
Z. angew. Math. Phys. 50 (1999) 698–730
0044-2275/99/030698–33 $ 1.50+0.20/0
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Inviscid vortex breakdown models in pipes

R. Fernandez-Feria and J. Ortega-Casanova

Abstract. The inviscid evolution along a pipe of two families of inlet cylindrical swirling flows
is analysed using the Bragg-Hawthorne equation. The first flow corresponds to exact solutions
of the axisymmetric Euler equations near the axis, at which the velocity field is singular. The
quasi-cylindrical problem is reduced to solving a phase-plane first order differential equation. It
is found that, for both converging and diverging pipes, cylindrical solutions for the downstream
flow determined by the inlet flow exist even for very high values of the swirl parameter (L). The
second family of inlet flows coincides with the first except inside an axial core of radius rc, where
the flow now has constant axial velocity and rotates as a rigid body. For diverging or straight
pipes, this regularised family exhibits the usual behaviour, with a maximum value of L = Lf
above which one-cell cylindrical solutions for the downstream flow fail to exist, even for very
small rc. The downstream flow may also stagnate at the axis above another value Lo < Lf .
Thus, there is no inviscid breakdown unless the vortex core is (arbitrarily) regularised. Since
regularization of singular inviscid flows is actually carried out by viscosity, it follows that, within
the limitations of the present simple model, the presence of viscosity is essential to describe the
phenomenon of vortex breakdown in pipes from the inviscid equations, regularising the usually
singular inlet inviscid flow. The jet-like radial decay of the axial and swirl velocities in the present
inlet model flows leads also to values of Lf closer to those observed experimentally than those
found in some previous models.
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1. Introduction

The phenomenon of vortex breakdown, particularly in pipes, has usually been
described and explained by inviscid equations and arguments (e.g. [1]-[6]). Most
of these works considered the inviscid evolution of a particular inlet swirling flow
along a pipe of given geometry using the Bragg-Hawthorne (also called Squire-
Long) equation (see next section). The velocity profile most used to simulate
the inlet flow in the pipe has been an uniform axial velocity combined with a
rigid body rotation (azimuthal velocity linear with the distance to the axis r), or
with a Rankine vortex, where the rigid body rotation is confined in a slender core
surrounded by a potential vortex (azimuthal velocity inversely proportional to r).
More realistic, Gaussian-like, inlet velocity profiles have been considered in [5].
Depending on the pipe geometry and on the type of inlet flow considered, it is
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found that, when the relative intensity of the swirl is above a certain threshold,
usually expressed in terms of a swirl parameter or Squire number, or its inverse, a
Rosby number, the inviscid downstream flow presents several characteristics which
are commonly associated to the vortex breakdown phenomenon, or, simply, the
equations fail to give a solution for the downstream flow. A simplified version of the
problem, first considered by Batchelor [2], and which is the one used in this paper,
consists on looking for cylindrical solutions of the equations for a given radius of
the pipe far downstream, given a cylindrical inlet velocity profile. Although this
formulation does not yield the velocity field connecting the inlet and outlet flows,
it has the important advantage of its simplicity, allowing for analytical solutions in
many cases. When the equations fail to yield a cylindrical solution downstream,
i.e. when the downstream flow cannot be described by the class of cylindrical
velocity profiles looked for, it is assumed that breakdown of the inlet flow occurs.
The disadvantage of the method is that one cannot know exactly what really
happened to the flow as the pipe radius varied from its inlet value to the outlet
one when no cylindrical solution downstream existed; but it suffices for the main
purpose of this paper, which is to know whether some families of inlet velocity
profiles are, or are not, able to suffer breakdown. Nonetheless, in order to check
the cylindrical results, and to corroborate the appearance of vortex breakdown
when no cylindrical solution exists, we also give some numerical results of the
non-cylindrical Bragg-Hawthorne (B-H) equation for some representative cases.

A common feature of all previous inviscid flow simulations is that the inlet
velocity fields considered were regular at the axis. However, Euler equations are
more likely to yield solutions singular at the axis of symmetry for swirling flows
(e.g. the potential vortex, or the more general class of conically similar solutions to
Euler equations, proportional to an arbitrary negative power of r near the axis [7]).
In general, this situation occurs when an inviscid streamline with non-vanishing
circulation coming from the vortex generator (e.g. from the surface of the swirling
hub of a vane swirl apparatus) reaches the axis of symmetry: the inviscid con-
servation of the circulation along streamlines yields an infinite azimuthal velocity
at the axis. These singular behaviours are, of course, regularised by viscosity
in a narrow axial layer, which constitutes the sometimes called vortex core (e.g.
Long’s vortex [8], regularising a potential vortex, or the near-axis viscous layer
regularising the more general class of conically similar inviscid vortices [7]). In
most of the works on the subject, the inlet vortex was arbitrarily regularised at
the axis through a core where, as already mentioned, the flow has a constant axial
velocity and rotates as a rigid body, which is a rough approximation to the actual
behaviour of the viscous flow near the axis. One may question on the correctness
of using these regularised inlet velocity profiles in a purely inviscid formulation.
Mathematically it is formally correct, because any cylindrical flow, i.e. any flow
in which the radial velocity is zero, and the azimuthal and axial velocities depend
only on r, is a solution to Euler’s equations [2]. Thus, all the inlet cylindrical
flows considered previously, such as the Rankine’s vortex just mentioned, or the



700 R. Fernandez-Feria and J. Ortega-Casanova ZAMP

Gaussian-like velocity profiles (which resembles more the real viscous velocity pro-
files), are compatible with the inviscid equations governing the flow inside the pipe,
provided that the inlet radius is constant during a certain length. Even if one uses
a viscous velocity profile for the inlet flow, for instance, that given by a singular
inviscid flow regularised at the axis through a viscous boundary layer, it is com-
patible with the inviscid equations provided that it is cylindrical. Given this, the
other question one may ask is whether the vortex breakdown phenomenon in pipes
predicted and described with the inviscid equations is related to the regularization
of the inlet velocity profile, and therefore needs the indirect action of viscosity.
To answer this question in general is difficult. Numerical viscous simulations for
swirling flows inside a pipe have been carried out by Beran and Culik [9], Lopez
[10], and Darmofal [11], among others, using Gaussian-like vortices ([9]-[10]), and
experimentally fitted velocity profiles ([11]), to model the inlet flow. These au-
thors found that vortex breakdown actually occurs above a critical value of the
swirl number of the inlet flow, in agreement with experimental results on vortex
breakdown in pipes. Beran and Culik also found that vortex breakdown is related
to the failure of the boundary layer equations governing the viscous core of the
vortex, thus supporting the viscous theory first proposed by Hall [12]. Similar re-
sults were reported in [7] for self-similar viscous vortex cores, where the governing
near-axis boundary layer equations failed to give a solution above a critical swirl
number. Thus, these results add support to the view that vortex breakdown is
a phenomenon in which viscosity plays an important role. In this context, the
present paper proposes a simpler exercise: to compare the inviscid evolution in a
pipe of two families of inlet cylindrical velocity profiles, one singular at the axis,
and the other one regularised at the axis in the usual way of assuming a constant
axial velocity and a rigid body rotation inside a slender vortex core. As men-
tioned above, we shall use the cylindrical approximation and find that, for the
singular inlet velocities, a downstream cylindrical solution is always found for the
most interesting cases so that vortex breakdown is not observed. On the other
hand, for the regularised velocity profiles, we reproduce previous results: vortex
breakdown occurs for diverging pipes above a critical value of the swirl parameter
characterising the inlet flow.

