesh Nodes Cells Na H h1
r ∆t

1 31 680 15 680 160 30 0.005 0.00625
2 44 160 21 920 160 100 0.005 0.00625
3 48 320 24 000 160 150 0.005 0.00625
4 51 520 25 600 160 200 0.005 0.00625
5 53 760 26 720 160 250 0.005 0.00625
6 48 320 24 000 160 150 0.005 0.003125
7 86 112 42 848 220 150 0.0025 0.003125

Table 4.1: Properties of the meshes considered in the numerical simulations (see main text).
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Figure 4.3: Influence of the dimensionless radius of the outer boundary R on the lift, drag and
non-dimensional frequency of the vortex shedding for Re = 200 and γ = 1. Meshes
are defined in Table 4.1 (meshes 6 and 7 are both with R = 150).
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Figure 4.4: Influence of the dimensionless radius of the outer boundary R on the lift, drag and
non-dimensional frequency of the vortex shedding for Re = 200 and γ = 3. Meshes
are defined in Table 4.1 (meshes 6 and 7 are both with R = 150).

Figs. 4.3 and 4.4 show the influence of the computational domain size R and the
mesh size on the large time results for CL and CD for Re = 200, which is the selected
Reynolds number for all the results reported below, γ = 1 and γ = 3, respectively. The
computations were started at t = 0 from the potential flows corresponding to these
values of γ , with U = 1 and Ω = 1 for t ≥ 0. When γ = 1 (Fig. 4.3), the long time
results for CL and CD oscillate with the period T of the vortex shedding behind the
cylinder (see below), and Fig. 4.3 (c) shows the Strouhal number St = 2a/(U0T ) of
these oscillations to check also the accuracy of the temporal evolution of the numerical
solutions. Fig. 4.3 (a) and (b) shows the final mean values of CL and CD together with
their values at the peaks and troughs of these oscillations. On the other hand, for γ = 3
(Fig. 4.4), a steady state is reached without vortex shedding [the von Kármán vortex
street ceases at γ ' 1.91 for Re = 200 (see Mittal and Kumar, 2003), so that Fig. 4.4
(a) and (b) reports only the final mean values of CL and CD.

These figures show that the mesh 3 (R = 150, 24000 cells) with ∆t = 0.00625 is
enough to obtain very accurate results for this Reynolds number and this range of
values of γ, both for the steady state and for the oscillatory results. To reinforce this,
Figs. 4.5 and 4.6 compare our numerical results for CL and CD obtained with this
mesh for Re = 200, γ = 0; 1; 3, with those obtained by Mittal and Kumar (2003)
for the same cases. In particular, Fig. 5 shows CL(t) and Fig. 4.6 the phase diagrams
of CL and CD for the fully developed flow. The agreement is very good in all cases
except for CD when γ = 3 (Fig. 4.6). This is due to the fact that CD is too small
compared to CL in this case (see also Fig. 4) and the relative errors may become quite
large (as noted also by Padrino and Joseph, 2006 in their Table 2, where they report
large differences in the computed CD in this case). But the difference in the total force
coefficient

√
C2
L +C2

D between our results and those by Mittal and Kumar (2003) is
negligible. Note also that for γ = 0 there exists a phase shift in CL(t) (Fig. 4.5), which
is probably due to the different numerical methods, that trigger the instabilities giving
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rise to the vortex shedding at different times. But the amplitude and the frequency of
the oscillations due to the vortex shedding are practically the same, as corroborated
in the phase diagram of Fig. 4.6 and the Strouhal numbers given in the caption.

4.4 results and discussion

4.4.1 Preliminary study for γ = 0

First we consider the case without rotation (γ = 0) for a fixed free stream speed
corresponding to Re = 200. Fig. 7 shows the time histories of CD and CL when the
numerical simulations are started at t = 0 from the corresponding potential flow.
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Figure 4.5: Time histories of CL for Re = 200 and several values of γ (as indicated) computed
with mesh 3 with ∆t = 0.00625 (continuous lines), and comparison with the results
by Mittal and Kumar (2003) for the same cases (dashed lines with open circles).
Strouhal numbers [Mittal and Kumar, 2003]: for γ = 0, St = 0.1904 [0.1934]; for
γ = 1, St = 0.1904 [0.192].

The curves for both CD and CL are practically indistinguishable when computed
from (2.13) and (2.14) or from (2.17) and (2.15). Thus, in all the results reported be-
low CL and CD are always computed through (2.17) and (2.15), respectively. Fig. 4.8
shows the contributions of the volume and surface integrals to CD and CL, where it is
observed that the contributions of the volume integrals are significantly larger than the
corresponding contributions of the surface integrals. A note of warning should be given
here: as we see in all the reported results, while CLs is always significantly smaller than
CLv , CDs is frequently comparable to CDv. Therefore, while the analysis of the lift
force based on its volume elements δLv yields always a whole quantitative picture of
the lift generation and evolution, the analysis based on δDv sometimes only accounts
for a fraction of CD. In any case, it is relevant to map the δDv and δLv fields to find
out the structures of the flow that contribute positively or negatively to the drag and
to the lift forces, respectively.
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Figure 4.6: Phase diagrams of CL and CD for the same cases of Fig. 4.5 (continuous lines and
open circle in the case of γ = 3), and comparison with the results by Mittal and
Kumar (2003) (dots).

0 50 100 150 200
0.8

1

1.2

1.4

1.6

t

C
D

 

 

CD

CDs +CDv

0 50 100 150 200
−1

0

1

2

t

C
L

 

 

CL

CLs +CLv

(a)

(b)

Figure 4.7: Time histories of CD (a) and CL (b) for Re = 200 and γ = 0 with q = 1 computed
from the standard surface integrals (2.13) and (2.14) (dashed-and-dotted lines with
symbols), and with the formulation given by (2.17) and (2.15) (continuous lines).

Fig. 4.9 shows that these fields at four instants of time corresponding to the max-
imum and minimum values of CL and CD once the fully developed oscillatory flow
is reached for γ = 0. In particular, at t = 219.6 and t = 224.7, where CL is a min-
imum and a maximum, respectively, and at t = 220 and t = 222.6, where CD is a
maximum and a minimum, respectively (see insets in Fig. 4.8). Note in Fig. 4.8 that
CLs and CLv are slightly out of phase: although the oscillations in CLv are fully con-
trolled by vortex shedding (see below), it is not necessarily so for the component of
CLs due to surface friction. In order to visualize the vortex structure of the flow, we
have also superposed in Fig. 4.9 the velocity gradient tensor field characterized by
the so-called Q−value (Hunt et al., 1998) which for an incompressible flow can be
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Figure 4.8: Comparison when γ = 0 between the time histories of CDv and CDs (a) and between
the time histories of CLv and CLs (b) for the same case of Fig. 4.7. The insets are
zooms of the fully developed flow and the filled circles correspond to the instants
of time plotted in Fig. 4.9.

written as Q = ‖ω‖2 − ‖S‖2, where ω = [∇v− (∇v)T ]/2, S = [∇v + (∇v)T ]/2, and
‖A‖2 = tr[AAT ]1/2. This Q−value identifies the coherent structures of the flow, and
we find that in the present example it provides a clearer visualization of the vortex
structures than the vorticity field itself (although this is not always the case, see below).

Fig. 4.9 (a) and (b) shows that the positive and the negative lift are generated by the
upper and lower counter-rotating vortices, respectively, just in the front region close to
the cylinder surface where these vortices are generated and shed. These are low pres-
sure regions. The lift reaches a maximum (t = 224.7) when the upper clockwise vortex
is developing and starts shedding from the cylinder while the lower counter-clockwise
vortex is already almost detached from the cylinder [Fig. 4.9 (b)]. This configuration
corresponds to a maximum of the positive lift elements in the upper front of the cylin-
der and a minimum of the negative lift elements in the lower front of the cylinder.
Conversely, the lift reaches a minimum at t = 219.6 [Fig. 4.9 (a)] when the upper
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Figure 4.9: Contours of constant Q criterion (solid lines) superimposed to the fields of δLv
(panels (a)–(d)), and of δDv (panels (e)–(h)) at four instants of time (marked in
Fig. 4.8) corresponding to minimum and maximum lift (panels in the two top rows,
respectively), and to maximum and minimum drag (panels in the two bottom rows,
respectively), for Re = 200 and γ = 0. The contours of Q are for 0.005; 0.105;
0.205 and 0.305. λL = 0.6978 (a), 1.1359 (b), 0.6978 (c), 1.1359 (d); λD = 1.9109
(e), 1.9101 (f), 1.9138 (g), and 1.8355 (h).

vortex is detaching from the cylinder and the lower vortex is developing. On the other
hand, the positive drag is also generated by these vortices but in the wake region,
where they are shed from the cylinder. The maximum drag at t = 220 [Fig. 4.9 (g)]
corresponds to a flow configuration close to that of minimum lift, while the minimum
drag at t = 222.6 [Fig. 4.9] is close to the configuration with maximum lift. The main
difference between them resides in the extension of the regions with positive drag ele-
ments. Note, however, that CD is always positive and its oscillations represent a small
fraction of its mean value [see Fig. 4.7 (a) or Fig. 4.8 (a)]. The mean lift is zero in
this case with γ = 0, so that their positive and negative fluctuations are much better
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characterized by the positive and negative lift volume elements than the drag is by its
positive and negative drag volume elements.

To better quantify the total positive and negative volume elements contributing to
the lift and drag in each case, we define new quantities that take into account the
positive and negative parts of the integrals C Lv and CDv separately:

λL = C+
Lv

|CLv|−
, λD = C+

Dv

|CDv|−
(4.12)
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Figure 4.10: Time histories of CD (a) and CL (b) for Re = 200, q = 1 and γ = 1 computed
with (2.17) and (2.15), together with their components CDs, CDv and CLs, CLv.
The filled circles correspond to the instants of time plotted in Fig. 4.11.

where C+
Lv is computed with the elements where δLv ≥ 0 and C−Lv with those where

δLv < 0, and similarly for CD (of course, CLv = C+
Lv +C−Lv and CDv = C+

Dv +C−Dv).
The values of these quantities λL and λD are given in the caption of Fig. 4.9 for
each instant of time plotted, and they are also given in all similar figures reported in
subsequent sections. λL > 1 means that the positive volume contributions to the lift
are larger than the negative ones, and similarly for λD.

4.4.2 Case (i)

We first present results for the case (i), i.e. when the (non-dimensional) free stream
velocity is set to unity and the cylinder starts rotating at t = 0 with a given angular
acceleration characterized by an acceleration parameter q until the non-dimensional
angular velocity reaches a given value γ. As initial condition we start the numerical
computation from the numerical results for γ = 0 when CL = 0 once the fully developed
oscillatory flow has been reached (for instance, from t = 233.5 in Fig. 4.7, which is then
reset to t = 0 when the cylinder starts rotating). All the force coefficients are computed
with (2.17) and (2.15). The reported results are for Re = 200 with γ = 1 and γ = 3.
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4.4.2.1 γ = 1

Fig. 4.10 shows the temporal evolutions of CD and CL for γ = 1 when q = 1. Also
their components CDs, CDv and CLs, CLv are included. As noted above, the volume
components are larger than the surface ones, specially for CL, so that the δLv field
will provide a convenient picture of the flow structures generating lift forces on the
cylinder. It is observed in Fig. 4.10 that in this case with γ = 1, like in the case with
γ = 0 (see Fig. 4.5), the fully developed flow oscillates due to vortex shedding, with
a non-dimensional period of about 10 (St = 0.1904). Since q = 1, the duration of
the initial transient in the rotating cylinder is much shorter than the period of the
von Kármán vortex street (about 10 times shorter). Using larger transients (smaller
q) would just delay the fully developed flow, but at the end one will obtain the same
oscillatory flow. Therefore, we shall only present here results for q = 1 (other values of
q will be considered below if they are more convenient to analyze the initial transient
flow).

In particular, we plot in Fig. 4.11 the structures of the flow together with the δDv
and δLv fields at t = 0, and at several instants of time where CD and CL reach their ex-
treme values both in the initial transient and in the fully developed flow (see Fig. 4.10):
t = 3.2; 23.4, and 28.2 for CD and t = 9; 25.8, and 30.8 for CL. Since we start at t = 0
with Ω = 0 in a configuration with zero lift, the regions with non-vanishing lift vol-
ume elements in the upper front of the cylinder (positive) and in the lower front of
the cylinder (negative) are of the same size and intensity, so that they cancel each
other [see Fig. 11(a)]. This fact is quantified with λL ' 0 (the values of λL and λD in
each case are given in the caption of Fig. 4.11). As the main difference with the case
γ = 0 discussed above, now the upper front region generating positive lift is always
more intense and larger than the lower front region generating negative lift, so that
CL is always positive [Fig. 4.10 (b); λ ' 3.6]. This is due to the fact that the clockwise
rotation of the cylinder reinforces the upper clockwise vortex, while it weakens and
slightly detaches from the cylinder the lower counter-clockwise vortex, as can be seen
from the contours of constant Q−value plotted in Fig. 4.11. The positive (negative)
lift volume elements are in the frontal region where this upper (lower) vortex is gen-
erated. Initially, this upper vortex grows in intensity, and so increases the intensity
and size of the positive lift element, until the vortex reaches a maximum intensity just
before it is shed from the cylinder, generating a separate vortex at t = 9 [Fig. 4.11 (b)]
that travels downstream. As a consequence, the intensity of the upper vortex decays,
and so does the intensity of the corresponding positive lift element until it reaches a
minimum value. Then the vortex intensity, and that of the positive lift element, grows
again due to the interplay between the flow and the rotation of the cylinder until it
is again shed from the cylinder, and so on. This process generates the oscillation in
CL. In addition, there is a narrow region of positive lift generation between the lower
surface of the cylinder and the detached lower vortex. Fig. 4.11 (c) shows a configura-
tion of minimum lift, where the upper vortex has reached its lower intensity before it
begins to grow again. Fig. 4.11 (d) shows the configuration of the next maximum lift,
which is similar to that in Fig. 4.11 (b), but with slightly larger λL (and, of course, CL).

