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1 Introduction

This thesis is devoted to study the interaction of a free vortex on a flat surface
perpendicular to its axis. This vortex-plane interaction is interesting in industry
due to the appearance of this proccess in vortex combustors and swirl atomizers.
It is a problem of increasing interest because of its relation with atmospheric
hazards like hurricanes and tornados. Related to the latter is the main interest
of this thesis.

A tornado is defined by the National Weather Service (NWS) as “a violently
rotating column of air in contact with the ground and extending from a thun-
derstorm base”. A tornado does not necessarily have to be visible; however,
the low pressures caused by the fast wind speeds usually cause water vapor in
the air to condense into a visible condensation funnel. Tornados are one of
the most destructive atmospheric hazards, because they usually have 180 km/h
wind speeds, 75 m width and they can travel several kilometers, but they can
reach up to 500 km/h windspeeds, core radius over 3 km and travel hudreds
of kilometers. They are usually seen in the center states of USA, some parts
of Canada, northwestern Europe and in central Asia and Africa plateaus. In
Spain, they sometimes appear in the East coast (Levante).

The tornado lifecycle is a well known proccess. They appear when a big
storm creates a mesocyclon, that is a swirling zone inside the storm (usually
cyclonic, but it can also be anticyclonic). When the swirl is strong enough
the tornado begins to move down until it reaches the ground forming what
is known as Rear Flank Downwards (R.F.D.), that fix the point where the
tornado touches the ground. In figure 1 is seen the proccess of reaching the
ground where it is observed how the clouds move downwards. All this proccess
is called tornadogenesis in the field of Meteorology. During the mature stage, the
tornado increases the energy by pulling heat from the ground, the environment
and the humidity of the air. In this stage, the R.F.D. has been putting in cold
air from the storm, and this coldness starts to wrap it, cutting up the supply
of hot air. This is the dissipation stage, in which it begins to slow down the
swirling air that started the tornado, and then the tornado disappears, having
the surface air more influence on it. This theory is generally accepted [see e.g.
Edwards et al. (2005), Markowski (2002, 2003)] but it does not explain the
genesis of some minor tornados as the waterspouts or dustdevils. However, it is
clear that the physical mechanism of all them is the fall of a high swirling jet to
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Figure 1: In this figure it is observed the genesis of a tornado. In the tree
images sequence is shown how the funnel goes down until it reaches the ground.
(Images taken from http://www.noaa.gov)

the ground. This is the reason of our interest in studying the interaction of a
(simple model) vortex with the ground, to gain insight on how this interaction
may produce such high vortices.

Actually, it is well known that flow in the eye of a tornado is slower than
the surrounding air and usually directed downwards, as is seen in numerous
experimental observations included in Ward (1972), Wan & Chang (1972) and
Maxworthy (1982), among others. In fact, depending on the swirl intensity,
different structures appear associated to different solutions of the equations of
motion, as it will be briefly discussed in the following section. When the swirl
intensity is low, the flow appears to be an effusing jet with a structure called “one
cell” (see figure 2), where the axis velocity is always directed upwards. When
the swirl velocity is increased, it can appear the so called vortex breakdown
phenomenon, that consists on the appearance of a region of flow recirculation
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Figure 2: Different structures that can appear in the interaction of a free vortex
with a flat surface, depending upon swirl intensity. In (a) it is presented a
“one cell” solution. For moderate swirl intensity appears the so called “vortex
breakdown”, (b), reaching a “two cell” solution in (c). In (d) are presented
conical two cell solutions and in (e) solutions in which appear a “vortex ring”
solution [Figure adapted from Lugt (1989)]

.

between two stagnation points at the axis, where the flow is directed downwards.
If the swirl intensity is increased even more, the whole field near the axis is
directed downwards, reaching the ground, creating a “two cell” structure.