2. The quasi-cylindrical problem

Consider the axisymmetric, steady flow of an inviscid fluid in cylindrical-polar
co-ordinates (r, θ, z), with velocity field (u, v, w). The stream function for the
meridional motion Ψ,

u = −1
r

∂Ψ
∂z

, w =
1
r

∂Ψ
∂r

, (1)
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satisfies the Bragg-Hawthorne [13] equation (also called Squire-Long equation):

∂2Ψ
∂r2 −

1
r

∂Ψ
∂r

+
∂2Ψ
∂z2 = r2 dH

dΨ
− CdC

dΨ
, (2)

where H(Ψ) and C(Ψ) are the Bernoulli function and the circulation, respectively:

H =
p

ρ
+

1
2

(u2 + v2 + w2), C = rv . (3)

We shall consider the inviscid flow in a converging or diverging pipe, assuming
that far upstream and far downstream the flow is cylindrical; i.e. u = uz = Ψzz =
0. In these cylindrical regions, Eq. (2) becomes

Ψrr −
1
r

Ψr = r2HΨ − CCΨ , (4)

where 0 ≤ r ≤ r1 at the inlet, and 0 ≤ r ≤ r2 at the outlet. Given an inlet cylin-
drical flow, which defines the functions H(Ψ) and C(Ψ), we shall follow Batchelor
[2] in solving (4) to obtain the cylindrical flow far downstream, provided that it
exits. Batchelor solved it for two cases: a far upstream flow with uniform axial
velocity and rotating as a rigid body, and the same flow but considered as an
isolated vortex immersed inside a potential vortex. The class of inlet flows was
extended by Buntine and Saffman [5], who also considered Gaussian-like inlet ve-
locity profiles (sometimes called q-vortices). We shall consider in the next section
a family of inlet flows with velocity fields proportional to a negative power of the
distance to the axis, (v, w) ∼ rm−2, 1 ≤ m < 2, which correspond to exact near-
axis solutions to the Euler equations [7]. These inviscid flows are singular at the
axis, and will be shown in section 3 to suffer no vortex breakdown for any value
of the swirl parameter (for m = 1). A second family of inlet flows, now regular
at the axis, is considered in section 4. It coincides with the previous one, except
in a core of radius rc, where the flow is assumed to have constant axial velocity
and rotates as a rigid body. Thus, the inlet flow is similar to the second type
considered by Batchelor, but with an outer axial velocity more like a jet, with a
profile proportional to a negative power of r instead of an uniform axial velocity
profile everywhere. We shall see that vortex breakdown occurs in the regularised
vortex for a folding value of the swirl parameter, as also observed by Batchelor
[2]. However, the radial decay of the axial velocity outside the vortex core yields
values of the folding swirl parameter more in accordance with the observed critical
swirl numbers for actual vortex breakdown in pipes.
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3. An inlet inviscid flow singular at the axis

Consider the following inviscid flow far upstream (0 ≤ r ≤ r1, where r1 is the
inlet pipe radius):

Ψ =
Wo

m
rm; w = Wor

m−2, u = 0; (1 ≤ m < 2) (5)

v = LWor
m−2,

p

ρ
=

(LWo)2

2(m− 2)
r2(m−2) +

po
ρ
. (6)

Functions C and H are given by:

C = KΨ(m−1)/m, K ≡ L(mm−1Wo)1/m , (7)

H = K1Ψ2(m−2)/m, K1 ≡
1
2

(
1− m− 1

2−mL2
)
W 4/m
o m2(m−2)/m . (8)

Substituting into (4),

Ψηη =
2(m− 2)

m
K1Ψ1−4/m − m− 1

2m
K2

η
Ψ1−2/m , (9)

where
η = r2/2 , (10)

and Ψηη = ∂2Ψ/∂η2. This equation must be solved with the boundary conditions
that the axis and the pipe wall are streamlines:

Ψ(η = 0) = 0, Ψ(η = r2
2/2) = (Wo/m)rm1 , (11)

where r2 is the outlet radius of the pipe. In terms of the dimensionless stream
function g(η),

Ψ ≡ WoL
m

m
(ηg)m/2 , (12)

and defining

G ≡ η dg
dη

, (13)

equation (9) becomes the first order differential equation

dG

dg
=
D − (m− 1)g + 2−m

2 (g2 +G2) + (1−m)gG
gG

, (14)

where the dimensionless parameter D is given by

D = −4m2(2−m)K1
K4 =

2
L2

(
m− 1− 2−m

L2

)
. (15)
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With these new variables, the axial and azimuthal velocities are given by

w =
WoL

m

2
(ηg)(m−2)/2(G+ g), (16)

v =
WoL

m

√
2

η(m−2)/2g(m−1)/2 . (17)

A complete phase plane analysis of (14) is given in the appendix. As shown
there, the axis corresponds to the singular point (G = 0, g = 2/L2), while the pipe
wall, according to (11)-(12), corresponds to g = 2/(LR)2, where

R =
r2
r1
. (18)

Therefore, there are three non-dimensional parameters governing the present prob-
lem: m and L defining the incoming flow, and the expansion ratio R. We shall
consider separately first the case m = 1 because a simple analytical solution exists.

3.1. m = 1

For m = 1, equations (14)-(15) become linear in G2:

dG

dg
=
D + g2

2 + G2

2
gG

, D = − 2
L4 (m = 1). (19)

The solution satisfying the first boundary condition (11) at the axis goes through
the singular point (G = 0, g = 2/L2), which is a saddle, with positive slope (see
appendix):

G = g − 2
L2 . (20)

Substituting into (13) and using the second boundary condition (11), one obtains

g =
2
L2

[
1 +

1−R2

R2
2η
r2
2

]1/2

. (21)

In terms of the original variables, the downstream solution is (0 ≤ r ≤ r2):

Ψ = Wor

[
1 +

1−R2

R2

(
r

r2

)2
]1/2

(m = 1) , (22)

which yields, according to (1) and (7),

w =
Wo

r

1 + 21−R2

R2

(
r
r2

)2

[
1 + 1−R2

R2

(
r
r2

)2
]1/2 , v =

LWo

r
. (23)
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Figure 1.
Downstream axial velocity profiles (r/r2 vs. wr2/Wo) for singular inlet flows with m = 1, for
several values of R = r2/r1. When R >

√
2 = Rr the axial velocity at the wall becomes negative.