In relation to the drag [Fig. 4.11 (e) and (h)], the configurations are similar to the
case with γ = 0, with the main volume elements of positive drag located in the rear
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Figure 4.11: Contours of constant Q (solid lines) superimposed to snapshots of δLv (left panels),
and of δDv (right panels), at t = 0 and at the instants of time (marked in Fig. 4.10)
corresponding to extreme values of CL and CD, respectively, for Re = 200 and
γ = 1 with q = 1. The contours of Q are for 0.005; 0.105; 0.205 and 0.305. λL =
1.0056 (a), 3.6021 (b), 2.3464 (c), 4.1395 (d); λD 1.8453 (e), 1.7076 (f), 1.2539 (g),
and 1.5208 (h).

parts of both upper and lower vortices. But now, due to the rotation of the cylinder,
there is a new significant source of positive drag on the cylinder’s front, caused by
the interplay between the clockwise rotation of the cylinder and the counter-clockwise
rotation of the lower vortex that generates a high pressure region [compare Fig. 4.11
(f) and (h) with Fig. 4.11(e)]. This interplay between the rotation and the shedding
vortices generates an intense source of negative drag on the upper front of the cylinder
and another one of less intensity on the rear surface of the cylinder. The global effect is
that the mean drag is slightly reduced in the fully developed flow in relation to the case
without rotation (see Fig. 4.6). The oscillations are generated by the vortex shedding,
as in the case of the lift, but they are not in phase: the maximum drag takes place just
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Figure 4.12: Time histories of CD (a) and CL (b) for Re=200, q = 0.1 and γ = 3 computed
with (2.17) and (2.15), together with their components CDs, CDv and CLs, CLv.
The filled circles correspond to the instants of time plotted in Fig. 4.13.

before the lift reaches a maximum, i.e. just before the upper vortex is shed [Fig. 4.11
(h)], and the minimum drag occurs just before the minimum lift, i.e. just before the
minimum intensity of the upper vortex is reached [Fig. 4.11 (g)].

4.4.2.2 γ = 3

As a difference with the case γ = 1 just reported, we now use q = 0.1 for γ = 3, so
that the transient from Ω = 0 to Ω = 1 is 10 times longer than in the previous case,
roughly of the order of the vortex shedding period reported above for γ = 0 and 1.
With this longer initial transient one can better appreciate the mechanisms by which
the vortex shedding (and the von Kármán vortex street) is suppressed in this case
with γ = 3. The numerical computation is started, as in the previous cases, from the
numerical results for γ = 0 when CL = 0, once the fully developed oscillatory flow has
been reached. Fig. 4.12 shows the temporal evolutions of CD and CL. Now, both CD
and CL reach non-oscillatory steady state values, with almost vanishing C D due to the
negative contribution of its volume part CDv, and a quite large final CL coming almost
entirely from its volume contribution CLv. To explain these interesting and different
features in relation to the previous case, we plot in Fig. 4.13 the structures of the flow
at several relevant instants of time, together with the δDv and δLv fields. We now use
the distribution of (axial or z−component) vorticity instead of the Q−value to char-
acterize the vortex structures because, as we shall see, it is important to differentiate
the clockwise from the counter-clockwise vortices, i.e. negative from positive (axial)
vorticity.

Fig. 4.12 shows the temporal evolutions of CD and CL. Now, both CD and CL reach
non-oscillatory steady state values, with almost vanishing CD due to the negative con-
tribution of its volume part CDv, and a quite large final CL coming almost entirely
from its volume contribution CLv. To explain these interesting and different features in
relation to the previous case, we plot in Fig. 4.13 the structures of the flow at several
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relevant instants of time, together with the δDv and δLv fields. We now use the distri-
bution of (axial or z−component) vorticity instead of the Q−value to characterize the
vortex structures because, as we shall see, it is important to differentiate the clockwise
from the counter-clockwise vortices, i.e. negative from positive (axial) vorticity.

The cylinder starts with no rotation at t = 0 in a configuration of zero lift, with a de-
veloping upper vortex, and a lower vortex almost shed from the cylinder [Fig. 4.12 (a)].
These vortices generate two opposite volume lift elements, positive on the upper front
and negative on the lower front of the cylinder, as discussed above. The corresponding
drag is mainly generated by these two vortices, from positive drag volume elements in
their shedding tails. As the cylinder rotates, a thin region of positive vorticity develops
around it generated by the interaction of the circumferential shear produced by the ro-
tation of the surface and the incoming free stream. At t = 7 [Fig. 4.12 (b), (g), and (l)],
when the cylinder has almost reached its maximum angular velocity (the maximum
is reached at t = 10 for q = 0.1), this region of positive vorticity surrounds almost
completely the cylinder. It suppress the shedding of the upper clockwise vortex, which
remains then confined between the upper surface of the cylinder and this envelope
of positive vorticity [Fig. 4.12 (c)–(e)]. It reinforces also the positive vorticity of the
lower, slightly detached vortex. As a consequence, a thin region of positive lift volume
elements (high pressure in this case) is generated on the lower half of the cylinder
surface, increasing CL. Also, the positive drag volume elements associated with the
upper vortex shedding disappears, and a new thin region with negative drag volume
elements behind the cylinder surface develops due to the high pressure generated by
the suppression of the flow separation. The drag, however, remains almost constant
because the envelope of positive vorticity also replaces the initial negative drag volume
elements at the front of the cylinder surface by a thin region of positive drag volume
elements (high pressure).

As time goes on, the intensity of positive vorticity surrounding the cylinder increases,
suppressing also the shedding of the lower vortex. At t = 14.25, the drag reaches
a maximum because the frontal region of positive drag volume elements reaches it
maximum intensity [Fig. 4.13 (m)]. But then, an intensification of the negative drag
volume elements at the rear of the cylinder is produced (the back pressure grows), so
that the drag start decreasing. The lift reaches a maximum at t = 23.75 [Fig. 4.13
(d), (i), and (n)], when vortex shedding ceases and an envelope of positive lift volume
elements surrounds almost entirely the cylinder [Fig. 4.13 (i)]. The lift remains then
almost constant, with CL close to its maximum. The drag, however, decreases further
due to CDv, which even becomes negative [see Fig. 4.12 (a), and the corresponding
value λD < 1 in Fig. 4.13 (o)]. This is because a small region of negative drag volume
elements is generated on the upper front of the cylinder surface (associated with the
confined upper region with negative vorticity) which is added to the existing negative
drag volume elements behind the cylinder surface. Since the vortex structures become
steady at t ' 30, so do the values of CL and CD, the first is a quite large value
and the second almost vanishing. The key point of this interesting situation is the
region of positive vorticity surrounding the cylinder generated by the interaction of
the high rotation speed of the cylinder surface with the free stream, that suppress
vortex shedding, confining the upper negative vortex in a small region on the top
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Figure 4.13: Snapshots of ω (left panels), δLv (central panels), and δDv (right panels) at several
significative instants of time (marked in Fig. 4.12) for Re = 200 and γ = 3 with
q = 0.1. λL = 1.0056 (f), 2.4741 (g), 5.5530 (h), 8.6392 (i), 7.4633 (j); λD = 1.8453
(k), 1.3758 (l), 1.4762 (m), 1.0868 (n), and 0.9184 (o).

of the cylinder surface, and slightly detaching the lower positive vortex over a wider
region below the cylinder. This configuration generates low pressure on the cylinder
upper surface, and high pressure on the lower and rear surfaces. Note, however, that
CDs is comparable to CDv, so that the volume elements analysis based on δDv only
accounts for a fraction of CD.

4.4.3 Case (ii)

We present now the results for the case (ii) for the same Reynolds number and values
of γ; i.e. we now analyze the case of an initially rotating cylinder in a quiescent fluid,
with a given angular velocity γ, that starts accelerating linearly in the x direction from
rest until reaching a constant velocity determined by the given Re in a non-dimensional
time q−1.
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4.4.3.1 γ = 1

Fig. 4.14 shows the temporal evolution of CD and CL for γ = 1 when q = 0.1, check-
ing that the results from the standard surface integrals (2.13) and (2.14) are practically
indistinguishable from those computed with (2.17) and (2.15). We repeat this compar-
ison here because in this case (ii) there exists a new drag component CDa, associated
with the acceleration of the cylinder (it corresponds to an added-mass force), which
is absent in the case (i). We select q = 0.1 to have a longer initial transient during
which this additional drag acts on the cylinder. It is observed in Fig. 4.15 (a) that the
computed CDa is constant [as it must be for a constant acceleration, dU/dt = 1 in
(2.17)] and equal to πq = π/10 for 0 ≤ t ≤ q−1. Then, CDa drops to zero, once the
cylinder’s velocity remains constant for t > 10.
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Figure 4.14: Time histories of CD (a) and CL (b) for Re = 200 and γ = 1 with q = 0.1
for the case (ii) computed from the standard surface integrals (2.13) and (2.14)
(dashed-and-dotted lines with symbols), and with the formulation given by (2.17)
and (2.15) (continuous lines). Also included with dotted lines are the results for
the case (i) with the same values of Re, γ and q.

For reference sake, we also include in Fig. 4.14 the results obtained for the case (i)
with γ = 1 and q = 0.1. Obviously, since Re and γ are the same, the results coincide
when the fully developed flow is reached, with just a phase shift in the oscillations of
Cd and CL due to the different initial transient flows. The main differences between
these flows can be discussed with the help of Fig. 4.16, where the structure of the flow
(vorticity field), together with the δDv and the δLv fields, is shown at several relevant
instants of time (marked in Fig. 4.15).

The computation begins now with the cylinder rotating with γ = 1 in a quiescent
fluid. At t = 0, the cylinder starts moving in the direction x (to the left in Fig. 4.1)
with a constant acceleration. When t = 0.25 [Fig. 4.16 (a)], the flow structure is still
very similar to that for t = 0, with a positive vorticity layer surrounding the rotating
cylinder that decays very fast away from the cylinder, where the fluid is almost at
rest. As a consequence, the lift force is practically zero, since the positive volume lift
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Figure 4.15: Time histories of CD (a) and CL (b) for Re = 200, q = 0.1 and γ = 1 for the case
(ii) computed with (2.17) and (2.15), together with their components CDs, CDv,
CDa, and CLs, CLv. The filled circles correspond to the instants of time plotted
in Fig. 4.16.

elements on the lower part of the cylinder generated by this vorticity distribution
cancel out with the negative volume lift elements on the upper part [Fig. 4.16 (h)].
On the other hand, all the drag is practically due to the pressure force necessary to
accelerate the cylinder [added-mass term CDa, see Fig. 4.15 (a)], with almost negligible
contribution from the volume drag elements depicted in Fig. 4.16 (o). As the cylinder’s
speed increases (or the free stream velocity increases in the reference frame moving
with the cylinder), the vorticity field structure around the cylinder changes, generating
both lift and additional drag. At half the accelerating period [t = 5, Fig. 4.16(b)], the
original positive vorticity surrounding the cylinder is shedding, due to the stream, from
the lower part of the cylinder, and a counter-rotating vortex (negative vorticity, i.e. a
vortex rotating clockwise) is developing on the upper part of the cylinder. This incipient
upper vortex generates positive volume lift elements [Fig. 4.16 (i)] associated with low
pressure, which added to the original positive volume elements on the lower part (high
pressure) yield a positive lift, that increases quite fast [see Fig. 4.15 (b)]. The maximum
lift is reached at the end of the accelerating period, when the cylinder starts moving
at a constant velocity. Fig. 16(c) shows the flow structure at t1⁄49.75, just before this
maximum. The upper vortex is about to detach, generating the maximum extension
of the positive volume lift elements on the upper part of the cylinder [Fig. 4.16 (j);
λL ' 5.44]. The drag also reaches a maximum, with the main volume contributions
coming from the rear part of this upper vortex [Fig. 4.16 (q)]. After this accelerating
period, the minimum and the maximum values of CD and CL alternate due to vortex
shedding, in a similar fashion to that described above for the case (i). In Fig. 4.16,
the instants t = 45.75 and t = 48 correspond to minimum values of CD and CL,
respectively, while t = 50.75 and t = 53.25 correspond to maximum values of CD and
CL, respectively (see Fig. 4.15).
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Figure 4.16: Snapshots of ω (left panels), δLv (central panels), and δDv (right panels) at several
significative instants of time (marked in Fig. 4.15) for Re = 200 and γ = 1 with
q = 0.1 for the case (ii). λL = 1.0177 (h), 3.0336 (i), 5.4357 (j), 2.6437 (k), 2.2631
(l), 3.5248 (m), 4.2020 (n); λD = 1:0007 (o), 1.6928 (p), 1.6581 (q), 1.2330 (r),
1.4286 (s), 1.5205 (t), and 1.3561 (u).

4.4.3.2 γ = 3

Fig. 4.17 shows CD and CL in this case (ii) for γ = 3 with q = 0.1. Obviously, their
steady state values coincide with those reached in case (i). In fact, CL(t) is quite similar
for all t [Fig. 4.17 (b)], but CD(t) differs substantially in the transient period due not
only to the additional acceleration term CDa, but also to the volume contribution CDv,
that reaches a higher maximum owing to the acceleration. Thus, the maximum of the
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Figure 4.17: Time histories of CD (a) and CL (b) for Re = 200, q = 0.1 and γ = 3 for the case
(ii) computed with (2.17) and (2.15), together with their components CDs, CDv,
CDa, and CLs, CLv. Also included are the results for the case (i) with the same
values of Re, γ and q (Fig. 4.12). The filled circles correspond to the instants of
time plotted in Fig. 4.18.
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Figure 4.18: Snapshots of ω (left panels), δLv (central panels), and of δDv (right panels) at
several significative instants of time (marked in Fig. 4.16) for Re = 200 and γ = 3
with q = 0.1 for the case (ii). λL = 1.0058 (f), 1.4604 (g), 3.0732 (h), 8.4165 (i);
λD = 1.0007 (k), 1.4380 (l), 1.8557 (m), and 1.0200 (n).
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total CD in the transient period is significantly larger in this case (ii) than in the case
(i) when γ = 3 [Fig. 4.17 (a)].