In meteorological literature, during the last 50 years, many theories have
arisen to explain the tornadogenesis via “vortex breakdown” phenomenon (Bran-
des, 1978, Wakimoto & Liu, 1998). There are some photographic evidences of
the appearance of this phenomenon in real tornadoes. In Pauley & Snow (1988)
a tornado is filmed in Minneapolis in which it is observed clearly the vortex
core, and in it appears vortex breakdown at different stages of its development.
On the other hand, the existence of different solutions of the equations for the
same set of parameters make some authors state that the appearance of the
tornado is related to the transition between solutions. It is in agreement with
scarce experimental observations of high swirl tornados, that all of them have
the double cell structure. However, not all high swirling flows interacting with
a flat surface degenerate in a tornado, and the reason of this transition is obvi-
ously that the swirl intensity has to surpass a minimum critical value. One of
the objectives of this work is to find that critical swirl intensity for a model of
free vortex.

As it has been stated previously, this thesis pretends to improve the knowl-
edge of the problem of the interaction of a vortex over a flat plate perpendicular
to its axis, from a simple fluid mechanics point of view, without taking into
account the thermodynamics of the real process. Several works in the field of
meteorology have tried to study this phenomenon from the tornadogenesis point
of view (Davies-Jones, 1982, Trapp, 1999), where it is studied the meteorolog-
ical or dinamical conditions that are involved in the formation of a tornado,
from a laboratory model (Ward, 1972) and from complex numerical simulations
(Rotunno, 1978, Fiedler, 1995, Nolan & Farrell, 1998, Trapp, 1999, Lewellen
et al. , 2000), where it is modelled a complex physics that include turbulence,
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ground roughness, downwards presure, air buoyancy, water vapor condensation,
etc. The dinamical behavior of this phenomenon is often shadowed by this large
set of parameters. Due to this fact, in this work, the simplest model has been
chosen, with an axisymmetric and incompressible flow to obtain a problem that
will be perfectly defined by the minimum set of parameters. The tornado is
going to be modelled as a free vortex, because free vortex asymthotic solutions
for high Reynolds numbers are avaliable.

1.1 Models of vortices interacting with a flat surface

In this last 50 years, several authors have dedicated part of their works to
the problem of the interaction of a free vortex over a flat surface. One of the
first was Taylor (1950), who studied the boundary layer solution of a potential
vortex over a conical surface coaxial with it, related to the problem of the
swirl atomizer. That kind of solutions can be characterized in cylindrical polar
coordinates (r, θ, z) as (u, v, w)

(u, v, w) =

(

0,
Γ

r
, 0

)

. (1)

Afterwards, Rott & Lewellen (1966) searched for similarity solutions of the
boundary layer generated by the interaction of the family of vortices

(u, v, w) =

(

0,
Γn

rn
, 0

)

, (2)

with n ranging from -1 (solid rigid rotation) to 1 (potential vortex), that corre-
sponds with (1). In that study, these researchers observed that the problem was
reduced to a set of two ordinary differential equations, but these equations have
solution only for some range of values of n (−1 ≤ n ≤ 0.1). In the case n = −1,
the solution was the same as Bödewadt found 24 years before (Bödewadt, 1940).
Later, the problem (2) was taken up again by Burggraf et al. (1971), and by
Prahlad & Head (1976), that achieved to integrate the boundary layer equa-
tions over a finite disk. In particular, Burggraf et al. (1971) found a two layer
similarity solution for the finite disk problem. This work was also considered by
Belcher et al. (1972), who through numerical integration of the boundary layer
equations over an infinite disk refined the range of n for which no slip solution
existed −1 ≤ n ≤ 0.1217. Experimental evidences corroborate that the expo-
nent n is different from n = 1 in flows of interest in real problems. In particular
it can be seen in Ogawa (1993) and Gupta et al. (1984) that n can have values
between 0.4 and 1 for confined and open flows (vortex chambers and tornados).
That is the reason for the interest of vortex (2), which is more general than
(1). However, both of them lack of meridional motion (u = 0, w = 0), which
is not the case in flows of practical interest, in which the meridional flow is of
the same order of magnitude as the swirl one. Therefore, it is necessary to take
into account this meridional motion in order to study the interaction of a real
vortex with a surface, even in the inviscid outer flow. A particular flow with
meridional motion studied extensively in the literature is the family of vortices
whose far from the axis field decrease inversely with the radius