The circles correspond to numerical results from the non-cylindrical B-H equation (2) with (7)-(8)
for m = 1 at x = 10r2.

The azimuthal velocity profile remains unchanged along the pipe, but this is on-
ly true for this particular case m = 1, for which the circulation C is constant
everywhere.

The most important physical feature of the above solution is that the near-axis
flow preserves its singularity of the form (w, v) ∼ 1/r downstream, independently
of the value of the swirl parameter L, so that inviscid vortex breakdown does not
occur for any value of L. At the wall (r = r2), the axial velocity increases for
a converging pipe, R < 1, and decreases for a diverging one, R > 1. In the last
case, the axial velocity becomes zero at the wall when R =

√
2, and negative when

R >
√

2 (see figure 1). Therefore, a zone of flow reversal appears near the wall
of the pipe when its radius r2 is larger than

√
2 r1. Obviously, when this occurs

the above solution is not the only possible one, because different functions H(Ψ)
and C(Ψ) may be specified in the B-H equation for the backflow coming from the
pipe outlet. In other words, for R >

√
2, there exists a region r∗ < r < r2 where

the downstream function takes values larger than Wo, and therefore outside the
interval [0,Wo] in which the functions H(Ψ) and C(Ψ) have been defined upstream.
The solution is thus not unique, but depends on the form of these functions for the
backflow. The particular solution given for R >

√
2 corresponds to an extension

of the same functions H(Ψ) and C(Ψ) of the incoming flow, equations (7)-(8), for
Ψ > Wo.

To check the different cylindrical solutions to the B-H equation given in this
and the following sections, we have also solved the non-cylindrical B-H equation
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Figure 2.
Streamlines obtained numerically by solving (2) with (7)-(8) for m = 1 when R = 1.2 (a), and
R = 2 (b).

(2) numerically. The pipe radius used in the computations has the form

rc(x)
r2

=
1
2

[
1 + tanh

x

r2
+

1
R

(
1− tanh

x

r2

)]
, (24)

where R is the expansion ratio of the pipe (18). At the pipe inlet (which is taken
x/r2 = −10), the stream function is given by (5) in the present case of an inlet
flow singular at the axis. At the pipe outlet (x/r2 = 10), we impose ∂2Ψ/∂x2 = 0.
The boundary condition at the axis is Ψ = 0, while at the pipe wall, r = rc(x), Ψ is
given by its upstream value at r = r1. The integration domain is first transformed
into a rectangle, and finite differences are used in a mesh of 200 equidistant points
along the x-direction, and 300 points in the r-direction. The resulting non-linear
equation is solved iteratively, using the inlet flow as the initial guess.

For the present upstream inviscid flow singular at the axis with m = 1, the
results are plotted in figures 1 and 2. The numerical results for the outlet axial
velocity profiles at x = 10r2 (circles in figure 1) are indistinguishable from the
cylindrical axial velocity profiles given by (23). Figure 2 shows streamlines ob-
tained numerically for two diverging pipes, one with an expansion ratio less than√

2, and another one with R >
√

2. In the last case, a region of flow reversal
is formed near the wall, where the downstream radius r∗ separating it from the
region of forward axial flow is given with great accuracy by the value of r that
maximises w in (23).
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Figure 3.
Different distinguished values of the swirl parameter as a function of m. L∗ is the critical swirl
parameter found in [7], above which no near-axis boundary layer solutions exist.

3.2. 1 < m < 2

For m 6= 1 the problem is richer than form = 1, existing different types of solutions
in different regions of the (m,L,R) parametric space. Following the detailed phase-
plane analysis given in the appendix, we describe next the main features of these
solutions.

It is found (see appendix) that, for each m, a limiting value of the swirl pa-
rameter L3(m) exists,

L3(m) =

√
2(2−m)
m− 1

, (25)

above which the problem of a diverging pipe has no solution. For the present
model of inviscid flows, this limiting value resembles a critical swirl parameter for
vortex breakdown, but with the particularity that for a converging or straight pipe
a solution always exists (note that L3 goes to infinity for m = 1, so that, as seen
above, there is no limiting swirl parameter in the case m = 1). This maximum
value for the existence of quasi-cylindrical solutions is plotted in figure 3 along
with several other distinguished values of the swirl parameter, Li(m), i = 1, 2, r, 4,
whose precise mathematical meanings are given in the appendix.

When L ≤ L1(m),

L1(m) =

√
2−m
m− 1

, (26)

the situation is very similar to that for m = 1. A value of R = Rr(L,m) exists
(see figures 4 and 5) at which the axial velocity vanishes at the pipe wall, and
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Figure 4.
Rr , R′r , Rm and R′m as functions of L for m = 1.2 (a), and m = 1.6 (b). Dashed regions
correspond to solutions with no cell of reversal flow near the wall.

above which a zone of flow reversal is formed near the wall (see figure 6 for several
velocity profiles for m = 1.2 and different values of R). According to (16), Rr
corresponds to G(g) = −g, which for L ≤ L1 has a single root g = gr = 2/(LRr)2.
One can see in figures 4 and 5 that Rr increases with m and L (remember that for
m = 1 Rr =

√
2, independently of L). Thus, the introduction of swirl delays the

onset of the near-wall zone of flow reversal: Rr(L,m) ≥ Rr(0,m) (Rr for L = 0 is
depicted as a function of m in figure 7).

