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Abstract

The linear stability of the developing  ow in an axially rotating pipe is analyzed using parabolized stability
equations (PSE). The results are compared with those obtained from a near-parallel stability approximation
that only takes into account the axial variation of the basic  ow. Though the PSE results obviously coincide
with the near-parallel ones far downstream, when the  ow has reached a Hagen-Poiseuille axial velocity
pro6le with superimposed solid-body rotation, they di7er signi6cantly in the developing region. Therefore,
the onset of instability strongly depends on the axial evolution of the perturbations. The PSE results are also
compared with experimental data from Imao et al. [Exp. Fluids 12 (1992) 277], showing a good agreement
in the frequencies and wavelengths of the unstable disturbances, that take the form of spiral waves. Finally, a
simple method for detecting one of the conditions to characterize the onset of absolute instability using PSE
is given.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

The linear stability of fully developed Hagen-Poiseuille  ow with superimposed solid-body rotation
has been considered by several authors (Pedley, 1969; Maslowe, 1974; Mackrodt, 1976; Cotton and
Salwen, 1981; Maslowe and Stewartson, 1982; Fernandez-Feria and del Pino, 2002). Although it is
to be expected that in an axially rotating pipe, if the  ow is steady, Poiseuille  ow plus solid-body
rotation will be the ultimate form of the motion far downstream, these theoretical stability results
are not easily tested experimentally because, as it was 6rst argued by Pedley (1969), this ultimate
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form is reached too far downstream: the length of the pipe has to be, at least, the maximum of
Re×R or ReL×R, where R is the radius of the pipe, Re is the axial Reynolds number, and L is the
swirl parameter (see next section for a precise de6nition of these two-nondimensional parameters).
Actually, Pedley showed that earlier experiments by White (1964) did not satisfy this criterium.
In addition, another important diGculty is the fact that, for Reynolds numbers and swirl parameters
above their critical values for stability, the  ow may become unstable in the developing region before
the Poiseuille axial  ow and the solid-body rotation are both fully developed, so that this ultimate
form of the  ow is never reached in practice. That this is what actually happens was shown by
Imao et al. (1992), who performed accurate LDA measurements of the  ow in an axially rotating
pipe when an uniform  ow is introduced therein, for a given Re and a wide range of values of L.
These authors pointed out that spiral instability waves appeared clearly in the transition region for
high enough values of the rotation rate of the pipe.
To shed some new light into this problem, in the present paper we analyze the nonparallel linear

stability of the  ow in an axially rotating pipe when an uniform  ow with no rotation is introduced at
the inlet. The structure of the paper is the following: in Section 2, numerical results are given for the
basic  ow, i.e. for the axisymmetric developing  ow in an axially rotating pipe with an uniform  ow
at the inlet. We use a streamfunction-vorticity-circulation formulation for the numerical simulation,
in a pipe of length large enough to reach the desired 6nal Poiseuille axial  ow with superimposed
solid-body rotation. It must be noted here that this ultimate downstream  ow can always be reached
with an axisymmetric numerical simulation because the asymptotic  ow is stable to axisymmetric
perturbations for all values of Re and L Mackrodt, 1976; Cotton and Salwen, 1981; Fernandez-Feria
and del Pino, 2002). The nonparallel linear stability of this  ow is analyzed using the parabolized
stability equations (PSE) technique (Bertolotti et al., 1992; Herbert, 1997) which takes into account
both the axial evolution of the basic  ow and the axial history of the perturbations. The formulation
of this stability problem is given in Section 3. In Section 4 we compare the results of the PSE
both with near-parallel stability results that only consider the axial variation of the basic  ow,
and with the experimental results of Imao et al. (1992). We also analyze the onset of absolute
instability. Finally, Section 5 discusses these results, showing the great advantages of the PSE over
the near-parallel approximation, and its appropriateness to characterize not only the appearance of
convective instabilities, but also the onset of absolute instability in this kind of  ow.