u = V(y)
1

r
, y = r/z, (3)
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where V(y) is a vectorial function whose three components can be obtained
from the integration of two ordinary differential equations (see Sozou (1992) for
more details). In fact, this is the only case in which the complete Navier-Stokes
equations has a similarity solution. This family of solutions have been used
as model of tornados (Serrin (1972), Shtern & Hussain (1993)), showing very
interesting properties. Goldshtik (1960) and afterwards Serrin (1972), among
others, demonstrated that it exists a critical value of Reynolds number above
which this solution cannot satisfy the no slip boundary condition or the non
singularity near the axis. In other words, there’s a combination of parameters
for which no similarity solution of the form (3) exist. This behavior was observed
by Fernandez-Feria et al. (1999), in a more general family of solution of the
form

u = V(y)rm−2, (4)

where 0 < m < 2, that includes (3) for m = 1. However, for m 6= 1 the
complete Navier-Stokes equations do not have similarity solutions of this form,
but the Euler equations do. It is shown in Fernandez-Feria et al. (1999) that the
solution can be obtained from the integration of an unique ordinary differential
equation. This solution is singular at the axis (y → 0) and on the wall (y → ∞)
for all the cases studied 0 < m < 2. The regularization of the inviscid solution
through a near axis boundary layer is only possible for a range of the swirl
parameter, defined as

L = (v/w)y→0. (5)

That allowed range of values of L depends on m [see Fernandez-Feria et al.

(1995)]. In particular, for 0 < m < 1, the values of L have to be greater than
a critical value, so there will not be solutions below this swirl intensity. The
case m = 1 was studied for the first time by Long (1961), and only a value of
swirl parameter is allowed (L =

√
2), and for this reason, meridional flow and

swirling flow are always coupled in this case. This has been called the colapse
phenomenon by Goldshtik (1960) for solutions of type (3). For 1 < m < 2 it is
shown that the allowed values of L are all below a critical value, and no solutions
exist with higher swirl. Like it happens for vortices of type (3), the family of
(inviscid) m-vortices (4) do not satisfy the no-slip boundary condition on the
solid plane (y → ∞). It was shown by Fernandez-Feria & Arrese (2000) that
the viscous boundary layer equations governing the interaction of these vortices
with the ground do not have self-similar solutions, in spite of the fact that the
equations can be written in similarity form. However, a self-similar solution
of the second kind was found, which will be used in this work as the boundary
conditions for the numerical solution and the base flow for the stability analyses.

1.2 Objectives

The main objective of this work is to study the stability and structure of the
interaction of a free vortex over a flat surface from an analytical, numerical and
experimental point of view. To this end it has been solved the boundary layer
solution of an m-vortex (Fernandez-Feria, 1995), over a flat surface, previously
solved in Fernandez-Feria & Arrese (2000). It has been developed a formulation
that eliminates the finite radius R0 appearing in the similarity solution of the
second kind for the boundary layer over the flat plate developed by Fernandez-
Feria & Arrese (2000). We will use later this boundary layer solution as inflow
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of the numerical simulation. To know wether this solution is stable to non-
axisymmetric perturbations for the design of an experiment it has been carried
out an non-parallel local stability analysis of this similarity solution.

To solve the axisymmetric Navier-Stokes equation, it has been developed an
steady state solver that use the pseudo-arclength method (Keller, 1977, Beran
& Culick, 1992, Lopez et al. , 2001, Sanchez et al. , 2002) that can be used to
study bifurcations in the flow. It has been characterized the particular case of
the m-vortex which corresponds to Long’s vortex (Long, 1961), that has been
used extensively as a model of tornado, and for which m = 1. For this particular
case, it has been proved that, for high Reynolds numbers, the solution reaches
a similarity stage near the axis and far away the ground that can be compared
with one of the two possible Long’s solutions near the axis. In particular, our
numerical solution tends to Type II solution, with flow directed downwards at
the axis.