For L1(m) < L < Lr(m), where Lr(m) is the folding value of Rr(L) for each



708 R. Fernandez-Feria and J. Ortega-Casanova ZAMP

0.5
0 0.5 1 1.5 2

1

1.5

2

2.5

3

3.5

4

4.5

5

R

L

L1 L1 L1 L1 L1 L1

m
=

1
.4

m
=

1
.5

m
=

1
.6

m
=

1
.7

m
=

1
.8

m
=

1
.9

a)

0.5
0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

4.5

5

R

L

L1 L1 L1 L1

m = 1.3 m = 1.2 m = 1.1

m = 1.9

b)

Figure 5.
Rr , R′r , and Rm as functions of L for several values of m in the range 1 ≤ m < 2.

m (see figure 4), and is obtained numerically and plotted in figure 3, several
distinguished values of R exist separating different flow regimes (see figures 4-5).
First, in addition to Rr(m,L), a value R′r(m,L) > Rr exists above which the axial
velocity at the wall becomes again positive, and the downstream flow presents three
cells (R′r is another root of G(g) = −g, see figure A2c in the appendix). That is,
for a given value of L in the present range L1 < L < Lr, as R increases above Rr,
the downstream flow passes from a positive axial velocity everywhere to a two-cell
flow with a near-wall backward velocity, and, when R > R′r, a third near-wall cell
is formed with positive axial velocity (see figure 6). However, R cannot increase
much further because, as seen in figures 4 and 5, a maximum value Rm(m,L),
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Dimensionless axial velocity profiles downstream for m = 1.2 and different values of R and L, as
indicated.
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Rr(m) for swirless (L = 0) flows.

slightly larger than R′r, exists above which no solutions to the present problem are
found. It must be noted that a value R′m(m,L) < Rm exists also (marked with
a dotted line in figure 4) above which (i.e. for R′m < R < Rm) several solutions
satisfying the same boundary conditions may exist. However, as discussed above,
only one of them, with or without zone of flow reversal, depending on whether R
is smaller or larger than R′r, is physically admissible.

Finally, in the range Lr(m) ≤ L < L3(m), no zone of flow reversal appears
for any radius R. The limiting value of R, Rm, is still present. The radius R′m,
above which a multiplicity of solutions for a given R exists, becomes equal to Rm
for L = L2(m). Thus, for L2(m) ≤ L ≤ L3(m), the region with multiplicity
of solutions does not appear. When L = L3(m), Rm = 1, so that, as pointed
out above, no solutions to the present problem for a diverging pipe exist when
L > L3(m).

As discussed for the case m = 1, the solutions with reversal flow for R > Rr
(with L < Lr) are not unique because other boundary conditions for the backflow
of the near-wall zone of flow reversal may be specified, which are not considered
here. The particular solutions given here are for the same functions H(Ψ) and
C(Ψ) of the inlet flow extended to the domain of the reversal flow from the outlet.
Accordingly, for diverging pipes (R > 1), and for each value of m, the region on
the (R,L)−plane where a unique solution to the present problem exists is below
the curve Rr(m) for L < Lr(m), and below Rm(m) for L ≥ Lr(m) (shaded areas
in figure 4). For converging or straight pipes (R ≤ 1), a unique solution exists for
all the values of R and L.

We thus conclude that for the present inviscid models with singularity at the
axis, inviscid breakdown either does not occur (m = 1), or the predicted values



Vol. 50 (1999) Inviscid vortex breakdown models in pipes 711

of the swirl parameter for breakdown are, for the most interesting cases with m
slightly larger than unity [7], far too larger than the observed ones (and predicted
from the viscous axial boundary layer, i.e. L∗(m) in figure 3).

4. Regularization of the inlet flow

Let’s consider an inlet flow which is given by (5)-(6) for rc ≤ r ≤ r1, while for
0 ≤ r ≤ rc the axial velocity is constant and the azimuthal velocity is linear with
r (solid body rotation):

w = Wor
m−2
c ≡W1, v = LW1

r

rc
, 0 ≤ r ≤ rc ; (27)

w = W1

(
r

rc

)m−2
, v = LW1

(
r

rc

)m−2
, rc ≤ r ≤ r1 . (28)

For m = 1, the above azimuthal velocity corresponds to a Rankine vortex. This
inlet flow for m = 1 is similar to that considered by Batchelor [2] modelling an
isolated vortex (see also Stuart [14]), except in that we allow for a jet-like axial
velocity with a radial potential decay, instead of assuming it uniform at the inlet.
It must be noted that this ad hoc regularization at the axis of the inlet inviscid flow
(28) by a central core of the form (27) leads, of course, to w and v profiles different
to those brought about by viscous effects near the axis (see [7]), where an inviscid
formulation is questionable. However, (27)-(28) has some of the main features of a
real swirling jet, and is a valid solution of the cylindrical Euler equations, like any
velocity profile of the form (0, w(r), v(r)). It is thus worth pursuing its evolution
through the B-H equation, as previously done for different inlet flows by Batchelor
[2], and by Buntine and Saffman [5], among others.

For 0 ≤ r ≤ rc,

Ψ = W1
r2

2
. (29)

Hence, the functions C(Ψ) and H(Ψ) are given by

C = vr =
2L
rc

Ψ, H =
1
2
w2 +

∫ r C

r2
dC

dr
dr =

1
2
W 2

1 +
2L2W1
r2
c

Ψ , (30)

for 0 ≤ Ψ ≤W1r
2
c/2. Equation (4) becomes

Ψ(i)
rr −

1
r

Ψ(i)
r =

2L2

r2
c

(W1r
2 − 2Ψ(i)) (0 ≤ Ψ(i) ≤W1r

2
c/2) , (31)

where the superscript (i) stands for the inner flow inside the core. The general
solution of this equation is of the form [2]

Ψ(i) =
1
2
W1r

2 +ArJ1(kr) +BrY1(kr) , (32)
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where A and B are arbitrary constants, J1 and Y1 are first order Bessel functions
of the first and second kind, and

k =
2L
rc
. (33)

The boundary condition at the axis sets B = 0. Constant A will be determined by
the matching with the outer solution at the downstream vortex radius rb, which
is also unknown (see below).

For rc < r < r1, according to (27)-(28),

Ψ =
W1r

2
c

m

[(
r

rc

)m
+
m− 2

2

]
, (34)

so that

C(Ψ) = LW1rc

(
mΨ
W1r2

c

+
2−m

2

)(m−1)/m
, (35)

and

H(Ψ) =
m− 3

2(m− 2)
(LW1)2 +

W 2
1

2

(
1− m− 1

2−mL2
)(

m

W1r2
c

Ψ +
2−m

2

)2(m−2)/m
,

(36)
valid for

1
2
W1r

2
c ≤ Ψ ≤ W1r

2
c

m

[(
r1
rc

)m
− 2−m

2

]
. (37)

Using the dimensionless variables

y =
1
2

(
r

rc

)2
, ψ(o) =

m

W1r2
c

Ψ(o) +
2−m

2
, (38)

where the superscript (o) is for outer flow, the B-H equation in this region becomes

ψ
(o)
yy = m(2−m)

(
m− 1
2−mL2 − 1

)
ψ(o)1−4/m − L2m(m− 1)

2y
ψ(o)1−2/m . (39)

Obviously, this equation has the same form as (9). The boundary conditions are,
however, quite different:

Ψ(o)(rb) = Ψ(i)(rb) =
1
2
W1r

2
c , (40)

d

dr
Ψ(o)(rb) =

d

dr
Ψ(i)(rb) , (41)
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Ψ(o)(r2) =
W1r

2
c

m

[(
r1
rc

)m
+
m− 2

2

]
. (42)

The first two conditions state that at the outlet core radius rb the inner and outer
stream functions and their derivatives (axial velocities) are continuous, and that
the stream function takes the inlet value for r = rc. Condition (42) assures that the
pipe wall is a streamline. Equations (40)-(42) constitute a set of four conditions
to fix rb, the integration constant A in (32), and the two integration constants
resulting from (39). The cases m = 1 and m 6= 1 are considered separately next.
To check these cylindrical solutions, they are compared with numerical results
from the non-cylindrical B-H equation for m = 1 and the particular pipe form
(24).