To better appreciate these differences, Fig. 4.18 shows the vorticity ω, δDv and δLv
fields at several instants of time within the transient period (marked in Fig. 4.17).
Initially [t = 0.25 in Fig. 4.18 (a)], the structure of the flow coincides with that for
γ = 1 discussed above, but differs from the case (i) [Fig. 4.13 (a)] in the absence of
vortex shedding, because the initial free stream is zero in the present case. The positive
vorticity layer surrounding the rotating cylinder generates a symmetric distribution of
δDv and δLv with no lift and no drag from the volume elements (though there is a
drag CDa due to the cylinder’s acceleration). As time goes on, the main qualitative
difference with the case (i) is that the final steady structure of the flow (without vortex
shedding) is reached more straightforwardly in this case (ii) because the initial flow
structure is more similar to the final one. Thus, the excess of initial vorticity is shed
in just one event from the lower part of the cylinder [compare Fig. 4.18 (b) and (c)
with Fig. 4.13 (b) and (c)]. In addition, as already mentioned, the drag in the transient
period is larger, as can be seen in the volume drag elements of Fig. 4.18 (l) and (m)
[compare with Fig. 4.13 (l) and (m), and the corresponding values of λD]. But, at the
end, the volume drag contribution CDv is negative, so that the total drag in the final
steady state is relatively small, and the same in both cases.

4.5 concluding remarks

We have analyzed the structure of the flow around a rotating and a translating
cylinder with the aim of identifying and quantifying the structures that contribute to
the lift and drag forces. We have considered two different situations with Re = 200,
a cylinder translating with a constant speed that starts rotating until reaching a non-
dimensional rotation rate γ (i), and an initially rotating cylinder in a quiescent fluid
at a rate γ that starts translating until reaching the speed corresponding to Re = 200
(ii). In both cases we have considered γ = 1 and γ = 3. For the analysis we have
used a formulation that quantifies the contribution of the different vortical structures
surrounding the body on the forces (Chang, 1992). We find that, especially for the case
of lift, the main contribution comes from these volume elements. The formulation can
be used without modification to more complex transient laws than (i) or (ii), but the
results will be qualitatively very similar provided that the rotation and the translation
speeds increase monotonically. In fact, we present results for several values of the ac-
celeration parameter q, and they do not differ significantly from each other because
the underlying mechanisms generating lift and drag are essentially the same.

In general, the main contribution to the lift is generated, as expected, by the upper
vortex in its root close to the upper front of the cylinder surface, where it generates
a low pressure region. Without rotation of the cylinder (γ = 0), this contribution is
balanced by the opposite effect of the lower counter-rotating vortex, so that the mean
lift vanishes in the fully developed flow. The instantaneous lift oscillates due to vortex
shedding.
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When the cylinder rotates moderately (γ = 1), there is still an oscillating lift force
in the fully developed flow due to the vortex shedding from the cylinder. But now the
mean lift is positive (for a clockwise rotating cylinder) because the cylinder’s rotation
reinforces the upper clockwise vortex, while it weakens and slightly detaches from the
cylinder the lower counter-clockwise vortex, so that the maximum and the minimum
lift are both positive for γ = 1. For high rotation (γ = 3), the layer of positive vortic-
ity surrounding the cylinder generated by its (clockwise) rotation ends up suppressing
vortex shedding, so that the lift in the fully developed flow becomes constant. It is
also large because both the attached lower vortex and the counter-rotating upper one,
trapped by the surrounding vorticity, contribute positively to the lift. This interaction
also reduces drastically the drag owing to the positive pressure region that it generates
at the back of the rotating cylinder. The main difference found in the configuration (ii)
for this case with high rotation (γ = 3) is that the fully developed flow with constant
high lift and constant low drag is reached faster, because the positive vorticity layer
surrounding the cylinder is already present when the cylinder starts translating, and
there is no initial vortex shedding. However, in this configuration the transient drag is
significantly larger due to the translating acceleration of the cylinder, which adds an
additional drag term reinforcing the positive volume drag elements.

Finally, it is worth commenting that the vorticity forces formulation used in this
work can of course be extended to the three-dimensional flow arising for greater values
of γ than those considered in the present study. The structure and the stability of
these flows have been recently considered by several investigators (see Introduction).
But the study of these three-dimensional flows is out of the scope of the present work
because the formulation loses the simplicity of the 2D flow around a rotating cylinder
to explain the development of lift and drag, which was the main aim of the present
work. In the 2D flow the auxiliary potentials are simple analytical functions, and the
contributions of the different individual fluid elements to the lift and drag are much
more straightforwardly analyzed.



5
VORTEX FLOW STRUCTURES AND INTERACTIONS FOR THE
OPTIMUM THRUST EFF IC IENCY OF A HEAVING AIRFOIL AT
DIFFERENT MEAN ANGLES OF ATTACK

5.1 introduction

The unsteady aerodynamics of oscillating airfoils at the low Reynolds number range
of in terest for small flying animals (mostly insects) has been widely studied theoreti-
cally, numerically, and experimentally (Shyy et al., 2013). The main motivation of many
of these studies has been the understanding of the flow mechanisms by which the lift is
greatly enhanced in relation to the predictions of the quasi-steady aerodynamic theory
and the mechanisms by which thrust or propulsion is generated. Traditionally, these
studies were aimed to the understanding of the biomechanics of insect (and small birds
and mammals) flight (see Maxworthy, 1981, Dudley, 2000, Sane, 2003, Wang, 2005).
But the interest in the unsteady aerodynamics of flapping flight has significantly grown
in recent years in relation to the design of Micro-Aerial Vehicles (MAVs) that take ad-
vantage of the accumulated knowledge on animal flight (see Ellington, 1999, Mueller,
2001, Pines and Bohorquez, 2006, Ansari et al., 2009 and Jones and Platzer, 2009).

Here, we focus on the thrust generation by an oscillating airfoil at low Reynolds num-
bers, particularly on the characterization of the vortical flow structures responsible for
the maximum thrust efficiency at selected non-dimensional frequencies and amplitudes
of the oscillations. We consider the two-dimensional (2D) and incompressible viscous
flow around a plunging airfoil at different mean angles of attack. This simplified prob-
lem, with only heaving motion, has been widely considered as an appropriate simple
model to understand the flow mechanisms which are responsible for thrust generation
in flapping flight and swimming. It has been known for a long time that net thrust
is characterized by a reversed von Kármán vortex street behind the heaving airfoil
(Kármán and Burgers, 1935 and Bratt, 1950), with vortices rotating in the opposite
direction of the well known drag-producing von Kármán vortex street. Different kinds
of spatial patterns of vortices have been identified in several forms of propulsion by
aquatic animals (see e.g., Wu, 1961, Lighthill, 1969 and Lighthill, 1970). In addition,
in many of the proposed thrust mechanisms, the leading-edge vortex (LEV) generated
during the wing-beat plays an important role. It is well known that the high lift coef-
ficients characterizing most insect flight is due to the low-pressure regions inside the
LEV generated temporarily after a sudden change in the effective local angle of attack
during flapping (some related information is available in Lighthill, 1975, Maxworthy,
1979, Dickinson and Götz, 1993, Ellington et al., 1996, Liu et al., 1998, Sane and
Dickinson, 2001, Minotti, 2002, Maxworthy, 2007, Shyy and Liu, 2007 and Pitt and
Babinsky, 2013). To optimize this effect, most insects fly at the limit of dynamic stall
to generate a prominent LEV. The relevance of the LEV for high efficiency thrust and
propulsion by a pure heaving motion was first acknowledged and studied in relation to
simple models for fish swimming as Streitlien et al. (1996), Anderson et al. (1998) and
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Triantafyllou et al. (2000) reported. It was already known that the efficiency of thrust
generation by a flapping airfoil is mainly governed by a Strouhal number based on the
amplitude and frequency of the oscillations (Sta defined in Sec. 5.2) (see Triantafyllou
et al., 1993, Jones et al., 1996 and Lai and Platzer, 1999). For very low Sta, below a
threshold of about 0.03, only drag is produced by the oscillating airfoil as stated by
Lai and Platzer (1999). For large frequencies for a given amplitude, when Sta ∼ 0.06,
net thrust is generated by the inversion of the vortices in the von Kármán vortex
wake behind the heaving airfoil (this conclusion is reached in Jones et al., 1996, Lai
and Platzer, 1999 and Koochesfahani, 1989). Experimental and numerical results show
that in a wide range of Reynolds numbers (Re, also defined in Sec. 5.2), the optimal
efficiency for thrust generation is reached in an intermediate range of Sta, between
0.12 and 0.20, approximately, which is thus selected by many swimming and flying ani-
mals (Triantafyllou et al., 1993, Triantafyllou et al., 1991, Lentink and Gerritsma, 2003
and Taylor et al., 2003). By the way, these experimental results contrast the potential
theory results for small-amplitude oscillations, predicting that propulsion efficiency is
maximized as the frequency goes to zero (see Theodorsen, 1935 and Garrick, 1936),
whence the relevance of viscous effects in modelling the thrust generated by a heaving
airfoil at the relevant Reynolds numbers of interest. This flapping frequency selected
for optimum thrust efficiency has been identified with the frequency of maximum spa-
tial amplification of the wake, based on linear stability analyses of the wake mean
velocity profile (Triantafyllou et al., 1993 and Lewin and Haj-Hariri, 2003), and with
the natural shedding frequency of the airfoil (Lentink and Gerritsma, 2003). Also, this
frequency range observed in biological propulsion has been correlated to the range of
limiting dimensionless time for optimal vortex formation by the flapping appendage
(Dabiri, 2009).

It has been shown that the thrust efficiency of a flapping airfoil depends on the
interactions between LEV and trailing-edge vortex (TEV) (Streitlien et al., 1996 and
(Anderson et al., 1998)), the efficiency being larger when they interact constructively
leading to two vortices deposited per stroke. This situation occurs in the range of Sta
mentioned above. Wang (2000) demonstrated, using 2D numerical simulations for a
heaving elliptic airfoil and relating the resulting forces to those generated by the LEV
in a single stroke, that this preferred range of Sta is connected with maximizing the
effective local angle of attack allowed for the low range of Reynolds number considered.
But, in addition to Sta, which is a combination of the frequency and amplitude of
the oscillations, there exists another degree of freedom, characterized by the reduced
frequency (k) or the related Strouhal number based on the flapping frequency only
(Stc defined in Sec. 5.2 along with k), which has to be taken into account. Wang (2000)
related the range of Stc for optimum thrust efficiency to the equilibrium between the
time scales for LEV growth and shedding. The obtained value around 0.7 is consistent
with data for many birds’ and insects’ flight in a wide range of Reynolds numbers (see
Dudley, 2000 and Azuma, 2006). In a more detailed numerical study on the vortex
structure of the 2D flow around a heaving airfoil at low Reynolds number, Lewin and
Haj-Hariri (2003) showed that the timing of the separation of the LEV is crucial to
the heaving efficiency, with the optimum thrust occurring when the LEV remains at-
tached for the duration of each stroke. These authors concluded, in agreement with
a Anderson et al. (1998), that high propulsion efficiencies correspond to the positive
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reinforcement of the TEV by the LEV. They also found aperiodic and asymmetric
(deflected wake) solutions in some ranges of the parameters Sta and Stc (related to
kh and k, respectively, in their notation, see Sec. 5.2). The wake patterns depended
on whether or not the LEV is shed and on how the LEV interacts with the TEV
(reinforcing or attenuating it). The numerical simulations by Lewin and Haj-Hariri
(2003) produced aperiodic results when both Sta and Stc were sufficiently high. The
mechanisms of the wake deflection in a 2D heaving airfoil, caused by the LEV-TEV
interaction, and their connection to the aperiodic flows generated at high St a even
in a symmetrical and periodic heaving motion, have been more recently studied by
Blondeaux et al. (2005), Lua et al. (2007), Zheng and Wei (2012) and Wei and Zheng
(2014). For instance, the detailed experimental results by Lua et al. (2007) for a heav-
ing elliptic airfoil shed further light on the relation between the different LEV-TEV
interactions, as Sta and Stc are varied, with the different structures of the wake. But
neither of these experimental and numerical studies analyzed quantitatively the effect
that the successively generated LEVs and TEVs, and their interactions, have on the
thrust of the heaving airfoil. We think that this quantitative analysis is very relevant
to understand the vortex configuration for optimum thrust efficiency.

Thus, to explain better all the above phenomena affecting the thrust efficiency of a
heaving airfoil, we study in this work the connection between the LEV and the TEV
dynamics with the thrust efficiency quantitatively by using a vortex force decomposi-
tion, originally developed by Chang (1992), in a 2D numerical simulation of the flow.
This formulation provides the quantitative contribution of each vortex flow structure,
such as the LEV and the TEV, to the lift and drag or thrust at any instant of time
(see also Lee et al., 2012 and Martín-Alcántara et al., 2015). In order to be able to
obtain analytically the auxiliary potentials that separate the vortex force into lift and
drag (or thrust), we use an elliptic airfoil, as in many previous numerical works. In
addition, in the present work, we also consider the effect of mean angles of attack α
different from zero in the thrust efficiency of the heaving airfoil, which has not been
taken into account in previous works. The vertical asymmetry introduced by α 6= 0
changes dramatically the structure of the flow and thrust efficiency, even for small |α|.
In short, we consider quantitatively the effect of the LEV-TEV interaction, the LEV
splitting, stretching, convection and diffusion, and other vortex dynamics mechanisms
in the thrust efficiency of a heaving airfoil for different values of Sta, Stc, and α for a
given (relatively small) value of the Reynolds number of interest in insects’ and MAVs’
flight.