Finally, it has been designed and built an experimental setup to simulate this
problem. The main aim of this experiment is to obtain the exponent m of a real
vortex, and also to study the transitions between solutions and to characterize
vortex breakdown.

2 Stability results

In this part it has been have studied the three dimensional, non parallel spa-
tial stability of the boundary layer solution given in Fernandez-Feria & Arrese
(2000). It has been developed the formulation for any value of m, but it has
been solved numerically for the case of Long’s vortex (m = 1 and L =

√
2),

which is going to be the one simulated numerically. With this results we want
to know whether or not the boundary layer solution, used as boundary condition
in the axisymmetric simulation is stable. The other interest of this study is to
provide information of the Reynolds numbers to design an experimental setup.

The main result of this section is the establishing of a formulation where the
boundary layer and the non dimensional radius R are directly related. In the
case of axisymmetric perturbations, for high Reynolds numbers (high radius),
non viscous modes are the most unstable ones. When diminishing Reynolds
number (see figure 3) the non viscous perturbations traveling to the center of
the vortex decay and are finally damped. There also appears a new viscous mode
that become more unstable than the non viscous one, decaying later and damp-
ing for a lower Reynolds than the non viscous one. Repeating this study for the
rest of the azimuthal wave numbers it can be seen that all the threedimensional
perturbations traveling to the center are damped for a critical Reynolds number
of R < 23 as is shown in figure 4, where the region of stability is depicted for
different Reynolds numbers.
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Figure 3: Maximum growth rate γ for each value of the Reynolds number (or
radius) R. Viscous modes: (*). Inviscid modes: (o).
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Figure 4: Region of instability in the plane (n, R), where n is the azimuthal wave
number of the perturbations. It is observed that the critical Reynolds number
is Rc ≃ 23, and the first instability as R increase corresponds to n = +4
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Figure 5: Example of limit point bifurcation. It is represented the value of the
stream function in a fixed point near the recirculation bubble, as a function of
Reynolds number. In this case, three solutions are possible for the same value
of the Reynolds number. The solution 2 is unstable (see Lopez et al. (2001)).
This can be seen as an hysteresis cycle.

3 Numerical Simulation

In this part we have developed an numerical code in FORTRAN that is able to
solve the axisymmetric Navier-Stokes equations in cylindrical polar coordinates
to obtain directly the steady state. This code is based in the work of Lopez et al.

(2001) and Sanchez et al. (2002). It has been developed also a solver that
allows to obtain the axisymmetric solution using a pseudo-arclength method
[see Keller (1977), Beran & Culick (1992), Lopez et al. (2001), Sanchez et al.

(2002)], which is able to detect bifurcation points. For instance, the solver is
able to detect limit points, in which for a given value of Re the equations have
tree possible solutions (see figure 5).

One of the contributions of this thesis is the formulation of the numerical
simulation using as boundary conditions the asymthotic matching of the bound-
ary layer solution with the outer solution. With this formulation, the problem
is solved with a really free vortex boundary conditions. Figure 6 shows the
boundary layer solution for the stream function together with the inviscid outer
solution and the composite solution, which is the summation of the outer solu-
tion plus the boundary layer solution minus the common part of the solution

With these two solvers we have analyzed the problem of the interaction of
Long’s vortex over a flat surface. For this case it has been solved the problem
until very high Reynolds number, for which it has been obtained a similarity
solution behavior far away from the ground and near the axis. These solutions
have been compared with previous results on the similarity solutions of Long’s
vortex near the axis (Long, 1961, Burggraf & Foster, 1977, Fernandez-Feria et al.