4.1. m = 1

Equation (39) has an analytic general solution in this case, and the four conditions
(40)-(42) become a relatively simple set of algebraic equations. (Equation (39)
may be written in the form (14), whose phase plane is analysed in the appendix.
However, we shall not use that form of the equation form = 1, but in the numerical
integration for the cases 1 < m < 2; see next section.)

Putting m = 1 in (39), one obtains

ψ
(o)
yy = −ψ(o)−3 , (43)

which has the general solution

ψ(o) =
√

(y +E)2/D −D , (44)

with D and E arbitrary constants. Equations (40)-(42) yield the following four
relations:

1 = b2 + abJ1(2Lb) , (45)

b2/2 +E =
√
D(D + 1) , (46)

1 + aLJo(2Lb) =

√
1 +

1
D

(47)

R2
2/2 +E =

√
D(D +R2

1) , (48)

where
R1 =

r1
rc
, R2 =

r2
rc
, a =

2A
W1rc

, and b =
rb
rc
, (49)

are, like D and E, dimensionless parameters. Eliminating a and E, one has the
following set of two non-linear algebraic equations to obtain the dimensionless
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outlet core radius b (and parameter D) as a function of the dimensionless inlet
and outlet pipe radii, R1 and R2, and the swirl parameter L:

R4
2 − b4

4
+D

1 +R2
2

√
1 +

1
D
−R2

1 − b2
√

1 +
R2

1
D

 = 0 , (50)

b2 − 1 +

(√
1 +

1
D
− 1

)
bJ1(2Lb)
LJo(2Lb)

= 0 . (51)

Figures 8 and 9 show the outlet core radius b as a function of the swirl parameter
L for several values of R1 and R2. Also shown in these figures is the outlet
dimensionless axial velocity at the axis,

ξ ≡ w(r = 0)
W1

= 1 + aL = 1 +

(√
1 +

1
D
− 1

)
1

Jo(2Lb)
. (52)

For comparison, we have included in figure 9 the corresponding values of b and
ξ given by Batchelor’s solution [2] for an ”isolated” vortex (dotted lines), which
corresponds to the present problem with m = 1 when there is no radial decay
of the axial velocity outside the vortex core. That is, at the pipe inlet w = W1
everywhere, and at the outlet w = W2 = constant for r > rb, where, by continuity,

W2
W1

=
R2

1 − 1
R2

2 − b2
. (53)

Substituting this expression into Batchelor’s solution in terms of W2/W1, one
obtains the following relations for b and ξ:

b2 − 1 +
(
R2

1 − 1
R2

2 − b2
− 1
)
bJ1(2Lb)
LJo(2Lb)

= 0 , (54)

ξ = 1 +
(
R2

1 − 1
R2

2 − b2
− 1
)

1
Jo(2Lb)

. (55)

The main feature of the functions b(L) and ξ(L) given in figures 8 and 9 is that,
for diverging pipes (R1 < R2), there exists a folding value of the swirl parameter,
Lf , which depends on R1 and R2, above which no solution exits, while a solution
always exists for any value of L in a converging pipe (R1 > R2). Therefore,
the quasi-cylindrical approximation fails above a critical value of L for a diverging
pipe. When this occurs, the numerical solution to the non-cylindrical B-H equation
shows a ”bubble” form of vortex breakdown downstream (see figure 10). Another
important feature observed in the figures 8 and 9 is that, also for R1 < R2, a
stagnation point (ξ = 0) is reached at the axis for a value Lo < Lf . Thus, for
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Figure 8.
Functions b(L) (continuous lines) and ξ(L) (dashed lines) for m = 1, and for R1=5, with R2 =
4, 5.1 and 6.

Lo < L < Lf , two different solutions exist for the same value of the swirl parameter
in a diverging pipe. They correspond to two of the three different solutions found
by Wang and Rusak [6] for Lo < L < Lf in the case of a straight pipe. (The third
solution with a stagnant, or flow reversal, region near the axis, valid for L > Lo, is
not looked for in the present formulation. Keller et al. [3] found that, in order to
obtain this type of cylindrical solution with an axial stagnant zone, the additional
condition of flow force conservation has to be imposed on the solution.) As a
matter of fact, for a straight pipe (R1 = R2 or R = 1), although a folding value
of L is not found (the inlet solution, b = ξ = 1, is valid for any swirl number),
the second solution given by Wang and Rusak is also found in the present quasi-
cylindrical formulation for L > Lo, crossing the first (inlet) solution for a value
Lfm given by Jo(2Lfm) = 0 (Lfm ' 1.2). Lfm thus constitutes a maximum or
limiting value for the folding swirl number Lf as R1 and R2 > R1 vary (see figure
11 in addition to figure 9). It coincides with the critical swirl of Benjamin [1].

These general features are also observed for Batchelor’s inlet model [2]. Actu-
ally, for a straight pipe (R = 1) both sets of solutions are very similar: One has
the inlet solution (b = ξ = 1) crossed by a second solution at L = Lfm. In the case
of Batchelor’s inlet flow, these two solutions are easily obtained putting R1 = R2
in (54)-(55):

b1 = ξ1 = 1 , (R = 1) , (56)
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Figure 9.
Functions b(L) and ξ(L) given by (50)-(52) for m = 1 (continuous lines), and obtained from
Batchelor’s model (54)-(55) (dotted lines) for several values of R1 and R2 > R1: (a) R1 = 10
and R2 = 20, 15, 12, 10.0001; (b) R1 = 5 with R2 = 10, 7, 6, 5.0001, and (c) R1 = 3 with
R2 = 6, 5, 4, 3.0001.
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Figure 10.
Streamlines obtained numerically from the non-cylindrical B-H equation (2) with the pipe ge-
ometry (24), using the regularised inlet velocity (27) and (28) with m = 1, R1 = 5 and R = 1.1,
for L = 0.5 (a) and L = 1.23 > Lf ' 1.05 (b). The dashed streamlines correspond to the core
radius.