The present chapter is organized as follows: in Section 5.2, the problem is formu-
lated, with the analytical auxiliary potentials given in Appendix A. In that appendix,
we also obtain analytically, with the help of the auxiliary potentials, the added-mass
contributions to the lift and drag (or thrust) for any heaving motion of an elliptic
airfoil at any mean angle of attack. These solutions also help to the validation of the
numerical method, which is described in Section 5.3, and validated further in Appendix
B with results from previous works. The numerical results are presented and discussed
in Section 5.4, and the main conclusions are summarized in Section 5.5.
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5.2 formulation of the problem

We consider here the two-dimensional unsteady and incompressible flow of a uniform
current over an oscillating ellipse. In particular, the ellipse, which represents a wing
element with chord length c and thickness e, forms an angle α with the current of
constant speed U (see Fig. 5.1) and performs a sinusoidal heaving motion perpendicular
to the current with amplitude h0 and frequency f ,

h(t) = h0 sin(2πft). (5.1)

Using the chord c and the free stream speed U as the reference length and velocity,
respectively, the non-dimensional Navier–Stokes equations and boundary conditions
governing the incompressible flow can be written as

∇ · v = 0, (5.2)
∂

∂t
v + v · ∇v = −∇p+ 2

Re∇
2v, (5.3)

α

U

h(t)

x

y

Figure 5.1: Schematic of the problem

|x|→ ∞, v→ ex, p→ 0, (5.4)
S(x, t) = 0, v = V0(t) ey ≡ 2πSta cos(2πStct)ey, (5.5)

where v is the non-dimensional velocity, p the non-dimensional relative pressure (scaled
with ρU2, being ρ the fluid density), ex and ey are the unit vectors in the direction
of the free stream velocity and in its perpendicular direction, respectively, and S(x, t)
defines the non-dimensional position of the ellipse surface as a function of time in
a fixed reference frame (see Sec. 5.3). In the above equations, we have defined the
following non-dimensional parameters:

Re = ρUc

µ
, Sta = h0f

U
, Stc = cf

U
, (5.6)

i.e., a Reynolds number based on the chord length c and two Strouhal numbers, one
based on the amplitude of the oscillation h0 and the other one on the chord length,
being µ the fluid viscosity. These two Strouhal numbers are related to the advance
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ratio J and the reduced frequency k, respectively, usually defined in the flapping wing
literature (see Shyy et al., 2013 and Dudley, 2000),

J = U

2πfh0
= 1

2πSta
, k = 2πfc

U
= 2πStc. (5.7)

Sta is also related to the parameter kh used in Lewin and Haj-Hariri (2003) by
k = 2πSta.

The non-dimensional force (scaled with 1
2ρU

2c) that the fluid exerts on the ellipse
surface S(x, t) = 0 can be written as the sum of the pressure and viscous friction forces,

F = −2
∫
S
pn ds+ 2

Re

∫
S

(ω ∧ n) ds, (5.8)

where n is the outward unit vector normal to the ellipse and ω = ∇ ∧ v is the
nondimensional vorticity field. The x− and y−components of F are the drag and lift
coefficients, respectively,

CD = F · ex, CL = F · ey. (5.9)

If CD ≤ 0, it becomes a thrust coefficient. Since we are using U as the reference
velocity, the output or thrust power coefficient numerically coincides with −CD, while
the input power coefficient, or power needed to heave the airfoil, is the product of −CL
and heaving nondimensional velocity V0 (5.5),

CPo = −CD, CPi = −CLV0. (5.10)

We shall compute these quantities both instantaneously and integrated over time to
obtain the work done in propelling the airfoil, Wo, and the work needed to heave it,
Wo. These integrals are made over a cycle or stroke of the airfoil, of duration St−1

c .
The ratio is the thrust efficiency,

η = Wo

Wi
. (5.11)

In the fully developed flow, these quantities may vary from cycle to cycle if the fluid
motion does not become periodic with the same frequency as the heaving motion, and
we shall define also average values over a number of strokes (see Sec. 5.4.1).

Alternatively, we shall obtain the drag and the lift coefficients using a formulation
developed by Chang, 1992 that allows for a quantitative identification of the contribu-
tions of the different vortex flow structures to these forces (see Lee et al., 2012 and
Martín-Alcántara et al., 2015). For a deeper understanding of this formulation the
reader is referred to Chapter 2.
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5.3 numerical method

We solve numerically (5.2)–(5.5) in a spatial grid around the ellipse which is obtained
by a Joukowski transformation (Milne-Thomson, 1996) that maps a circle of radius a
centred at the origin into an ellipse with main axis of length unity forming and angle
−α with the horizontal axis x (see Fig. 5.1) and minor axis length ε = e/c. This
transformation between the τ = ξ + iη complex plane of the circle and the z = x+ iy
complex plane of the ellipse can be written as

z =
(
τ + 1− ε2

16τ

)
e−iα, (5.12)

with the radius of the circle given by a = (1 + ε)/4. The fixed ellipse with chord length
1 is obtained by the transformation of the circle τ = aeiθ, for 0 ≤ θ ≤ 2π, and is given
by z = (cos θ+ iε sin θ)e−iα, or in cartesian coordinates,

x = x0(θ) ≡ 1
2 cosα cos θ+ ε

2 sinα sin θ, (5.13)

y = y0(θ) ≡ −1
2 sinα cos θ+ ε

2 cosα sin θ, (5.14)

with 0 ≤ θ ≤ 2π.

Thus, the flapping ellipse, denoted by S(x, t) = 0 in (5.5), is given, in terms of the
parameter θ, by

x = x0(θ), y = y0(θ) +H(t),

H(t) = h0
c

sin(2πStct),
h0
c

= Sta
Stc

.
(5.15)

The outer boundary of the computational domain, where boundary conditions (5.4)
are numerically imposed, is chosen as the transformation of the circle τ = Roe

iθ, with
Ro � 1, which is also “almost” a circle in the plane z.
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Figure 5.2: Mesh example in the τ plane (a) and its transformation into the z plane (b). Details
of the grids near the inner circle and the ellipse are given in the insets. R = 2.5,
ε = 1/8, and α = 45◦.
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As an illustration, Fig. 5.2 shows an example of a very coarse mesh in the plane τ
and its transformation into the plane z for Ro = 2.5, ε = 1/8 (a = 9/32), and α = 45◦,
with 128 nodal points on the circle (and ellipse) and a total of 10 240 grid elements. In
the reported computations, we used finer meshes with much more elements and larger
values of Ro (see convergence analysis in Appendix B).

Since the ellipse is moving with velocity V0ey given by (5.5), we used a moving
and deforming mesh whose motion is prescribed by solving the Laplace equation
∇ · (k∇x) = 0, where x is the displacement field and k is a diffusion coefficient which
is chosen to decrease quadratically with the distance l from the moving boundary,
k(l) = 1/l2 (see, e.g., Bos et al., 2013 for details).

To solve numerically (5.2)–(5.5) along with (2.3)–(2.4) and (2.7)–(2.8) in the above
described dynamic mesh, we used the software OpenFOAM®, an open source Com-
putational Fluid Dynamics (CFD) package based on the Finite Volume Method. For
the spatial discretization, we used second order accuracy linear interpolation for the
diffusion term, and a Total Variation Diminishing (TVD) scheme, with a van Leer
limiter, for the convection term. This hybrid scheme is set in order to avoid numerical
oscillations in grid regions where local mesh Reynolds number is high (far field) and
convection dominates over diffusion. On the other hand, the temporal discretization
was performed by blending a second order Crank-Nicolson scheme with implicit Euler
integration, to ensure boundedness of the solution. Moreover, the pressure-velocity cou-
pling has been treated through the pressure-implicit split-operator (PISO) algorithm
(Issa, 1985), using a small temporal step to keep the maximum Courant number under
0.5. Finally, the integrals to compute the different forces’ coefficients were discretized
with second-order accuracy by using the midpoint rule in combination with linear in-
terpolation schemes.

We set an impulsively started flow past an ellipse located at the center of the domain
as initial conditions. Validation with results from previous works and convergence
analyses are given in Appendix B. In addition, a validation of the numerical results
against analytical results for CLa and CDa is given in Appendix A.

5.4 results and discussion

5.4.1 Flow characteristics for a fixed Sta and α = 0

We consider first the case Sta = 0.16 (i.e., J ' 1) with detail to discuss the different
flow structures as the heaving frequency (Stc) is varied and their effect in the thrust
power and efficiency. All the results are for Re = 500 and α = 0.

Figures 5.3 and 5.4 show the evolution in time of the different components of CD
and CL as well as the output (thrust) and input works and efficiencies as functions of
the successive strokes (n = tStc) for two frequencies: Stc = 0.5 and Stc = 0.9. Note
that CDa = 0 for α = 0 (see Appendix A) that is corroborated numerically with the
computed auxiliary potential φ. The “volumentric” efficiency defined as ηv = Wov/Wi

[compare with (5.11)], whereWo = Wov +Wos, withWov andWos computed integrating
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−CDv and −CDs, respectively, over a period of one stroke T = St−1
c . We can also define

a “surface” efficiency ηs = Wos/Wi, but it is not necessary because ηv + ηs = η.
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Figure 5.3: Different components of CD (a) and CL (b) vs. t for Re = 500, α = 0, Sta = 0.16,
and Stc = 0.5. (c) Input and output works, Wi and Wo, and efficiencies η and ηv
vs. the increasing number of strokes tStc for the same case.
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Figure 5.4: As in Fig. 5.3, but for Stc = 0.9.

For the first frequency (Fig. 5.3), the flow becomes periodic, and therefore, the differ-
ent works and efficiencies, which are integrated over a stroke, tend to constant values.
However, Fig. 5.3(a) shows that for the higher frequency Stc = 0.9, the flow never
reaches a periodic state with the heaving frequency, so that the works and efficiencies
never tend to constant values. In this particular case, the flow is not completely ape-
riodic: Fig. 5.4(c) shows that the flow reaches a quasi-periodic state, with a period of
four full strokes of the airfoil.

To analyze the main differences in the flow structure, we note first that CLa appearing
in (2.24) is always in phase and proportional to the airfoil heaving motion [in fact, it
is proportional to the vertical acceleration, as obtained analytically in (2.40)],

CLa = 2π3StcSta sin(2πStct) = 2π3St2cH(t). (5.16)

This expression corresponds to the added mass contribution to the lift, and it is
corroborated by using the auxiliary potential φ obtained numerically from (2.3) and
(2.4) (see Chapter 2; in fact, all the reported results are obtained numerically, not using
5.16 nor any of the other analytical expressions given in Chapter 2). Thus, this term
helps to compare the temporal oscillations of the other components of CL and CD with
the airfoil oscillations in Figs. 5.3 and 5.4 and subsequent similar figures. Note that
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5.22 is valid for any horizontal ellipse moving harmonically in the vertical direction,
independently of its thickness ε.

The oscillations of the two components of CD [Figs. 5.3(a) and 5.4(a)] have a fre-
quency twice that of the heaving motion due to the vortex formation and shedding
during each half stroke (see below), while the oscillations of the other two components
of CL have the same frequency as the heaving motion, but both with a substantial
phase shift. However, in the case of Stc = 0.9, these oscillations are not periodic like
in the case of Stc = 0.5, as already commented. It is also observed in Figs. 5.3(a)
and 5.4(a) that CDs is mostly positive, contributing to the drag, while CDv is mostly
negative, contributing to the thrust of the airfoil. But the overall effect is a net thrust
because the mean contribution of CDv is larger than that of CDs in both cases. This
is clearly seen in the positive values of Wo and η in both cases [Figs. 5.3(c) and 5.4(c)]
and in the fact that the volumetric efficiency ηv is also larger than the total efficiency
η in both cases (this means that ηs is obviously negative).

We observe in Fig. 5.5) (Stc = 0.5) that thrust is generated (δDv is negative; see
Subsec. 2.2.2 for its definition) during the formation of the LEV, especially in the first
part of each downstroke [Figs. 5.5(a)–5.5(d)] and each upstroke [Figs. 5.5(e)–5.5(h)],
and by the shedding TEV of the previous half stroke. Drag is generated (positive δDv)
during the formation of the TEV, especially in the first part of each downstroke and
each upstroke, and by the shedding LEV of the previous half stroke when captured
and stretched by the current half stroke.

The main difference of the case Stc = 0.9 (Fig. 5.6) is that most of the LEV generated
in each half stroke is not shed for this higher frequency. A significant fraction of the
LEV remains at the leading edge (LE), stretching and diffusing during the subsequent
half strokes, thus generating significantly less drag. Since the other thrust and drag
generating episodes remain practically the same, the total thrust work and efficiency
are larger for this higher frequency than for Stc = 0.5 [compare Figs. 5.3(c) and 5.4(c)].
A fraction of each LEV vorticity that is not diffused is eventually shed, joining the
TEV of the corresponding half stroke. This happens every four strokes in this case (see
multimedia view corresponding to Fig. 5.6), explaining the periodicity of four strokes
in Fig. 5.4(c).

Note that in both cases, a thrust-producing reverse-Kármán-vortex-street wake is
generated, as it was characterized experimentally by Jones et al. (1996) and by Lai and
Platzer (1999). To the generation of these vortices in the wake contributes both the
LEVs and the TEVs, as previously found numerically by Lewin and Haj-Hariri (2003)
and observed experimentally by Lua et al. (2007) also for a heaving, two-dimensional
elliptic airfoil.