2. Axisymmetric developing �ow in an axially rotating pipe

The basic  ow whose stability is going to be considered here consists on an axisymmetric  ow
in an axially rotating pipe of radius R with angular velocity �. At the inlet, the  ow is assumed
uniform with axial velocity Wi. If the pipe is long enough, the  ow tends to an axial Poiseuille
 ow plus solid-body rotation. In cylindrical polar coordinates (r; 	; z), this far downstream  ow has
a velocity 6eld given by

V ≡ [U; V;W ] =W0[0; Ly; (1− y2)]; (1)

where

y ≡ r
R
; (2)
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is the nondimensional radial distance, W0 = 2Wi is the maximum axial velocity at the axis and L is
the swirl parameter,

L ≡ �R
W0

: (3)

The other two dimensionless parameters governing the  ow are the Reynolds number

Re ≡ W0R
�

=
2WiR
�

; (4)

where � is the kinematic viscosity, and the aspect ratio

�=
R
z0
; (5)

where z0 is the pipe length (the nondimensional pipe length �−1 is a large parameter). It is also
convenient to de6ne a Reynolds number for the azimuthal  ow, Re	 ≡ �R2=�= ReL.
The numerical simulation of this  ow has been considered by Imao et al. (1989), among others.

Here we use the streamfunction-vorticity-circulation formulation, where the nondimensional stream
function �, vorticity �, and circulation � are de6ned, respectively, through

U
W0

=−�
y
@�
@x
;

W
W0

=
1
y
@�
@y
; (6)

�=
R
W0

[∇∧ V]	 =
�
W0

@U
@x

− 1
W0

@W
@y

; (7)

� = y
V
W0
; (8)

where

x ≡ z
z0
; (9)

is the nondimensional axial coordinate. With this formulation, the continuity equation is satis6ed
identically, and the three equations to be solved are the azimuthal components of the momentum
and the vorticity equations, together with de6nition (7) of �. These nondimensional equations can
be written as
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Note that �, �, �, and the time t are made dimensionless with W0R2, W0=R, W0R, and z0=W0,
respectively.



264 C. del Pino et al. / Fluid Dynamics Research 32 (2003) 261–281

x/∆ 

0 

1 

1 

y 

y 

h 

0.2 40 400 

g 

Fig. 1. Sketch of the pipe geometry, together with steady state radial velocity pro6les of the axial velocity h (upper
curves) and azimuthal velocity g (lower curves) at x=�=0:2; 40, and 400. �−1 =400, Re=500 and L=0:5. The numerical
computations are obtained using �x=5×10−4, �y=0:012, and �t=10−4. The steady-state plotted corresponds to t � 143.

These equations are solved with the following boundary conditions (see Fig. 1 for a sketch of the
geometry): At the inlet, x=0, we assume an uniform axial velocity pro6le together with U =V =0,

� = y2; �=−�
2

y
@2�
@x2

; � = 0 at x = 0; 06y6 1: (13)

At the pipe exit, x = 1, the velocity pro6les are assumed to be independent of x,

@2�
@x2

= 0; �=− 1
y
@2�
@y2

− 1
y2

@�
@y
;

@�
@x

= 0 at x = 1; 06y6 1: (14)

At the axis of symmetry, we have

� = �= � = 0 at 06 x6 1; y = 0: (15)

Finally, at the solid rotating wall, U =W = 0 and V=W0 = L

� = 0; �=− 1
y
@2�
@y2

; � = L at 06 x6 1; y = 1: (16)

In the computations we have selected a pipe length �−1 large enough to reach, in the steady state,
the  ow (1) downstream, which in the present variables is given by

[�; �; �] = [y2=2− y4=4; 2y; Ly]: (17)

As estimated by Pedley (1969), �−1 =O[max(Re; Re	)]. However, we found in the di7erent simula-
tions shown in this paper that Pedley’s criterion is really conservative. The asymptotic downstream
 ow is reached with just 30 or 40 percent of that estimated length. This is also observed in the
experimental results given by Imao et al. (1992). For the most unfavorable case considered, Re=500
and L= 1:5, for which the estimated pipe length would be �−1 ≈ 750, the asymptotic downstream
 ow is already reached at z=R ≈ 360 both, in the experiments and in the numerical simulations. For
this reason we have selected �−1 = 400 in all the simulations given below.
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To solve problem (10)–(16) numerically we have used an explicit 6nite di7erence scheme, with
second-order di7erences in space, and a second-order predictor–corrector method to advance in time
(see, e.g., Lopez and Weidman, 1996). For given values of Re and L, the computation starts at
t = 0 with the  uid at rest, and ends when a steady state is reached. Once the steady basic  ow
in the variables [�(y; x); �(y; x); �(y; x)] is found, Eqs. (6) and (8) are used to obtain the veloc-
ity 6eld, which in dimensionless variables will be written as [f(y; x); g(y; x); h(y; x)], related to
[U; V;W ] by