and

(R2
1 − b22)LJo(2Lb2) + b2J1(2Lb2) = 0, ξ2 = 1− (b22 − 1)L

b2J1(2Lb2)
, (R = 1) , (57)

which are also depicted in figure 9. However, as R2 becomes larger than R1, the
values of Lo and Lf obtained with Batchelor’s constant axial inlet velocity are
much more strongly dependent on the pipe radii, R1 and R2, than those obtained
with the present inlet flows. Thus, by just allowing for a a radial decay of the axial
velocity, Lf becomes less dependent on R1 and R2, ranging typically between 1
and 1.2 in the present model, more in agreement with many experimental and
numerical results on vortex breakdown (e.g. Spall, Gatski and Grosch [15], Beran
and Culik [9]). Similar results were obtained by Buntine and Saffman [5] using
an exponential decay for both the axial and the azimuthal inlet velocity outside
the vortex core. This is more clearly seen in figure 11, where Lf and Lo are
plotted as a function of R ≥ 1 for both inlet flows models, and for two values of
R1. With the present inlet model flow for m = 1, Lf remains between 1.05 and
1.2, approximately, with Lf → Lfm ' 1.2 as R → 1. The stagnation value Lo
remains almost constant (Lo ' 0.9) as R increases. On the other hand, using a
constant inlet axial velocity, the resulting Lo and Lf decay rapidly as R increases.
For sufficiently large values of R, the folding value of L may even disappear using
Batchelor’s inlet flow (see figure 9; this value of R depends on R1, but one can see
in figure 11 that it typically lies between R = 1.2 and R = 1.4). In these cases,
a mild transition to a stagnation point at the axis without folding is produced
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when the value of Lo is reached. Thus, the hysteresis topology of the inviscid
breakdown given by Wang and Rusak [6] does not exist for these cases, and the
solution with stagnation at the axis may be reached without an abrupt transition.
A similar situation with no fold for sufficiently large pipe divergence has been
recently reported by Rusak, Judd and Wang [16]. These authors analysed the
effect of small pipe divergence on near critical swirling flows finding asymptotically
that, in our notation, Lfm − L ' α

√
R− 1 when R − 1 is small, where α is a

constant depending on the pipe geometry and on the inlet flow considered. This
is in agreement with our results for 0 < R − 1 � 1 (see figure 11; for Batchelor’s
inlet flow we find α ' 1.4, which is almost independent of R1, while for the present
inlet model flow with m = 1, α is smaller and depends on R1).

It is interesting to analyse asymptotically the case of R1 and R2 large, because
it corresponds to the slender cores typical of high Reynolds numbers flows, for
which the present inviscid picture would make most sense. From equations (50)-
(52), the first solution branches of b(L) and ξ(L) are unity in first approximation,
and the next corrections are given by (R1 � 1):

b1 = 1 +
1
R2

1

J1(2L)
LJo(2L)

R2 − 1
R4 +O(R−4

1 )

ξ1 = 1− 1
R2

1

2
Jo(L)

R2 − 1
R4 +O(R−4

1 ) for R ≡ R2
R1
6= 1 ,

(58)

and
b1 = ξ1 = 1 for R = 1 , (59)

so that for a straight pipe the core radius remains also unchanged. The second
solution branch can be written in a simpler form than (50)-(52) for a straight pipe,
but nor for R 6= 1. In first approximation b2 and ξ2 are given by

LJo(2Lb2) +
2
R2

1
b2J1(2Lb2) = 0 , ξ2 = 1 +

(1− b22)L
b2J1(2Lb2)

for R = 1 . (60)

For Batchelor’s inlet model, the first branches of b and ξ are not unity at the lowest
order for R 6= 1 (see for instance figure 9a), but given by

b21 − 1 +
1−R2

R2 b1
J1(2Lb1)
LJo(2Lb1)

= 0 , ξ1 = 1 +
1−R2

R2
1

Jo(2Lb1)
, R 6= 1 . (61)

For R = 1, b1 = ξ1 = 1, as in the model considered in the present paper. The
second branch is different from (60), and given, at the lowest order, by

LJo(2Lb2) +
1
R2

1
b2J1(2Lb2) = 0 , ξ2 = 1− L

b2J1(2Lb2)
, R = 1 . (62)
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4.2. Results for 1 < m < 2

For m 6= 1, one has to solve numerically equation (39) with boundary conditions
(40)-(42) in order to obtain b(L) for different values of m, R1 and R2. To this
end, it is more convenient to use that equation written in the form (13)-(14), using
mψ(o)/Wo instead of Ψ in the definition (12) of g, and replacing η by y, which just
turns formally (13) into dg/dy = G/y, and leaves (14) unchanged. Written in this
form, one may take advantage of the phase plane structure analysed exhaustively
in the appendix to perform the numerical integration. However, many of the phase-
plane subtleties discussed in the appendix are irrelevant here because the axis of
the pipe is now out of the range of application of equation (14), and because, from
the analysis given in the preceding section, we are mostly interested in values of
R slightly larger than, or equal to, unity.

The boundary condition (42) at the wall becomes

g =
2

(LR)2 , for y =
1
2
R2

2 . (63)

The boundary condition at the radius of the core, (40)-(41), substituting the inner
solution (32) and eliminating constant A, may be written as

g =
2

(Lb)2 and G =
2
L2

(
1 +

1− b2
b

L
Jo(2Lb)
J1(2Lb)

− 1
b2

)
for y =

1
2
b2 . (64)

To solve this problem one may proceed by shooting. An efficient way to do so
is to assume a value of b, for each value of m, L, R1 and R2, and obtain from
(64) g and G at the core radius. From these values start the numerical integration
towards the pipe radius, and change there the guessed value of b until both g and
y are given by (63) simultaneously.

Figure 12 shows b(L) and ξ(L) for different values of m, R1, and R2 (for
diverging pipes; R2 > R1), comparing these functions with the corresponding
ones for m = 1 of figure 9. The main feature observed in the figure is that both
the folding and stagnation values of L, Lf and Lo, decrease as m increases from
unity. This is shown more clearly in figure 13, where Lf(m) and Lo(m) are plotted
for different values of R1 and R2. Lf approaches Lo as m increases from unity, but
a folding value Lf > Lo always exists, except for straight pipes (R2 → R1) above a
relatively large value of m (remember that, physically, the most interesting values
of m are those near unity). Also included in this figure is L∗(m) from [7].