Fig. 5.7 shows the mean values of the input and output works and efficiencies, W o,
W i, η, and ηv, as functions of the frequency Stc for the present case Sta = 0.16. For the
frequencies where the flow becomes periodic with the heaving frequency, these mean
values correspond to the asymptotic constant values ofWo,Wi , η, and ηv, respectively
[e.g., Fig. 5.3(c)]. For the remaining frequencies, we average these quantities over a
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Figure 5.5: Snapshots of ω (left panels) and of δDv (right panels) at several significative instants
of time within the same stroke (T = St−1

c denotes the non-dimensional period of
one stroke, starting from the beginning of the downstroke) for Sta = 0.16, Stc = 0.5,
Re = 500, and α = 0. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.
4926622.1]

sufficiently large number of strokes to get a mean value with an error less that 2.5 %
(see Sec.5.4.2). The oscillations in these quantities are characterized by their standard
deviations with error bars in Fig. 5.7. It is observed that in the present case Sta = 0.16,
the flow does not become periodic with the frequency of the heaving motion only for
Stc = 0.9 and 1.1. For these two frequencies, the flow is not aperiodic (chaotic), as it
happens for larger Sta (see below), but acquires a periodicity of several strokes (4 and
3, respectively). Therefore, averaging over these numbers of cycles is enough to obtain
accurately the mean values given in Fig. 5.7. More complex aperiodic motions will be
described in Secs. 5.4.2 and 5.4.3.

http://dx.doi.org/10.1063/1.4926622.1
http://dx.doi.org/10.1063/1.4926622.1
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Figure 5.7: Mean values of Wi (a), Wo (b), η and ηv (c) as functions of Stc for Sta = 0.16,
Re = 500, and α = 0.
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According to Fig. 5.7, the two frequencies analyzed above correspond to the max-
imum efficiency (Stc = 0.9) and to a local minimum (Stc = 0.5). As Stc augments
from 0.9, an increasing portion of the LEV generated in a previous half stroke moves
around the LE to the other part of the airfoil [see Fig. 5.8 for Stc = 1.2 and com-
pare with Figs. 5.6(g) and 5.6(h)], generating more drag, and thus reducing the total
thrust and mean efficiency in relation to Stc = 0.9. Although the mean “volumetric”
efficiency ηv never becomes negative as Stc increases [see Fig. 5.7(c)], i.e., the regions
with negative δDv always weight more than the regions with positive δDv, the global
efficiency becomes negative for Stc & 2 due to the surface contribution CDs, which
always contributes with a positive mean value (i.e., to the drag).
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Figure 5.8: Snapshots of ω (left panels) and of δDv (right panels) at the instant 3T /4 within
a stroke for Sta = 0.16, Stc = 1.2, Re = 500, and α = 0. (Multimedia view)
[URL: http://dx.doi.org/10.1063/1.4926622.3]
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Figure 5.9: Snapshots of ω (left panels) and of δDv (right panels) at the instant 3T /4 within
a stroke for Sta = 0.16, Stc = 0.4, Re = 500, and α = 0. (Multimedia view)
[URL: http://dx.doi.org/10.1063/1.4926622.4]

For Stc = 0.4, the efficiency presents a local maximum. The main difference with
the case Stc = 0.5 is that the LEV of each previous half stroke when Stc = 0.4 is
shed out from the airfoil before the end of the current half stroke (at 3T/8 and 9T/8,
approximately), thus generating drag during less time [see Fig. 5.9 and compare with
Figs. 5.5(g) and 5.5(h)], i.e., the shedding LEV does not generate drag during the full
second half of each half stroke, because in the final part, it is too far from the airfoil.
The other contributions remaining similar, this difference yields a larger output thrust
and efficiency than for Stc = 0.5. For 0.5 < Stc < 0.9, the flow is very similar to that
for Stc = 0.5, and W o remains almost constant. However, η increases with Stc because
the input work W i decreases with Stc (see Fig. 5.7). When Stc reaches the value 0.9,
approximately, the LEV remains attached to the LE, it is no longer completely shed

http://dx.doi.org/10.1063/1.4926622.3
http://dx.doi.org/10.1063/1.4926622.4
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during each stroke and the total thrust increases, as already explained above. The
mean thrust efficiency reaches a maximum at this frequency.

5.4.2 Thrust efficiency for α = 0

We summarize here the results for several values of Sta ranging from 0.12 to 0.24
(i.e., for 1.35 & J & 0.66) when α = 0 and Re = 500. As commented on above, in the
case that the flow does not become periodic with the same frequency as the heaving
motion, we average the integrated works Wi and Wo and the corresponding efficiencies
over a sufficiently large number of cycles n such that the relative error in the mean
efficiency η is smaller than 2.5%. For strongly aperiodic flows, the number of cycles n
needed may be quite large. For this reason, when the flow is aperiodic, we first average
over 300 cycles and check that the relative error is less than 2.5%. For instance, for
Sta = 0.24 and Stc = 1.4 (Fig. 5.10), this criterium is satisfied with n = 300 (Fig. 5.11).
If it is not so, we use larger values of n until the criterium is met, but that happens
only for a few number of cases among those reported here.
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Figure 5.10: Different components of CD (a) and CL (b) vs. t (only the last time interval
computed is shown) for Re = 500, α = 0, Sta = 0.24, and Stc = 1.4. (c) Input
and output works, Wi and Wo, and efficiencies η and ηv vs. the increasing number
of cycles n for the same case.

Figs. 5.12 and 5.13 showW o,W i, η, and ηv, as functions of the frequency Stc for the
four values of Sta considered. For the sake of clarity of the figures, we omit the error
bars that characterize the standard deviations of the mean values when the flow is not
periodic with the heaving frequency (the standard deviations are given later together
with a discussion on the periodic or aperiodic character of the flow in the different cases).
W i increases with Sta for a given Stc, and so does W o. The qualitative behavior of
these average works with Stc is quite similar for all Sta. Since W o has a pronounced
maximum when Stc is near unity for all Sta for which W o is positive (as already ex-
plained for Sta = 0.16 in Sec. 5.4.1), the maximum efficiency is reached when Stc is
close to unity and for a value of Sta around 0.2. More concretely, among all the case
computed here, the maximum efficiency (ηmax ' 9.3%) is reached for Stc = 0.8 when
Sta = 0.2 [Fig. 5.13(a)], which corresponds to a reduced frequency of k ' 5 and an
advance ratio J & 0.8. These values for optimal thrust in forward flight of a horizontal
2D heaving wing are in agreement with previous experimental and numerical works for
different airfoil geometries and Reynolds numbers as can be seen in Triantafyllou et al.
(1993), Triantafyllou et al. (1991), Lentink and Gerritsma (2003), Taylor et al. (2003),
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Figure 5.11: Average value of the efficiency η as a function of the number of cycles used for
computing the mean. Sta = 0.24, Stc = 1.4, Re = 500, α = 0.

Lewin and Haj-Hariri (2003), Wang (2000) and Young and Lai (2007))(note that the
Strouhal number St used in some of the cited experimental works is St = 2Sta). In
particular, Lewin and Haj-Hariri (2003) who used a different (more efficient) airfoil pro-
file for the same Reynolds number, found that the maximum efficiency (of about 11%)
is reached at practically the same frequency and amplitude: Stc ' 0.85 and Sta ' 0.19.
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Figure 5.12: W i and W o vs. Stc for the four values of Sta considered. Re = 500 and α = 0.

For a better characterization of the optimum values of the heaving frequency and
amplitude that generate the maximum average thrust efficiency, we plot in Fig. 5.14
the contours of constant η and constant ηv in the plane (Stc, Sta) using linear interpo-
lation of the numerical data contained in Fig. 5.13. It is observed that η is larger than
8.8% (top contour line in Fig. 5.14) in a region 0.79 ≤ Stc ≤ 0.9 and 0.19 ≤ Sta ≤ 0.22,
approximately, with the maximum value very close to the case Stc = 0.8 and Sta = 0.2
already commented on. This maximum of η corresponds to a flow that eventually be-
comes periodic with the heaving frequency, so that η = η. But the flow is aperiodic
for larger heaving frequencies when Sta = 0.2: As characterized in Fig. 5.15 by error
bars, the flow is no longer periodic for Stc1.5. To illustrate this, Fig. 5.16 compares the
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Figure 5.13: η and ηv vs. Stc for the four values of Sta considered. Re = 500 and α = 0.

efficiency η as a function of the number of cycles n = Stct for the frequencies Stc = 0.8,
Stc = 1.5, and Stc = 2, the first one corresponding to a periodic flow (actually, the
most thrust efficient one), the second one to an aperiodic flow, and the third one to
a quasiperiodic flow. As noted by Blondeaux et al. (2005), very long simulations are
needed in some cases to observe the chaotic flow, for sometimes it is preceded by a
long quasi-periodic flow. These different behaviors are better identified by using phase
diagrams of, for instance, CL vs. CD, for the fully developed flow [see Figs. 5.16(d)–
5.16(f)]. A limit cycle is reached for periodic and quasi-periodic flows, with several
frequencies in the later case, while the phase diagram is chaotic for aperiodic flows (for
the sake of clarity, only a few cycles are plotted in this later case).

The flow for the optimum case Stc = 0.8 with Sta = 0.20 is quite similar to that
described in Fig. 5.6(d) for the optimum case Stc = 0.9 when Sta = 0.16. The main
qualitative difference is that now (Sta = 0.20) the flow is periodic with the heaving
frequency, while for Sta = 0.16, the flow became periodic with a frequency four times
smaller than the heaving frequency. But both share the main characteristic that most
part of the LEV generated in each half stroke remains attached near the leading edge
during the subsequent half strokes, where it is stretched and diffused, so that a region
of positive thrust (δDv < 0) is always present around the LE, maximizing the thrust
efficiency. In the present case, a small fraction of the LEV generated in any half stroke,
which is stretched during the next one, splits and moves around the LE, being shed
during the following half stroke on the opposite airfoil surface and then joins and re-
inforces the TEV (of the same sign) corresponding to that half stroke (see Fig. 5.17).
Since this process repeats every cycle, the flow is periodic with the heaving frequency.

However, for the higher frequency Stc = 1.5 (Fig. 5.18), a large fraction of the LEV
generated in a previous half stroke moves around the LE to the other part of the airfoil,
as in Fig. 5.8 for Stc = 1.2 and Sta = 0.16, generating more drag and reducing the total
thrust and mean efficiency in relation to Stc = 0.8. But now, with the higher ampli-
tude and frequency of the oscillations, a given LEV is split several times in successive
half strokes, each fraction being convected downstream along one of the airfoil surfaces.
Since these LEV portions are not always of the same size in successive strokes, and
due also to their interactions with TEVs of equal and opposite sign, the flow becomes
chaotic [Fig. 5.16(e)] and the efficiency aperiodic [Fig. 5.16(b)]. This transition from
periodic to chaotic behaviors for sufficiently high frequencies and amplitudes has been
documented for the 2D flow over a plunging airfoil at low Re by several authors for
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Figure 5.15: W i (a), W o (b), η (c), and ηv (d) as functions of Stc for Sta = 0.20, Re = 500,
and α = 0. The error bars characterize the standard deviations of the mean values
when the flow is not periodic with the heaving frequency.

different airfoil geometries and Reynolds numbers (see Lentink and Gerritsma, 2003,
Lewin and Haj-Hariri, 2003, Blondeaux et al., 2005, Zheng and Wei, 2012 and Wei and
Zheng, 2014. Three-dimensional numerical simulations by Asraf et al. (2012) of the
flow over a plunging NACA0012 airfoil at a higher Re confirmed the chaotic behavior
of forces with the increase in plunging amplitude found from 2D analysis at the same
Re.

To finish this section, we characterize in a single plot (Fig. 5.19) the type of flow
for the different values Stc and Sta when α = 0 by the standard deviation of the
oscillations in η. This quantity is obviously zero when the flow is periodic with the
heaving frequency (marked with P in the figure) and different from zero both for
aperiodic flows (AP) and for periodic flows with a different frequency (PO).

5.4.3 Thrust efficiency for α 6= 0

To analyze the effect that a mean angle of attack α different from zero has on the
vortex structure of the flow and, consequently, on the thrust efficiency, we consider in
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Figure 5.16: (a)–(c) η vs. n = tStc, (d)–(f) phase diagrams of CL vs. CD, for Sta = 0.20,
Re = 500, α = 0, and Stc = 0.8 [(a) and (d)], Stc = 1.5 [(b) and (e)], Stc = 2 [(c)
and (f)].
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Figure 5.17: Snapshots of ω (a) and of δDv (b) at the instant T/2 within a stroke for Sta = 0.20,
Stc = 0.8, Re = 500, and α = 0. (Multimedia view) [URL: http://dx.doi.org/
10.1063/1.4926622.5]

this section several cases for Stc and Sta close to their values of maximum efficiency
when α = 0. Since the problem is symmetric with respect to α = 0, only values α ≤ 0
are considered.
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Figure 5.18: Snapshots of ω (a) and of δDv (b) at the instant T/2 within a stroke for Sta = 0.20,
Stc = 1.5, Re = 500, and α = 0. (Multimedia view) [URL: http://dx.doi.org/
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Figure 5.20: W i (a), W o (b), η (c), and ηv (d) as functions of α (in degrees) for Sta = 0.20,
Stc = 0.8, Re = 500. Circles correspond to periodic flows with the heaving fre-
quency. The error bars characterize the standard deviations of the mean values
when the flow is not periodic with the heaving frequency (squares correspond to
aperiodic flows and diamonds to quasi-periodic flows).

Fig. 5.20 shows the results as α varies from −10◦ to 0◦ for the case Sta = 0.20 and
Stc = 0.8, the most thrust efficient one when α = 0. It is observed that the largest
mean efficiency η remains for α = 0 and that the flow is no longer periodic with
the heaving frequency even for small |α|. In particular, the flow becomes aperiodic
for α = −2.5◦. This is because, compared to the flow with α = 0◦ (Fig. 5.17), the
trajectories of the split fractions of the LEV that move around the LE and are shed
on the opposite airfoil surfaces depend on whether the LEV was generated during the
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Figure 5.21: Snapshots of ω (a) and of δDv (b) at the instant T/2 within a stroke for Sta = 0.20,
Stc = 0.8, Re = 500, and α = −2.5◦. (Multimedia view) [URL: http://dx.doi.
org/10.1063/1.4926622.7]
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Figure 5.22: η vs. α (in degrees) for Sta = 0.20, Re = 500, and different values of Stc (as
indicated). Circles correspond to periodic flows with the heaving frequency, squares
to aperiodic flows, and diamonds to quasi-periodic or periodic flows with a different
frequency (the error bars characterizing the standard deviations of the mean values
are not shown for simplicity).

up- or the down-stroke. This up-down asymmetry generates a deflected wake and an
aperiodic flow (see Fig. 5.21). The flow remains aperiodic as |α| increases, becoming
quasi-periodic or periodic with a different frequency, for |α|= 7.5◦, and periodic again
for |α|= 10 (this is marked in Fig. 5.20 with different symbols).