V ≡ W0[Lf; Lg; h]: (18)

As we shall see in the next section, the pressure 6eld of the basic  ow, which can of course also be
obtained from [�; �; �] by solving an additional Poisson equation, is not needed in the linear stability
analysis of the  ow due to the fact that the pressure enters linearly into the momentum equations.
The possibility of getting rid of the pressure 6eld is thus one of the reasons why we have used the
simpler � − � − � formulation to solve numerically the incompressible basic  ow. (However, the
stability problem of the following sections is best described in primitive velocity–pressure variables.)
Fig. 1 shows some radial pro6les of the steady-state axial (h) and azimuthal (g) velocity components
at several axial locations for Re = 500 and L= 0:5 (�−1 = 400).

3. Nonparallel linear stability formulation

3.1. Parabolized stability equations

The nonparallel stability of the  ow in an axially rotating pipe described above is now analyzed
using PSE. The  ow variables, (u; v; w) and p, are decomposed into their mean parts, (U; V;W ) and
P, and small perturbations. Following (18),

u=W0(Lf + Mu); (19)

w =W0(h+ Mw); (20)

v=W0(Lg+ Mv); (21)

p= "W 2
0 (e + Mp); (22)

where " is the  uid density, and e(y; x) is the nondimensional pressure 6eld of the basic  ow
(P ≡ "W 2

0 e). As we shall see below, e does not enter explicitly into the linear stability equations.
The nondimensional small perturbations,

s ≡ [ Mu; Mv; Mw; Mp] (23)

which, in general, are functions of the four independent (nondimensional) variables (y; 	; x; t), are
decomposed in the standard form (Bertolotti et al., 1992)

s(y; 	; x; t) = S(y; x)#(x; 	; t): (24)



266 C. del Pino et al. / Fluid Dynamics Research 32 (2003) 261–281

The complex amplitude

S(y; x) ≡ [F(y; x); G(y; x); H (y; x); '(y; x)]; (25)

is allowed to depend on the axial co-ordinate x, in addition to the radial one, to account for the
nonparallelism of the basic  ow. The other part of the perturbation is an exponential that describes
the wave-like nature of the disturbances,

#(x; 	; t) = exp


 1
�

x∫
x0

a(x′) dx′ + in	− i!
t
�


 ; (26)

where x0 is the axial point in which the disturbances are introduced, a(x) is the nondimensional
(complex) axial wavenumber, n is the azimuthal wave number, and ! is the nondimensional fre-
quency of the disturbances. a and ! are de6ned as

a ≡ ik̂R ≡ ,+ i-; (27)

! ≡ !̂R
W0

; (28)

where k̂ and !̂ are the dimensional frequency and axial wavenumber, respectively. The real part of
a(x), ,(x), is the exponential growth rate, and its imaginary part, -(x), is the axial wavenumber.
In the spatial stability analysis to be considered here, one 6xes a real frequency ! and looks for
complex values of a(x). The  ow is unstable when ,(x)¿ 0.
Substituting (19)–(28) into the incompressible Navier–Stokes equations and neglecting second-

order terms in both the small perturbations (i.e., linear stability), and � (i.e., neglecting terms with
second order axial derivatives, which constitutes the basis of the PSE technique; see, e.g., Bertolotti
et al., 1992; Herbert, 1997) one obtains the following parabolic stability equation for S:

L · S+LM · @S
@x

= 0: (29)

The matrix operators L and M are de6ned as follows:

L ≡ L1 + aL2 +
1
Re

L3 + a2
1
Re

L4 + LL5; (30)

L1 =




1 + y @
@y in 0 0

i(nLg− !y) −2Lg 0 y @
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; (31)

L2 =M =
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0 0 yh y


 ; L4 =




0 0 0 0

−y 0 0 0

0 −y 0 0

0 0 −y 0


 ; (32)
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: (34)

This equation has to be solved with the following boundary conditions at the axis y = 0 (e.g.
Batchelor and Gill, 1962), and at the pipe wall y = 1:

F(0; x) = G(0; x) = 0; dH=dy|y=0 = 0; (n= 0); (35)

F(0; x)± iG(0; x) = 0; dF=dy|y=0 = 0; H (0; x) = 0; (n=±1); (36)

F(0; x) = G(0; x) = H (0; x) = 0; (|n|¿ 1); (37)

F(1; x) = G(1; x) = H (1; x) = 0: (38)