5. Concluding remarks

Using two simple models for the inlet swirling flow in a pipe we have shown that
the inviscid equations predicts vortex breakdown only for inlet profiles regular at
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Figure 11.
Lf (continuous lines) and Lo (dashed lines) as functions of R for R1 = 5 and 10 (m = 1). Dotted,
and dotted and dashed, lines correspond to Batchelor’s inlet model.

the axis. Hence it is argued that the presence of viscosity, which is the agent reg-
ularising the usually singular behaviour at the axis of inviscid swirling flows (e.g.
[8],[7]), is essential for vortex breakdown to occur in pipes. Of course, the simple
exercise here presented is far from conclusive on the question about the importance
of viscosity on vortex breakdown, but we believe that it adds some new elements
to it. To settle the problem (at least in pipes), one has to carry out numerical
simulations of swirling flows in pipes using the full viscous equations, but with
more realistic inlet boundary conditions far upstream than the previously used
by some investigators, and compare them with both rigorous inviscid simulations
and experiments. As found by Darmofal in his recent Navier-Stokes numerical
simulations of the swirling flow in a pipe [11], the breakdown location was ”ex-
tremely sensitive to small variations in inlet conditions”, which were adjusted from
experimental measurements, whence the importance of the precision in the inlet
boundary conditions. It may be argued that if the presence of viscosity is essential
for vortex breakdown to occur, why the inviscid simulations (but with viscosity
hidden in the inlet flow) predict so reasonably well breakdown? The answer may
be that, even if the absence of axial singularity (or the presence of viscosity) is
essential for vortex breakdown, the parameter governing it, the swirl number, is
purely inviscid, and so the mechanism producing breakdown is mostly inviscid, as
shown by many previous works on the subject (e.g. [1]-[6],[14]). As noted earlier
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Figure 12.
b(L) (continuous lines) and ξ(L) (dotted lines) for different values of m, R1 and R2, as indicated.

by Hall [12], Beran and Culik [9], and others, something similar happens in the
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Figure 13.
Lf (m) (continuous lines) and Lo(m) (dotted lines) for R1 = 10 (a) and R1 = 5 (b), and for
several values of R2. Also included is L∗(m).

phenomenon of boundary layer separation: although without viscosity there is no
separation, it is produced by adverse pressure gradients, therefore controlled by
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external inviscid factors, and predicted by inviscid arguments. From the present
and previous cited results it may be inferred that the details of how viscosity actu-
ally regularises the inviscid flow at the axis are less important for the (qualitative)
prediction of breakdown than the fact that viscosity is taken into account in the
inlet velocity profile in a more or less crude form. In other words, viscosity is indi-
rectly (and trivially) essential in vortex breakdown in generating a regular vortex
flow.

Independently of the viscosity question, the inviscid models here presented
show that it is important to take into account the radial decay of the inlet axial
flow in order to correctly predict the critical swirl number above which inviscid
vortex breakdown occurs. If one assumes an uniform axial velocity [2], the critical
swirl number is much more dependent on the outlet radius of the pipe that the
observed values, being appreciably smaller. Using a potential radial decay we have
shown, as previously Buntine and Saffman [5] using an exponential decay, that the
inviscidly predicted critical swirl numbers are almost independent of the outlet
radius, in accordance with experiments.
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Appendix: Phase plane structure of (14)

In addition to be essential for the numerical integrations behind the results given in
sections 3.2 and 4.2, the present phase plane analysis of equation (14) helps showing
the different regimes present in the flow as the three dimensionless parameters of
the problem of section 3, L, R and m, vary.

Let’s consider first the case m = 1. Equation (19) has four singular points: two
saddle points, (G = 0, g = ±2/L2), and two degenerate nodes, (G = ±2/L2, g =
0). The trajectories going through these singular points are the four straight lines
(see figure A1)

G = ±
(
g ± 2

L2

)
. (65)

The saddle point (G = 0, g = 2/L2) corresponds to the axis of the pipe. Indeed, the
boundary condition at the axis (11a) implies from (9) Ψ = Ar (i.e., the same kind
of upstream singularity of the axial velocity at the axis is preserved downstream),
where A = (±1)1/2Wo. The two possible solutions correspond, respectively, to
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Figure A1.
Phase plane (G vs. g) for m = 1.

the singular points (G = 0, g = ±2/L2), of which, obviously, that corresponding
to the minus sign must be discarded. Since, according to (65) and (12)-(13), the
solution near the point (G = 0, g = 2/L2) behaves as

Ψ = Wor(1 + cη±1)1/2 (66)

in physical variables, where c is a positive arbitrary constant to be determined by
the wall boundary condition (see (22)), and the ± sign correspond, respectively,
to the ± sign of the slope in the straight lines (65), the only trajectory of physical
interest in the present problem is that with positive slope going through this saddle
point; i.e. G = g − 2/L2.

The pipe wall is reached when g = 2/(LR)2, so that a converging pipe (R < 1)
is described by the half trajectory going upwards from the saddle point (G > 0
or g > 2/L2, see figure A1), the singular point itself corresponding to a straight
pipe (R = 1), and a diverging pipe (R > 1) to the trajectory going downwards
from the saddle point towards the node (G = −2/L2, g = 0). This last point
corresponds to the wall of a pipe with a downstream infinite radius. But, before
reaching this point, a zone of reversal flow appears near the wall when R >

√
2.

Indeed, for R =
√

2, corresponding to the crossing point between the trajectory
G = g − 2/L2 and the bisector G = −g (g = −G = 1/L2), the axial velocity,
which is proportional to G + g (see (16)), vanishes at the wall. In the case of
a converging pipe, this zone of reversal flow is never formed for any value of R,
and a pipe with vanishing radius downstream corresponds to g → ∞ along the
trajectory G = g − 2/L2.
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Figure A2.
Phase plane for m = 1.2. (a): L < L1 (L = 1). (b): L = L1 = 2. (c): L between L1 and L2
(L = 2.5; L2 ' 2.811). (d): L between L2 and L3 (L = 2.8198; L3 ' 2.828). (e): L = L3. (f):
L between L3 and L4 (L = 2.8372; L4 ' 2.846). (g): L > L4 (L = 3).

The different phase plane structures for 1 < m < 2 as L increases are depicted
in figure A2 for the particular value m = 1.2. When L < L1(m), the structure is
very similar to that for m = 1 (fig. A2a), where

L1(m) =

√
2−m
m− 1

(67)

(plotted in figure 3). In this case there are four singular points: two saddle points,

(G = 0, g = g1) and (G = 0, g = g2) , g1 =
2
L2 , g2 =

2(m− 1)
2−m − 2

L2 , (68)

and two nodes, (G = G±, g = 0)), where

G± = ± 2
L2

[
1− (m− 1)L2

2−m

]1/2

.