We have repeated the computations as |α| increases for several values of Sta and
Stc. The results are summarized in Figs. 5.22–5.24. The trends are quite similar to
the case commented on above, with periodic flows for α = 0 in the cases of interest
(maximum averaged thrust efficiency), aperiodic for small |α|, becoming quasi-periodic
and periodic again as |α| increases in most cases. Also, for most Sta and Stc, the
maximum η takes place at α = 0. The situation is more irregular for the largest heaving
amplitude considered (Sta = 0.24, Fig. 5.24), where the flow may become aperiodic
or quasi-periodic for α = 0 or periodic for |α|= 0 small, depending on the value of
Stc. Finally, it is noteworthy that the most thrust efficient configuration among all the

 http://dx.doi.org/10.1063/1.4926622.7
 http://dx.doi.org/10.1063/1.4926622.7


62 vortex flow structures and interactions for the optimum thrust ef-
ficiency of a heaving airfoil at different angles of attack

−5 −2.5 0
0

1

2

3

4

5

6

7

α

η
(%

)

 

 

Stc =0.8
Stc =0.9
Stc =1

Figure 5.23: As in Fig. 5.22, but for Sta = 0.16.
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Figure 5.24: As in Fig. 5.22, but for Sta = 0.24.

cases considered corresponds to α = 0 when Sta = 0.2 and Stc = 0.8, a case described
with detail in Sec. 5.4.1.

5.5 conclusions

We have conducted 2D numerical simulations of the flow around a heaving elliptic
airfoil for different values of the mean angle of attack α, amplitude and frequency of
the heaving motion, Sta and Stc, and for a given low Reynolds number (Re = 500) of
interest in MAVs and insect flapping flight. The vortex force decomposition used in this
work yields analytic expressions for added-mass contributions to the lift and drag force
components for any heaving motion of the elliptic airfoil for any α. This circumstance
permits an additional validation of the numerical code. More importantly, the vortex
force formulation allows for a quantitative characterization of the thrust (or drag) and
lift force components exerted by any particular vortex structure of the flow on the
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airfoil. Basically, we find that thrust is mainly generated by the growing LEV during
the initial part of each half stroke and by the shedding TEV of the previous half stroke
when it is still near the airfoil. On the other hand, drag is mainly generated by the
growing TEV during the initial part of each half stroke and by the shedding LEV of the
previous half strokes (depending on the frequency and amplitude, Stc and Sta) when
stretched by the current half stroke. Using these mechanisms, we explain quantitatively
the configurations of maximum thrust efficiency in terms of vortex flow structure and
interaction. We find that for the present heaving elliptic airfoil at Re = 500, the
maximum thrust efficiency is reached for Sta ' 0.2 and Stc ' 0.8 with α = 0. This
configuration corresponds to a periodic flow with the heaving frequency. As another
interesting result we find that as |α| increases slightly from zero, this thrust efficient
flow becomes aperiodic and the average thrust efficiency decreases.

5.a appendix a: validation of the numerical code

To validate further the numerical code, we compare with several published results
and make a mesh convergence analysis for an extreme case among those considered in
this work.
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Figure 5.25: Comparison of CD (t) and CL (t) for an oscillating cylinder (ε = 1, Re = 185,
Sta = 0.308, Stc = 0.154) with the results by Guilmineau and Queutey (2002)
[their Fig. 10(a)]. Mesh = 120 × 100, ∆t = 0.002, Ro = 25. Absolute error
norm from the p−based formulation (CD , CL): ‖L‖∞ = (0.07, 0.0764) at
t = (63.52, 39.482).

Figs. 5.25–5.27 show the temporal evolutions of CD and CL for three cases: an os-
cillating cylinder (ε = 1) at Re = 185, an oscillating horizontal (α = 0) ellipse with
ε = 0.02 at Re = 83.2, and an oscillating horizontal ellipse with ε = 1/8 at Re = 1000.
They are compared with the numerical results by Guilmineau and Queutey (2002),
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Figure 5.26: Comparison of CD (t) and CL (t) for an oscillating ellipse (ε = 0.02, Re = 83.2,
Sta = 0.375, Stc = 25) with the results by Lentink and Gerritsma (2003)
(their Fig. 25). Mesh = 249 × 249, Ro = 25, CFLmax ≤ 0.5. Absolute error
norm from the p−based formulation (CD , CL): ‖L‖∞ = (0.0859, 0.6685) at
t = (10.3, 5.3246).

Lentink and Gerritsma (2003), Wang (2000), respectively. All these researchers vali-
date their numerical codes against some experimental results, and in the three cases,
we use the same meshes and time steps (when the information is available) as they
used in their computations (see figure captions). In spite of the very different numerical
methods used (for instance, these authors used non-inertial references frames moving
with the oscillating cylinder or ellipse), the agreement is quite good in all cases. In
particular, in the case of Fig. 5.27, the results are practically identical, including the
bifurcation in the evolution of CD at t ' 22.4.

In these plots, we have included the computations of CD(t) and CL(t) using both
pressure-based formulations (8) and (9) and vorticity-based formulations (12) and (13).
It is observed that the results are indistinguishable in all cases, thus validating further
the numerical implementation of the different integrals used for the computations of
these forces in both formulations. As an example, Fig. 5.28 shows the different com-
ponents of CD and CL in vorticity force decompositions (12) and (13) for the case
computed in Fig. 5.27.

Finally, to ascertain the effects of the grid refinement on the solution, we consider a
heaving ellipse with ε = 1/8 at Re = 1000 (which is twice the value used in the reported
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Figure 5.27: Comparison of CD (t) and CL (t) for an oscillating ellipse (ε = 1/8, Re = 1000,
Sta = 0.16, Stc = 0.5) with the results by Wang (2000) (Fig. 3 of this au-
thor). Mesh = 256 × 256, Ro = 5, CFLmax ≤ 0.5. Absolute error norm
from the p−based formulation (CD , CL): ‖L‖∞ = (0.2661, 1.6365) at t =
(3.6685, 4.023).

Mesh nθ nr Mesh nodes CL,max GCIi+1,i (%) Relative CPU time

#1 512 512 262 144 7.379 586 0.670 338 417 18.9
#2 362 362 131 044 7.396 075 1.028 742 892 9.2
#3 256 256 65 536 7.421 438 1.575 745 917 3.3
#4 181 181 32 761 7.460 419 . . . 1

Table 5.1: CL,max for a heaving ellipse with ε = 1/8 for Re = 1000, Sta = 0.16, and Stc = 0.637,
computed with four meshes of decreasing grid refinement (grid refinement ratio
ϕ =

√
2). Ro = 30 in all cases. Also shown is the grid convergence index (GCI ) as

introduced by Roache (1994), and the computation time relative to that using the
coarsest grid #4.

results of Sec. 5.4), Sta = 0.16 and Stc = 0.637 (corresponding to a periodic flow with
the heaving frequency). Table 5.1 shows the peak value of CL, once a permanent state
is reached, computed with four meshes of decreasing refinement, with a grid refinement
ratio for each coordinate ϕ =

√
2, a computational domain size Ro = 30, and a maxi-

mum Courant number less or equal than 0.5. Table 5.1 includes the grid convergence
index (GCI ) introduced by Roache (1994), which is a more conservative measure of
the relative error between the solution obtained on a given grid and the asymptotic
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Figure 5.28: Different components of CD (t) and CL (t) in vorticity-based formulations (12)
and (13) for the same case plotted in Fig. 5.27.
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Figure 5.29: CL,max computed with the different meshes described in Table 5.1 compared with
that obtained by the Richardson extrapolation (square), which can be considered
as an acceptable approach to the limit value calculated on a mesh with theoretically
zero grid spacing.

value than the estimated fractional error derived from the Richardson extrapolation.
Nonetheless, Fig. 30 shows the Richardson extrapolation together with the computed
values for decreasing grid refinement. From this grid convergence analysis, we select
the mesh #3 (256 × 256 grid points) for all the computations reported in the main
text, since the GCI is relatively low and the CPU time is about 6 times smaller than
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with the finest mesh #1.





6
CLOSURE

6.1 contributions of this thesis

The vortex force decomposition developed by Chang (1992), is employed in this
thesis to face computationally two aerodynamic problems using the open source code
OpenFOAM®. The main aim is to contribute to the understanding of the flow dynam-
ics present in low-Reynolds flapping-like MAVs.

A brief description of the formulation is first introduced in Chapter 2, to be later
characterized for each one of the problems studied in Chapters 4 and 5. The unusual
and novel discussion of the results from the point of view of the vortex force decompo-
sition is the most relevant contribution of this dissertation. According to Chang (1992),
the aerodynamic coefficients can be decomposed into accelerating, rotational, volumet-
ric and superficial contributions. Some conclusions are drawn at the end of the cited
Chapters taking advantage of this decomposition.

On the other hand, a summary of the OpenFOAM® framework and the Finite Vol-
ume Method is given in Chapter 3. As an example, the reader can figure the software
abilities and examine a relevant part of the code used in this thesis.

In Chapter 4, numerical simulations are conducted to investigate the Magnus Effect
following the formulation by Chang (1992). Two cases are studied: (i) an accelerating
cylinder starting from rest to a given velocity with constant angular velocity, and (ii) a
constant inlet flow around a spinning cylinder accelerating from rest to a given angular
velocity. It is concluded that, especially for the case of lift, the main contribution comes
from the volume elements and it is quantified and compared for different configurations
of (i) and (ii).

In Chapter 5, the optimal thrust efficiency for a 2D flapping foil in a uniform flow
is analyzed numerically in terms of the formulation of Chang (1992). In that case it is
found that the maximum thrust efficiency is reached for Sta ' 0.2 and Stc ' 0.8, when
α = 0. This configuration is explained quantitatively in terms of vortex flow structures
and their interactions between themselves and the flapping foil.

Another contribution of this thesis is the implementation of the different magnitudes
appearing in the formulation of Chang in the OpenFOAM® framework. Thus, for each
problem faced in this thesis, it is possible to access the value of every contribution to
the aerodynamic forces in each time step and, therefore, to the corresponding temporal
evolution.

69
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6.2 future work

The natural next step following the present work is to use the vortex force decompo-
sition of Chang (1992), within the OpenFOAM® code, to analyse the lift and thrust of
more complex configurations such as a flapping foil with pitching and heaving motions,
and the interaction between two or more flapping and pitching wings (tandem flight).

However, the deforming mesh employed to perform a sinusoidally vertical motion
in Chapter 5 ceases to be valid when more complex kinematics and larger amplitudes
are considered, or when several moving bodies take part in a same problem. It would
generate strong cell deformations and a high skewness ratio within the computational
mesh, which could affect the stability of the simulations and the accuracy, enormously.

More versatile methods such as the Immersed Boundary Method (see e.g. Peskin,
1972, Peskin, 2002, Uhlmann, 2005, Mittal and Iaccarino, 2005, Taira and Colonius,
2007 and Pinelli et al., 2010), are proposed in order to be associated with the formula-
tion of Chang (1992). The Immersed Boundary Method was first introduced by Peskin
(1972) and a large amount of modifications and improvements have been achieved since
then. In this method a surface lagrangian mesh is immersed in a background eulerian
grid and the presence of the immersed body is taken into account by means of a ficti-
tious body force introduced in the Navier–Stokes equations.

The Immersed Boundary Method is a mesh-free method which can be modeled
regardless of the equations discretization approach chosen (Finite Volume, Finite El-
ement or Finite Difference Methods). But it suffers from accuracy when compared
with a conformal mesh mostly due to the violation of the non-slip condition on the
body surface as stated by Breugem (2012) and by Kempe and Fröhlich (2012). These
authors proposed an additional corrector loop to deal with the non-slip restriction to
converge the velocity field before solving the Poisson problem in the solution of the
Navier–Stokes equations in primitive variables. Another solution is proposed by Lech-
ner and Kuhlmann (2011), based on the work of Taira and Colonius (2007). These
solutions can however affect the code efficiency due to the convergence of an additional
constraint.

Another and more efficient solution when dealing with the Immersed Boundary
Method lies in formulating it along with the Lattice Boltzmann equations (Immersed
Boundary–Lattice Boltzmann Method). These equations also govern a fluid flow with
the advantage of not presenting coupled variables, being a second-order method (more
information can be found in Succi, 2001). Some of the more recent works using this
method applied to flapping flight aerodynamics are Inamuro (2012), Rosis et al. (2014),
Favier et al. (2014), Minami et al. (2014), Wu and Shu (2015), Wang et al. (2015), Ro-
sis and Lévêque (2015), Rosis (2015), and Suzuki et al. (2015).

Finally, after improving the efficiency and accuracy in the Immersed Boundary
Method, the study of three-dimensional problems is as well suggested as a future work.
In fact, this extrapolation would be straightforward when a deforming mesh such as
the one used in Chapter 5 is used. Nevertheless, for the sake of clarity and efficiency
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when analyzing the flow structures according to the formulation by Chang (1992), only
2D problems have been considered in this thesis. As an example, the wing-tip vortex
contribution to the drag and lift coefficients could be understood as well as its inter-
actions with the LEV and TEV. The same procedure can be followed to study from
the point of view of the formulation of Chang (1992) another relevant static problems
such as the three-dimensionality in a 3D spinning cylinder, or even simpler: the flow
around a bluff body.