, 1995). The more interesting result is that two possible solutions of the near
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Figure 6: In this figure is presented an example of matching the external solution
with the boundary layer solution for Re = 10.

axis boundary layer equations exist at high Reynolds numbers. These are the
so called type I or type II solutions by Burggraf & Foster (1977), depending on
whether it has a maximum or a minimum in the axial velocity at the axis. The
interaction of this vortex with a flat surface selects just one of them, which is
found have to be the type II solution with negative velocity at the axis. And
what is even more interesting, it selects the asymptotic minimum value of the
axial velocity in the axis.
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Figure 7: This figure present two example of solutions obtained. The stream
function is presented for two different Reynolds number. The one in the left
corresponds to a low Reynolds number (“one cell” solution) and the one on the
right for a high Reynolds number, in which in black is presented reversed flow
(“two cell”).
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Figure 8: Sketch of the experimental setup with some characteristic lengths.
The flow enters through eight equally spaced pipes and turns due to the rotating
blades.

4 Experimental Results

An experimental setup has been designed and built to simulate the problem of
the interaction of a vortex over a solid surface. The design has been done basing
our calculation on the stability results obtained before. Once this experimental
setup has been built, we have measured the velocity field using a stereo PIV
equipment. In this preliminary experimental work, we have just validated the
design of the experiment and determined the exponent m of the radial decay of
the azimuthal velocity.

Figure 8 shows a sketch of the experiment with the most important length
scales. The flow enters the axisymmetric container through eight equally spaced
pipes and is rotated through 36 blades connected to an AC motor. The flow
rate, the angular velocity of the rotation and the temperature are monitorized
through a program in Labview during each test. Flow rate has oscillations of less
than a 1% and the angular velocity less than 2%. Two Reynolds numbers, one
related the flow-rate and the other one based on the swirl velocity, are defined:

ReQ =
Q

πr0ν
, ReL =

Ωr2

0

ν
. (6)

Two measurement configurations have been studied, which are presented in
figure 9. The first one (top) corresponds to the measurement of the 2D velocity

10



Figure 9: Pictures of the experimental setup with the two configuration studied.
On the top, the two dimensional configuration, in which the laser is illuminates
from the front side, and the camera takes the images through the surface of
perspex by mean of a mirror. On the bottom, the stereo configuration, in which
the laser illuminates through the surface of interaction and the images are taken
with two cameras localized in front of the experiment.
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Figure 10: Velocity field obtained by 2D-PIV for ReQ = 1648.6 and ReL =
570.5. On the left it is shown the radial velocity and on the right the azimuthal
velocity. Lengths dimensions are in mm and velocities are in cm/s.

field on a horizontal plane, and the second one (bottom) to a 3D measurement
(with two cameras) of the velocity field on a vertical plane. The main interest
of this study is to verify if the experiment fits our needs and to obtain an
approximation of the value of the exponent m. For the two dimensional results,
some fields have been obtained for different heights. An example is shown in
figure 10 where the 2D field is represented in cylindrical polar coordinates.

The three dimensional results configuration have shown the existence of a
neutral curve in the plane (ReQ, ReL) below which no swirl appears (see figure
11). In figure 12 axial and azimuthal velocities in a plane perpendicular to the
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Figure 11: Summary of the 3D experimental measurements for different values
of ReQ and ReL. In dashed lines it is presented the approximated transition
between solutions with no swirl and with swirl. With (1), (2) and (3) are marked
the three flow rates studied.
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Figure 12: Velocity field in the vertical plane (r, z) obtained by stereoscopic PIV
for ReQ = 1403.6 and ReL = 234.1. Top: Axial velocity. Bottom: Azimuthal
velocity.

flat surface are shown, localized just in the geometric center of the experiment.
A depression in axial velocity is located near the axis, due to the intensity of
swirl, and an almost columnar vortex is formed. To determine the m coefficient,
the solutions far away the ground have been used. Figure 13 shows an example
of the radial profiles of the velocity field and of its fitting to a radial decay of
the form rm−2.

Repeating this proccess for all the ReQ and ReL cases studied, we have ob-
tained that the decaying coefficient is not dependent on each of the parameters
separately, but on a relation between them. In particular, we find that m de-
pends only on the swirl parameter Lexp = ReL/ReQ, and that this dependence
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is almost linear (see figure 14).
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