It also needs an initial condition at x=x0. A convenient choice is the solution of the local eigenvalue
problem (Bertolotti et al., 1992; Fernandez-Feria, 1999)

L0 · S0 ≡
[
L1 + a0L2 +

1
Re

L3 + a20
1
Re

L4 + LL5

]
· S0 = 0; (39)

that provides the initial eigenvalue a0 ≡ a(x0), and eigenfunction S0(y) ≡ S(y; x0), which will be
used to start the axial integration of Eq. (29) for a given set of nondimensional parameters. Note
that for the spatial stability analysis that we are considering here (real frequency ! and complex
wavenumber a0, which is the appropriate one for a stability analysis based on the PSE; Bertolotti
et al., 1992), Eq. (39) with boundary conditions (35)–(38) constitute a nonlinear eigenvalue prob-
lem. For a parallel basic  ow like a Hagen-Poiseuille  ow plus solid-body rotation [i.e., when
(18) is given by (1)], this problem coincides with that considered in Fernandez-Feria and del Pino
(2002).
Eq. (39) accounts for the e7ect of the nonparallelism of the basic  ow, but neglects the ef-

fect of the history or convective evolution of the perturbations. Its solution for di7erent values
of x¿x0 will be compared in the next section with the solution to the PSE (29) to measure
the importance of this last e7ect. This local solution will be termed near-parallel (NP)
solution.
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3.2. Normalization condition and numerical method

As it stands, there is some ambiguity in the partition of the perturbations (24) into two functions
of x. To close the problem one has to enforce an additional condition which puts some restriction
on the axial variation of S. Basically, one uses a normalization condition that restricts rapid changes
in x of S, according to the slow axial variation of the basic  ow (small �). Thus, the growth
rate and the axial sinusoidal variation are represented by the exponential function #. Several types
of normalization conditions can be used (Bertolotti et al., 1992; Herbert, 1997; Fernandez-Feria,
1999). Here we will use an integral condition based on the kinetic energy of the perturbations.
De6ning a physical ampli6cation rate a1 based on the axial variation of the kinetic energy of the
perturbations

a1(x)≡ ,1(x) + i-1(x) ≡ R

∫ R
0 [ Mu †(@ Mu=@z) + Mv†(@ Mv=@z) + Mw†(@ Mw=@z)] dr∫ R

0 [| Mu|2 + | Mv|2 + | Mw|2] dr

= a(x) + �

∫ 1
0 [F

†(@F=@x) + G†(@G=@x) + H †(@H=@x)] dy∫ 1
0 [|F |2 + |G|2 + |H |2] dy

; (40)

where † denotes the complex conjugate, the normalization condition used here can be expressed as
a1(x) = a(x) for all x¿x0. That is, at each axial step in the integration of (29), the second term in
the right-hand side of (40) (the one multiplied by �) is set equal to zero, transferring the main part
of the streamwise variation of the perturbations to the exponential function #.
To solve numerically Eq. (29) together with its normalization condition, the radial (y) depen-

dence of S is discretized using a staggered Chebyshev spectral collocation technique (Khorrami
et al., 1989). This method has the advantage of eliminating the requirement of two arti6cial pressure
boundary conditions at y=0 and 1 which, for that reason, are not included in (35)–(38). To imple-
ment the spectral numerical method, Eq. (29) is discretized by expanding S in terms of truncated
Chebyshev series. The Chebyshev polynomials domain −16 s6 1 is mapped into the radial interval
06y6 1 using y = (s + 1)=2. This simple transformation concentrates the Chebyshev collocation
points at both the axis and the pipe wall. Cubic splines are used to adapt the numerical solution
of the basic  ow to the Chebyshev collocation points. The radial domain is thus discretized in N
points, N being the number of Chebyshev polynomials in which S=[F;G;H;'] has been expanded.
The number of points N is 50 in all the results presented here. The accuracy of these results has
been checked by comparing them with those obtained using higher values of N .
The streamwise variation of (29) is solved numerically using an implicit 6nite di7erence

scheme:

Lj+1 · Sj+1 + LM · Sj+1 − Sj
(�x)j

= 0; (41)

where j is the step index in the axial direction, and (�x)j the step size. A marching technique
is used to solve the 4N discretized equations resulting from (41), starting at x = x0. Since the
unknown a appears with S, this equation constitutes, together with the normalization condition,
a system of nonlinear equations for S and a. Iteration is used to solve the nonlinear system of
discretized algebraic equations at each axial station j+1: one starts with the results of the previous
station j, and uses (41) with aj to obtain a 6rst approximation for Sj+1; these are used in the
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normalization condition to yield a 6rst approximation for aj+1, which is again used to correct Sj+1;
the iteration procedure is continued until the modi6cations in the real and imaginary parts of a
are both less than 10−8. Usually, between 2 and 4 iterations were needed (except in the 6rst step
after x= x0, where more iterations are required). The process is repeated at the next marching step.
Numerical instability puts a lower limit to the axial step size (�x)j for given values of the physical
parameters and of those for given N . This limitation strongly a7ects the axial accuracy of the
function a(x) obtained numerically. To have some control on the numerical instability we have used
the technique described by Anderson et al. (1998), which allows the use of smaller step sizes �x in
numerically stable schemes and, consequently, improving the axial accuracy of the solution. Thanks
to this method we can reach values of �x small enough to obtain a(x) with four or 6ve signi6cant
6gures.
As mentioned above, the initial condition of (29) and its normalization condition at x = x0, S0

and a0, are the eigenfunctions and eigenvalues of Eq. (39). This is a nonlinear eigenvalue prob-
lem, which is solved using the linear companion matrix method described by Bridges and Morris
(1984). The resulting (complex) linear eigenvalue problem of dimension 8N is solved with the
IMSL subroutine DGVCCG, which provides the entire eigenvalue and eigenvector spectrum. Ow-
ing to nonlinearity, the size of the matrices in the spatial eigenvalue problem is thus twice the
size of the matrices in the radial discretization of (41), so that the computation time to obtain
the initial condition is much larger that the computation time of marching with the PSE. Also,
due to the large dimension of the matrices in (39), a relatively large amount of spurious numeri-
cal eigenvalues with very small wavenumbers (large wavelengths) are produced by the eigenvalue
solver. They are easily discarded, however, because the corresponding growth rates increase without
bound with N , instead of rapidly converging to a 6nite value as N is increased, as it happens for
eigenvalues of physical modes. Finally, to mention that the PSE solution started with the local eigen-
solution presents a short transient of typically a few �x before converging to the actual solution of
the PSE.

4. Stability results and discussion

4.1. Comparison between near-parallel and PSE results

As just stated, the eigenvalues and eigenfunctions of Eq. (39) at some initial axial location x= x0
will be used as the initial values of the PSE (29). Before characterizing the stability properties of
the  ow with that equation, it is of interest to compare the function a(x) obtained from (39) in the
whole range x06 x6 1 with the corresponding PSE results.
Fig. 2 shows this comparison for Re = 100 and L = 0:5, when the disturbance frequency is

! = −1, and the azimuthal wavenumber is n = −1 (the pipe length selected is �−1 = 100). The
corresponding far downstream Hagen-Poiseuille  ow plus solid-body rotation is stable for these
perturbations (actually, the asymptotic  ow for these values of Re and L is linearly stable for any
perturbation). Therefore, it is expected that ,(x)¡ 0 for every value of x. This is shown to be
the case in Fig. 2, where we plot the functions ,NP(x) and -NP(x) for x0 = 0:0156 x6 1 obtained
from the near-parallel approximation (39) for the three lest stable modes (lines with circles). It is
observed that the less stable mode at x = x0 (largest ,) becomes the most stable (smaller ,) of the
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Fig. 2. ,PSE(x) and ,NP(x) (lines with circles). (b): -PSE(x) and -NP(x) (lines with circles). Re=100, L=0:5, �−1 = 100,
!=−1, n=−1; x0 = 0:015, �x = 0:005. The axial evolution of the three less stable modes are shown.