A
APPENDIX : RESUMEN EXTENDIDO

a.1 introducción

La aerodinámica no estacionaria de alas batientes a bajos números de Reynolds –en
el rango de interés de pequeños insectos voladores– ha sido fruto de numerosos estudios
tanto teóricos, como numéricos o experimentales. Muchos de estos estudios han venido
motivados por la identificación de los mecanismos del flujo por los cuales las fuerzas de
sustentación son mucho mayores que las predichas por la teoría quasi-estacionaria, y
de los mecanismos que generan las fuerzas de propulsión o empuje. Tradicionalmente,
estos estudios se han centrado en la investigación de la biomecánica de los insectos
(y pequeños pájaros y mamíferos) voladores (ver e.g. Maxworthy, 1981; Dudley, 2000;
Sane, 2003 and Wang, 2005). Pero en los últimos años, el interés en el estudio de la
aerodinámica de alas batientes ha experimentado un enorme crecimiento que ha venido
motivado por el diseño de Micro-Vehículos Aéreos (MAVs, siglas en inglés). Estos ve-
hículos han ido haciendo uso del conomiciento generado en el campo de la aerodinámica
de animales para su desarrollo (Ellington, 1999; Mueller, 2001; Pines and Bohorquez,
2006; Ansari et al., 2009 and Jones and Platzer, 2009).

Así pues, el tema central de esta tesis es el análisis de las fuerzas aerodinámicas
en problemas no estacionarios a números de Reynolds relativamente bajos, haciendo
uso de la descomposición de fuerzas mediante vórtices desarrollada originalmente por
Chang (1992). Esta formulación proporciona de manera cuantitativa la contribución de
cada vórtice a los coeficientes aerodinámicos en cada instante (ver e.g. Lee et al., 2012
and Martín-Alcántara et al., 2015). De esta manera es posible identificar los mecanis-
mos involucrados en la propulsión y en la sustentación para ser utilizados en el diseño
y desarrollo de MAVs. Para demostrar la eficacia de este nuevo enfoque se ha decidido
aplicarlo al estudio de dos problemas clásicos de la mecánica de fluidos.

Por otra parte, los orígenes de los micro-vehículos aéreos datan de alrededor de
1997 (Ansari et al., 2006). Desde entonces, aunque se ha demostrado que las escalas
pequeñas de los vehículos ya existentes son válidos en escenarios exteriores, su falta
de eficiencia y efectividad en interiores. Por ejemplo, un modelo de avión carece de
maniobravilidad en espacios cerrados y necesitaría grandes distancias para despegar
y aterrizar. Sin embargo, un modelo de helicóptero (con una o más hélices) tiene la
ventaja de su agilidad en estos escenarios pero es ruidoso e ineficiente. Por el contrario,
los micro-vehículos de alas batientes son mucho más eficientes y ágiles que los modelos
anteriores, pero equiparlos con una fuente de energía duradera es todo un reto. En
el desarrollo de los micro-vehículos aéreos, el principal objetivo is predecir cuantita-
tivamente el comportamiento de los fenómenos físicos que ocurren durante el vuelo,
siendo el vehículo capaz de maniobrar cuando sea necesario para poder mantener un
vuelo estable. Así pues, se requiere tener un completo conocimiento de la dinámica
del flujo que aparece en este tipo de vuelos. Los trabajos que se estudian en esta tesis
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pretenden aclarar el estudio de los mecanismos del dlujo así como de las interacciones
entre vórtices inherentes al vuelo de alas batientes, de manera que sea de utilidad e.g.
cuando un micro-vehículo aéreo de alas batientes necesite volar en un modo óptimo de
propulsión o generar una determinada sustentación.

Para lograr este objetivo se han estudiado computacionalmente dos problemas aerod-
inámicos mediante el software OpenFOAM®. Este software es un código abierto basado
en el lenguaje de programación C++, por lo que ofrece toda la flexibilidad y eficiencia
de un lenguaje orientado a objetos (OOP, del inglés Object Oriented Programming).
Como aportación fundamental de la tesis, y a modo de ejemplo de la versatilidad que
ofrece OpenFOAM®, hay que remarcar que el cálculo de las diferentes contribuciones
de la formulación de Chang (1992), en la que se basa esta tesis, ha sido implemen-
tado apropiadamente en este software mediante la utilización de functionObjects
(ver e.g. Stroustrup, 2013, OpenCFD, 2014 and Marić et al., 2014). De esta manera, se
puede tener acceso a las diferentes contribuciones en cualquier instante ya que todas
las magnitudes son calculadas durante el runTime de las simulaciones, con un coste
computacional prácticamente inapreciable ya que se han utilizado mallas 2D.

El primero de estos problemas se aborda en el Capítulo 4 y se basa en el estudio
del Efecto Magnus. Es bien conocido en aerodinámica y aeronaútica el interés en la
generación de fuerzas de sustentación mediante Efecto Magnus en un cilindro que gira
(Seifert, 2012). Por ello, se utiliza como un modelo relativamente simple para tratar
de entender la generación, reducción o supresión de la sustentación y resistencia en
flujos no estacionarios asociados con superficies sólidas en movimiento. Tanto para
geometrías como para movimientos más complejos se trata de una tarea difícil dadas
las intrincadas estructuras del flujo tridimensional asociado. Sin embargo, las estruc-
turas bidimensionales del flujo alrededor de un cilindro que gira, para un número de
Reynolds relativamente bajo, resultan más sencillas de analizar. En este problema se
estudian numéricamente dos efectos transitorios: (i) un cilindro que se acelera desde el
reposo cuando gira a una velocidad angular constante, y (ii) un cilindro que se traslada
a velocidad constante y se acelera rotacionalmente desde el reposo. Para identificar los
vórtices asociados a la generación y desarrollo de la sustentación y resistencia se ha
utilizado la formulación desarrollada por Chang (1992), ya utilizada en otros modelos
simples (e.g. Hsieh et al., 2009, Hsieh et al., 2010, Lee et al., 2012). Esto es incluso más
interesante en el caso de un cilindro que gira y se traslada ya que la sustentación puede
incrementarse sustancialmente al aumentar el grado de rotación, pudiendo cambiar
también su régimen de oscilatorio a estacionario, mientras que la resistencia puede
disminuir sustancialmente hasta casi desaparecer; por ello se pueden llegar a distin-
guir las estructuras que generan sustentación de aquellas que reducen la resistencia.
Este enfoque podría ser de aplicación para entender los mecanismos de mejora de la
sustentación y reducción de la resistencia en cuerpos con formas más complejas, espe-
cialemnte en cuerpos que giran (e.g. Jimémenez-González et al., 2013).

El segundo de los problemas (Capítulo 5) se basa en el estudio de la propulsión óp-
tima de un perfil alar de forma elíptica que ejecuta un movimiento de batida sinusoidal
en un flujo bidimensional, laminar e incompresible. Así, este problema se centra en la
generación de la propulsión de un ala batiente a números de Reynolds bajos, en con-
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creto en la caracterización de las estructuras de los vórtices responsables de la máxima
eficiencia de empuje para los rangos de frecuencias y amplitudes adimensionales de las
oscilaciones. Se considera un flujo bidimensional, laminar e incompresible, alrededor de
un perfil que bate verticalemente con diferentes ángulos de ataque. Este problema tan
simplificado, únicamente con movimiento de batida vertical, ha sido considerado por
muchos como un modelo simple y apropiado para entender los mecanismos del flujo
responsables de la generación de la propulsión en el vuelo y en el nado de las especies
mediante alas/aletas batientes. Desde hace mucho tiempo se conoce que el empuje neto
está caracterizado por la inversión de las calles de von Kármán que aparecen tras el ala
batiente (Kármán and Burgers, 1935 and Bratt, 1950), donde se desarrollan vórtices
que giran en sentido contrario a la dirección natural de los vórtices que se producen
en las calles de von Kármán originales, y que generan resistencia. En muchas formas
de propulsión utilizadas por especies marinas, se han identificado diferentes tipos de
patrones de vórtices (ver e.g., Wu, 1961, Lighthill, 1969 and Lighthill, 1970). Además,
en muchos de los mecanismos de propulsión propuestos, el vórtice que se genera en el
borde de entrada (LEV, del inglés Leading-Edge Vortex) durante las batidas juega un
papel fundamental en este aspecto. Es de sobra conocido que los elevados coeficientes
de sustentación que caracterizan el vuelo de la mayoría de los insectos, se deben a la
aparición de zonas de baja presión dentro del LEV que se ha desarrollado temporal-
mente durante la batida tras un cambio repentino en el ángulo de ataque local (ver
Lighthill, 1975, Maxworthy, 1979, Dickinson and Götz, 1993, Ellington et al., 1996,
Liu et al., 1998, Sane and Dickinson, 2001, Minotti, 2002, Maxworthy, 2007, Shyy and
Liu, 2007 and Pitt and Babinsky, 2013). Para optimizar este efecto, la mayoría de los
insectos vuelan al límite de la entrada en pérdida dinámica, generando un prominente
LEV. La relevancia del LEV en la elevada eficiencia de propulsión de un movimiento
de batida vertical se comenzó a estudiar mediante modelos simples relacionados con el
nado de peces, tal y como demostraron Streitlien et al. (1996), Anderson et al. (1998)
and Triantafyllou et al. (2000). Para entonces ya se conocía que la eficiencia de gen-
eración del empuje en un ala batiente venía dada por un número de Strouhal basado en
la amplitud y frecuencia de las oscilaciones (Sta definido en Sec. 5.2) (véase Triantafyl-
lou et al., 1993, Jones et al., 1996 and Lai and Platzer, 1999). Para Sta muy bajos,
por debajo de un valor de 0.03, aproximadamente, el ala batiente únicamente produce
resistencia como demostraron Lai and Platzer, 1999. Para mayores frecuencias y una
amplitud dada, cuando Sta ∼ 0.06, se produce una propulsión neta que es generada por
la inversión de los vórtices de las calles de von Kármán que aparecen durante la batida
del ala, como concluyeron Jones et al., 1996, Lai and Platzer, 1999 and Koochesfahani,
1989. Tanto los resultados numéricos como los experimentales demuestran que en un
amplio rango de números de Reynolds (definido en Sec. 5.2), la eficiencia óptima para
la generación de la propulsión se alcanza en un intervalo de valores intermedios de Sta,
entre 0.12 y 0.20 aproximadamente, que es el seleccionado para el nado y vuelo por un
gran número de especies (Triantafyllou et al., 1993, Triantafyllou et al., 1991, Lentink
and Gerritsma, 2003 and Taylor et al., 2003). En relación a este hecho, Theodorsen,
1935 y Garrick, 1936 comprobaron que los resultados experimentales son muy difer-
entes a los que ofrece la teoría potencial para oscilaciones de pequeña amplitud, que
predicen que la eficiencia de la propulsión se maximiza cuando la frecuencia de batida
tiende a cero, de donde se comprueba la especial relevancia de los efectos viscosos al
modelar la propulsión que genera un ala batiente para ciertos números de Reynolds
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de interés. Esta frecuencia de batida que optimiza el empuje se ha relacionado con
la frecuencia de mayor amplificación espacial de la estela, según los estudios de esta-
bilidad lineal del perfil de velocidades medias en la misma (Triantafyllou et al., 1993
and Lewin and Haj-Hariri, 2003), y con la frecuencia natural de desprendimiento de
vórtices en el ala (Lentink and Gerritsma, 2003). Este rango de frecuencias que se ha
observado en la propulsión biológica también se ha relacionado con el rango de tiempo
adimensional que limita el desarrollo óptimo de vórtices en un ala batiente.

Por último, el núcelo de esta tesis es el análisis de las fuerzas aerodinámicas para
problemas no estacionarios a números de Reynolds relativamente bajos, utilizando la
descomposición de fuerzas de Chang (1992). Esta formulación proporciona la contribu-
ción cuantitativa de cada vórtice del flujo a los coeficientes de las fuerzas aerodinámicas
en cada instante de tiempo (ver Lee et al., 2012 y Martín-Alcántara et al., 2015). De esta
forma, es posible explicar con más detalle los mecanismos que generan la sustentación y
la propulsión para que puedan ser aplicados en el diseño de los micro-vehículos aéreos.

a.2 conclusiones

En esta tesis se ha utilizado la descomposición de fuerzas en términos de vortici-
dad desarrollada por Chang (1992) para abordar computacionalmente los problemas
aerodinámicos presentes en los Capítulos 4 y 5. El interés principal de esta formulación
radica en su aplicación a la hora de tratar de entender la dinámica del flujo presente
en micro-vehículos aéreos (MAVs, del inglés Micro-Air Vehicles) a bajos números de
Reynolds. Así pues, en la presente tesis se presentan dos problemas de aplicación rela-
cionados con la aerodinámica no estacionaria analizada desde el punto de vista de la
formulación de Chang (1992), permitiendo entender la física ambos problemas desde
una perspectiva novedosa. El primer problema se plantea como un ejemplo de apli-
cación de dicha formulación integrada numéricamente en el software OpenFOAM®,
mientras que el segundo se trata un ejemplo de aplicación directamente relacionado
con la aerodinámica de MAVs.

En primer lugar, en el Capítulo 2 se ha llevado a cabo una descripción general de la
formulación anterior que posteriormente se ha adaptado a cada uno de los problemas
que se estudian en los Capítulos 4 y 5. La principal contribución de este documento se
basa en la novedosa discusión de los resultados desde el punto de vista de la descomposi-
ción de fuerzas mediante vórtices. Según Chang (1992), los coeficientes aerodinámicos
pueden descomponerse en contribuciones de aceleración, rotacionales, volumétricas y
superficiales. Al final de los citados Capítulos pueden encontrarse conclusiones desde
el punto de vista de esta descomposición.