As in the case m = 1, the saddle point (G = 0, g = g1 = 2/L2) corresponds to
the axis of the pipe: According to (9), the vanishing stream function near the
axis should behave as Ψ = (WoL

m/m)(giη)m/2 (again, the singularity of the axial
velocity is preserved along the axis), where the gi, i = 1, 2, are given by (68).
Since g2 < 0 for L < L1, the solution corresponding to the other saddle point,
(G = 0, g = g2), has no meaning in physical variables. On the other hand, since the
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behaviour near the saddle point (G = 0, g = 2/L2) is given, in physical variables,
by (compare with (66))

Ψ =
Wo

m
rm(1 + cηa1±)m/2, (69)

where a1±, a1+a1− < 0, are the two roots of

a2
1 − (1−m)a1 − 2 +m− (1−m)/g1 = 0 , (70)

which also correspond to the two slopes of the two trajectories crossing that sin-
gular point,

G = a1±(g − g1) ,

it follows that, as in the case m = 1, only the trajectories with positive slope
are of physical interest. For a converging pipe (R < 1), the downstream solution
is given by the trajectory going upwards (see figure A2a), the point at infinity
corresponding to a pipe with vanishing downstream radius. For a diverging pipe
(R > 1), the solution is that going downwards towards the nodal point (G =
G−, g = 0), which corresponds to R → ∞. But, before reaching this point, when
the trajectory crosses the bisector G = −g at g = gr(m,L), corresponding to a
dimensionless pipe radius R = Rr(L,m) =

√
(2/gr)/L (remember that Rr =

√
2

for m = 1 and for any L), the axial velocity vanishes at the pipe wall and a cell
with flow reversal is formed near the wall for R > Rr (see figure 2, and figure 6a).

When L = L1, the two nodal points merge into the origin, together with the
saddle point that was on the negative g−axis for L < L1 (see figure A2b). The
physically meaningful solutions is, however, very similar to that for L < L1. When
L > L1, the two singular points lying on the G−axis have disappeared, and the
one on the negative g−axis has passed to the positive side, so that only the two
singular points (68) remain, both on the positive side of the g−axis (g1 and g2 are
now positive). While L < L3(m), where

L3 =
√

2L1 =

√
2(2−m)
(m− 1)

(71)

(plotted in figure 3), g1 = 2/L2 is larger than g2, and the right singular point
(G = 0, g = g1) remains a saddle point, which corresponds to the axis of the tube.
However, the left singular point (G = 0, g = g2) is no longer a saddle, but a stable
spiral when L1 < L < L2(m), where

L2 =
3−m√

m2 − 4m+ 5
L1 , (72)

(see figure A2c for m = 1.2 and L = 2.5; L2(m) is plotted in figure 3), and a
stable nodal point for L2 ≤ L < L3 (figure A2d, for m = 1.2 and L = 2.8198; note
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that, for m = 1.2, L2 ' 2.811 and L3 ' 2.828). Since (69)-(70) are still valid,
the trajectory of physical interest is always the separatrix crossing the saddle
point (G = 0, g = 2/L2) with positive slope. For a converging pipe (R < 1) the
situation is the same as described above. However, for a diverging pipe (R > 1),
and when L1 < L < L2, the bisector G = −g may cross the separatrix in two
points, be tangent to it, or not cross it at all. In the first case, which occurs for
L1 < L < Lr(m), where Lr(m) is plotted in figure 3, two critical radii Rr(m)
and R′r(m,L) > Rr exist corresponding to the crossing points gr and g′r of the
bisector with the physical trajectory (figure A2c). When R > R′r, another cell
is formed in the flow near the wall, were the axial velocity is again positive (see
figure 6b). In the other two cases, taking place for Lr ≤ L < L2, no zone of flow
reversal is produced for any value of R. This is not, however, the most important
difference in a diverging pipe for L1 < L < L3 in relation to the previous cases,
but the existence of another critical value of R, Rm(m,L), corresponding to the
crossing of that separatrix with the g−axis, g = gm(m,L) (Rm =

√
(2/gm)/L; see

figures A2c and A2d), above which no solution to the problem exists. Note that
for L2 ≤ L < L3, gm = g2 (figure A2d), while for L1 < L < Lr, Rm is always
larger than Rr and R′r (gr < g′r; see figures 4 and 5). It must be also noted that
for L1 < L < L2, and for R′m < R < Rm, where R′m > 1 corresponds to the next
crossing with the g−axis of the separatrix going towards the spiral point (see figure
A2c), a multiplicity of solutions exists for a given value of the pipe radius R (R′m
may be larger or smaller than Rr, depending on m and L; see figure 4). However,
only the lowest branch from the saddle point to g = gm (figure A2c), is of physical
interest, because all the other possible solutions yield unphysical singularities in
the flow.

Let’s follow increasing L to complete the phase plane picture. For L = L3, the
two singular points (68) merge with g1 = g2 = (m − 1)/(2 −m) = 2/L2, which
again corresponds to the pipe axis (see figure A2e for m = 1.2, where L3 ' 2.828).
This singular point is no longer a saddle, but the two eigenvalues, which as before
coincide with the slopes of the trajectories crossing it, are a− = 1−m and a+ = 0.
The exceptional trajectory crossing the singular point with slope a− yields a near-
axis solution of the form (69), which must be discarded because a− < 0. All the
other trajectories reach the singular point with zero slope as

G ' 1
2

(
2−m
m− 1

)2
(g − g1)2 , (73)

which in physical variables corresponds to

Ψ =
Wo

m
rm
(

1 +
1

ln(cη−(L/2)2)

)m/2
, (74)

where c is an arbitrary constant. It can be shown that the singular point is
reached with behaviour (73) by infinite trajectories if g < g1, but only by one if
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g > g1 (see figure A2e); i.e., the singular point behaves as a node to the ”left”
of the distinguished trajectory corresponding to a− = 1 − m, which is the only
one that reach the singular point with non-zero slope, and as a saddle point to
the ”right” of it. The only physically meaningful trajectory is, precisely, the
exceptional one reaching with zero slope the singular point as (73) from the right
(g > g1), implying that solutions only exist for a converging or straight pipe
(R ≤ 1; R = 1 corresponds to the singular point itself), in accordance with the
trend observed as L approached L3.

For L > L3, the two singular points (68) interchange their location: g1 < g2.
The point (G = 0, g = g2) becomes now a saddle and corresponds to the axis of
the pipe, with near-axis solution given by

Ψ =
WoL

m

m2m/2
g
m/2
2 rm(1 + cηa2±)m/2, (75)

where a2± are given by (70) replacing g1 by g2. Again, only the trajectory with
positive slope crossing this point (corresponding to a2+ in (75)) is physically mean-
ingful. But now, since g2 > 2/L2, both branches correspond to a converging or
a straight pipe, that going upwards towards infinite, and the other one going
downwards towards the singular point (G = 0, g = 2/L2), which is a node for
L3 < L ≤ L4, where

L4 =
3−m√
2(m− 1)

(plotted in figure 3), and a spiral for L > L4 (see figures A2f and A2g; R = 1
corresponds to the lower trajectory going up towards the singular point with g =
2/L2). Whence, no solution for a diverging pipe exists if L ≥ L3.
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