Por otra parte, en el Capítulo 3 puede encontrarse una breve descripción del paquete
OpenFOAM® y el Método de los Volúmenes Finitos (FVM, del inglés Finite Volume
Method). A título de ejemplo, el lector puede hacerse una idea de las posibilidades que
ofrece este software a la vez que examina un fragmento del código utilizado para las
simulaciones llevadas a cabo en esta tesis.
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En el Capítulo 4, se ha analizado la estructura del flujo alrededor de un cilindro
que gira y se traslada, con el objetivo de indentificar y cuantificar las estructuras que
contribuyen a las fuerzas de sustentación y de resistencia. Se han considerado dos
situaciones diferentes a Re = 200: un cilindro desplazándose a velocidad constante que
empieza a girar hasta alcanzar una relación de giro adimensional α (i), y un cilindro
inicialmente rotando en un fluido en reposo con una relación de giro α, que comienza
a trasladarse hasta alcanzar una velocidad correspondiente a Re = 200 (ii). En ambos
casos se han considerado las relaciones de giro α = 1 y α = 3. Para este análisis se ha
utilizado una formulación que cuantifica la contribución de las diferentes estructuras
de vórtices que envuelven al cuerpo a las fuerzas aerodinámicas (Chang, 1992). Se ha
comprobado que, especialmente en el caso de la sustentación, la principal contribución
proviene de los elementos de volumen. La formulación puede utilizarse sin modificación
alguna para casos transitorios más complejos que (i) o (ii), pero los resultados serían
cualitativamente muy parecidos dado que las velocidades de rotación y traslación au-
mentan monótonamente. De hecho, se presentan para diferentes valores del término de
aceleración q, y se comprueba que no difieren significativamente unos de otros ya que
los citados mecanismos que generan la sustentación o la resistencia son prácticamente
los mismos.

En general, la principal contribución a la sustentación se genera, como se esperaba,
mediante el desarrollo del vórtice superior que se encuentra en la zona frontal de la
superficie del cilindro, donde se genera una zona de baja presión. Sin considerar la
rotación del cilindro (α = 0), esta contribución se compensa con el efecto contrario
que produce el vórtice inferior que gira en sentido opuesto al superior, por lo que la
sustentación media se anula cuando el flujo se desarrolla por completo y se alcanza
el régimen periódico. La oscilación en la evolución temporal de la sustentación viene
dada por el desprendimiento de vórtices.

Cuando el cilindro gira a un régimen moderado (α = 1), todavía aparece una fuerza
de sustentación que oscilla cuando el flujo se ha desarrollado por completo, y que tam-
bién se debe al desprendimiento de vórtices en el cilindro. Pero ahora el valor medio de
la sustentación se vuelve positivo (para un cilindro girando en sentido horario) ya que
la rotación del cilindro refuerza el vórtice superior –que gira en sentido horario–, mien-
tras que el vórtice inferior –que gira en sentido contrario– se debilita y se desprende
ligeramente del cilindro, por lo que los valores máximos y mínimos de la sustentación
son positivos para α = 1. Para una mayor velocidad de rotación (α = 3), la región de
vorticidad positiva que envuelve al cilindro durante su rotación (en sentido horario) es
capaz de suprimir el desprendimiento de vórtices, por lo que la sustentación se hace
constante cuando el flujo se ha desarrollado por completo. Además, en este caso la
sustentación también es mayor ya que tanto el vórtice inferior, que permanece ad-
herido, como el superior que gira en sentido contrario al anterior, son atrapados por
la región de vorticidad que envuelve al cilindro, contribuyendo de manera positiva a
la sustentación. Esta interacción también reduce drásticamente la resistencia debibo a
las zonas de presión positiva que aparecen en la parte posterior del cilindro. La princi-
pal diferencia que se aprecia en la configuración (ii), en este caso con mayor grado de
rotación (α = 3), es que el flujo completamente desarrollado con mayor sustentación
y menor resistencia, ambas de valor constante, se alcanza más rápidamente ya que la
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capa de vorticidad positiva que envuelve al cilindro está presente cuando el cilindro
comienza a trasladarse suprimiéndose el desprendimiento de vórtices inicial. Sin em-
bargo, en esta configuración el efecto transitorio de la resistencia es significativamente
mayor debido a la aceleración en la traslación del cilindro, la cual añade un término
de resistencia adicional que refuerza la resistencia positiva que originan los elementos
de volumen.

Además, es importante destacar que la formulación de fuerzas en términos de vor-
ticidad que se ha utilizado en este trabajo puede extenderse directamente a flujos
tridimensionales para mayores valores de α que los considerados en el presente estudio.
Recientes investigaciones (ver A.1) han estudiado la estructura y estabilidad de este
tipo flujos. Pero el estudio de flujos tridimensionales se encuentra fuera del alcance
del presente trabajo ya que la formulación haría perder la simplicidad del flujo 2D
alrededor de un cilindro que gira al tratar de entender el desarrollo de la sustentación
y resistencia en términos de contribución de vórtices, que es el principal objetivo del
Capítulo 4, y de la tesis. En el flujo 2D los potenciales auxiliares son simples funciones
analíticas, y las contribuciones de los diferentes elementos fluidos a las fuerzas de sus-
tentación y resistencia pueden analizarse de una manera mucho más directa.

Por otra parte, en el Capítulo 5, se han llevado a cabo simulaciones numéricas 2D
de un flujo alrededor de un ala batiente de geometría elíptica para diferentes valores
de ángulo de ataque medio α, amplitud y frecuencia del movimiento de batida, Sta y
Stc; para un número de Reynolds dado (Re = 500) de interés en MAVs y en el vuelo
con alas batientes. La descomposición de fuerzas mediante vórtices que se ha utilizado
en este trabajo ofrece expresiones analíticas que permiten calcular las contribuciones
del término de masa añadida a las fuerzas de sustentación y resistencia, para cualquier
movimiento de batida del perfil elíptico, y para cualquier α. Este hecho permite una
validación adicional del código numérico. Es más, la formulación de la fuerza en térmi-
nos de vorticidad permite caracterizar la propulsión (o resistencia) y la sustentación
que cualquier vórtice del flujo ejerce sobre el ala. Básicamente, se observa que la propul-
sión se genera principalmente por el LEV que se origina durante la fase inicial de cada
semibatida y por el TEV que se desprende de la semibatida anterior cuando todavía
se encuentra cerca del perfil. Por otra parte, la resistencia se genera principalmente
por el TEV que nace en la fase inicial de cada semibatida y por el LEV que se ha
desprendido en las semibatidas anteriores (ésto depende de la frecuencia y la amplitud,
Stc y Sta) cuando la semibatida actual lo presiona con su movimiento. Utilizando estos
mecanismos, se explican las configuraciones de máxima eficiencia en la propulsión en
términos de estructuras de vórtices en el flujo y su interacción. Se ha comprobado que
para el ala elíptica del estudio a Re = 500, la eficiencia máxima en la propulsión se
alcanza para Sta ' 0.2 y Stc ' 0.8 con α = 0. Esta configuración corresponde a un
flujo periódico con la misma frecuencia que la de batida. Otro resultado interesante es
que a medida que |α| aumenta ligeramente desde cero, la eficiencia de propulsión se
vuelve aperiódica y su valor medio disminuye.

Por último, hay que mencionar que las diferentes magnitudes que intervienen en la
formulación de Chang (1992) se han implementado en el entorno de OpenFOAM® para
cada uno de los problemas aerodinámicos que se abordan en esta tesis, por lo que es
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posible acceder al valor de cada contribución en cada instante de tiempo y, desde luego,
a la evolución temporal completa.

a.3 trabajo futuro

Como se ha comentado anteriormente, la principal contribución de esta tesis es la
utilización de la descomposición de la fuerza mediante vórtices de Chang (1992), in-
tegrada en el entorno de OpenFOAM®, para llevar a cabo estudios relacionados con
problemas de cuerpos móviles a bajos números de Reynolds.

En primer lugar, se ha comprobado la validez de esta formulación para estudiar un
problema basado en el Efecto Magnus en el Capítulo 4, donde se ha utilizado una malla
estática y se ha impuesto una velocidad azimutal a la superficie del cilindro. Luego,
para abordar el problema del Capítulo 5 se ha utilizado una malla deformable para
poder ejecutar un movimiento sinusoidal puramente vertical, aunque este método deja
de ser válido cuando se tienen en cuenta cinemáticas más complicadas, movimientos
de mayor amplitud y múltiples cuerpos que se mueven. Esto daría lugar a importantes
deformaciones y elevados coeficientes de asimetría en las celdillas de la malla, lo que
podría afectar enormemente a la estabilidad y precisión de las simulaciones.

Por esta razón, se propone para el futuro el uso de métodos más versátiles tales
como el Método del Contorno Inmerso (del inglés, Immersed Boundary Method, ver
e.g. Peskin, 1972, Peskin, 2002, Uhlmann, 2005, Mittal and Iaccarino, 2005, Taira and
Colonius, 2007 and Pinelli et al., 2010) para integrarlo junto con la formulación Chang
(1992). Este método lo presentó por primera vez Peskin (1972) y, desde entonces, ha
sufrido una gran cantidad de modificaciones y mejoras. En una malla base se superpone
la malla superficial del objeto, que se tiene en cuenta mediante un término de fuerza
ficticia que se introduce en las ecuaciones de Navier–Stokes.

El Método del Contorno Inmerso es un método mesh-free (libre de malla) que puede
modelarse independientemente del tipo de método de discretización de las ecuaciones
que se haya elegido (e.g., Método de los Volúmenes Finitos, de los Elementos Finitos,
o de las Diferencias Finitas). Pero al igual que cualquier otro método, el Método del
Contorno Immerso también tiene sus limitaciones. Una de ellas, se debe a la falta de
precisión cuando los resultados que ofrece este método se comparan con los obtenidos
con una malla conforme. Sin embargo, la limitación más importante recae en la vio-
lación de la condición de no deslizamiento sobre la superficie del cuerpo, como concluyen
Breugem (2012) y Kempe and Fröhlich (2012). Para paliar esta limitación, estos autores
proponen un bucle corrector adicional para converger el campo de velocidades antes
de resolver la ecuación de Poisson para la presión cuando se resuelven las ecuaciones
de Navier–Stokes en variables primitivas. Otra solución es la propuesta por Lechner
and Kuhlmann (2011) basada en el trabajo de Taira and Colonius (2007). Todas estas
propuestas pueden afectar la eficiencia del código dada la necesidad de converger las
restricciones adicionales que incluyen.

Otra solución más eficiente cuando se utiliza el Método del Contorno Inmerso es su
integración en las ecuaciones de Lattice Boltzmann. Estas ecuaciones también gobier-
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nan el comportamiento de un flujo con la ventaja de que sus variables no se encuentran
acopladas, siendo éste, además, un método de segundo orden (más información en Succi,
2001). Algunos de los trabajos más recientes que usan este enfoque y lo aplican a la
aerodinámica de alas batientes son e.g., Rosis et al. (2014), Favier et al., 2014 y Suzuki
et al. (2015).

Por último, después de mejorar la eficiencia y la precisión del Método del Contorno
Inmerso, se sugiere también, como trabajo futuro, el estudio de problemas tridimen-
sionales. De hecho, esta extrapolación es ya directa cuando se utiliza el método de la
malla deformable, como en el Capítulo 5, para imponer el movimiento de objetos en la
malla. Sin embargo, no se ha tenido en cuenta en la presente tesis por preferir abordar
inicialmente problemas bidimensionales por razones de claridad en la identificación de
estructuras al utilizar la formulación de Chang (1992), además de por razones de coste
computacional. Por ello, el enfoque de Lattice Boltzmann sería el más recomendable
por razones de eficiencia. A título de ejemplo, podrían estudiarse las contribuciones
del vórtice que se desarrolla en la punta del ala a los coeficientes de sustentación y
resistencia, así como su interacción con los vórtices generados en los bordes de entrada
y de salida del perfil. También serían de interés otros problemas tridimensionales tales
como la tridimensionalidad de los vórtices en un cilindro que gira, o incluso más sim-
ple: un flujo alrededor de un cuerpo dado; estudiados desde el punto de vista de la
formulación de Chang (1992).
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Involvement: Oral presentation and publication.
Location: Pittsburgh, PA (USA).
Date: Nov. 2013.

other information

2015 · Attendance to an OpenFOAM R© training

2014 · Assistant in the 10th ERCOFTAC conference.

2011 · Best Master thesis in the University of Jaén.Awards

Spanish · Mothertongue.Languages

English · Intermediate.

3



French · Intermediate.

Italian · Basic (simple words and phrases only)

Guitar · Ukulele · Travelling · SportInterests

January 25, 2016

4


	Certificado
	Dedication
	Agradecimientos
	Abstract
	Resumen
	Publications
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation and objectives
	1.2 Thesis outline

	2 Contribution of fluid elements to the lift and drag coefficients: a projection method
	2.1 Introduction
	2.2 Mathematical formulation
	2.2.1 Detailed formulation of the problem studied in Chapter 4 
	2.2.2 Detailed formulation of the problem studied in Chapter 5 

	2.3 Concluding remarks

	3 OpenFOAM® and the Finite Volume Method
	3.1 Introduction
	3.2 The Finite Volume Method in OpenFOAM®
	3.2.1 Domain discretization
	3.2.2 Equation discretization

	3.3 The icoFoam solver and the PISO algorithm
	3.4 Concluding remarks

	4 On the development of lift and drag in a rotating and translating cylinder
	4.1 Introduction
	4.2 Formulation of the problem
	4.3 Numerical method
	4.4 Results and discussion
	4.4.1 Preliminary study for =0
	4.4.2 Case (i)
	4.4.3 Case (ii)

	4.5 Concluding remarks

	5 Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack
	5.1 Introduction
	5.2 Formulation of the problem
	5.3 Numerical method
	5.4 Results and discussion
	5.4.1 Flow characteristics for a fixed St_a and =0
	5.4.2 Thrust efficiency for =0
	5.4.3 Thrust efficiency for 

	5.5 Conclusions
	5.A Appendix A: Validation of the numerical code

	6 Closure
	6.1 Contributions of this thesis
	6.2 Future work

	A Appendix: Resumen Extendido
	A.1 Introducción
	A.2 Conclusiones
	A.3 Trabajo futuro

	Bibliography
	Declaracion