three modes far downstream, being the second less stable mode at x0 the one that becomes less
stable far downstream (which, therefore, is the one given in Fernandez-Feria and del Pino, 2002;
see, e.g., Fig. 5 of that reference). This switching between the less stable modes along the pipe is
a common feature of almost all the cases considered below, so that it is not enough to consider the
axial evolution of the less stable mode at x = x0, but it is necessary to follow the axial evolution
of several initial modes. Also observed in that 6gure is that the asymptotic values are practically
reached at x � 0:2, where the  ow becomes a Hagen-Poiseuille  ow with superimposed solid-body
rotation. Fig. 2 also displays the functions ,PSE(x) and -PSE(x) obtained from the PSE (29) when
the axial integration is started at x = x0 = 0:015 with the near-parallel eigenvalues of (39) for the
three di7erent modes just described (continuous lines; �x = 0:005 in the numerical integration). It
is seen that these functions undergo large  uctuations before reaching the downstream asymptotes,
except for the mode that becomes the less stable one downstream. These  uctuations are due to
the axial switching between the eigenvalues of the operator L in (29). However, the fact that
the functions ,PSE(x) and -PSE(x) corresponding to the initial mode that eventually becomes the
less stable one downstream have not noticeable  uctuations guarantees that the PSE would yield
physically relevant information about the stability of the  ow. This fact is a common feature of all
the cases considered below. It must be added that the PSE results, in addition of being physically
more precise than the near-parallel ones from Eq. (39) (because the axial history of the perturbations
is taken into account), are considerably less costly to obtain numerically: the CPU time to obtain
the whole curve ,PSE(x) shown in Fig. 2 is of the order of the CPU time to obtain a single point
of ,NP(x).
Some comments on the accuracy of the PSE results are in order here. All the results given in this

paper are obtained with �x=0.005, which is the smallest value allowed by the numerical stability
of the PSE method, after using the stabilisation technique of Anderson et al. (1998). This value
of �x is small enough to obtain the axial evolutions ,(x) and -(x) of the mode that eventually
becomes the less stable one (the physical mode) with four or 6ve signi6cant 6gures, as shown by
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Fig. 3. As in Fig. 2, but for Re = 500, L = 0:5, �−1 = 400, ! = −0:1, n = −1; x0 = 0:01, �x = 0:005 and the four less
stable modes.

the results obtained with �x=0:006; 0:007 and 0.01. However, the axial evolution of the  uctuating,
nonphysical modes changes signi6cally as �x increases, showing that some details of this behaviour
are just numerical. Thus, the use of di7erent values of �x is relevant not only to check the accuracy
of the results, but also to discard nonphysical modes. The same may be said in relation to the
starting location x0 (we have selected x0=0.01 in all the shown computations): the axial evolution
of the physically relevant (less stable) mode becomes independent of x0 as x0 decreases. How-
ever, the details of the evolution of the  uctuating, more stable, modes depend on this numerical
parameter.
The di7erence between ,NP(x) and ,PSE(x) for the physically relevant mode in Fig. 2 is actually

very small, so that one would think that the only advantage of the PSE is merely computational.
However, this is not so when the  ow becomes unstable, as shown in Fig. 3. There, the case
Re = 500, L = 0:5, in a pipe of length �−1 = 400, for perturbations with ! = −0:1, and n = −1,
is considered. These values of Re and L correspond to one of the cases analyzed experimentally
by Imao et al. (1992) (see next section). According to Fernandez-Feria and del Pino (2002), the
downstream  ow is unstable for these values of ! and n. Obviously, the downstream asymptotic
values of aPSE and aNP coincide because both Eqs. (29) and (39) yield the same results when the
axial derivative becomes negligible in (29). The results at the initial axial position x = x0 = 0:01
are also the same because aNP is used as the initial condition for (29) at x0. However, the axial
evolution of a is quite di7erent in both cases, particularly near the axial position where the  ow
becomes unstable (,= 0). Therefore, the predictions about the instability of the  ow, i.e. about the
axial location where the  ow becomes unstable, and about the frequency, wavelength and azimuthal
wavenumber of the perturbation that 6rst becomes unstable, are very di7erent in both formulations.
This can be better appreciated in Fig. 4, where the stability properties of this  ow (Re=500, L=0:5)
according to both formulations are compared for a wide signi6cant range of frequencies, and for
n = −1 and −2. For perturbations with n = −1, the  ow becomes unstable at x=� ≡ z=R � 12 for
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Fig. 4. Comparison between ,PSE (continuous lines) and ,NP (dots) for di7erent values of x (as indicated) as functions of
!, for perturbations with n=−1 (a), and n=−2 (b), in a rotating  ow with Re = 500, L= 0:5, �−1 = 400.

! � −0:15 according to NP equation (39), and at z=R � 10 for ! � −0:1 according to PSE (29).
For perturbations with n=−2, z=R � 16, ! � −0:5 according to (39), and z=R � 12:4, ! � −0:47
according to (29).
Therefore, it is concluded that the use of the PSE is essential to correctly characterize the onset

of linear instability of the  ow. For this reason, all the results given below are obtained using this
formulation (except speci6ed otherwise).
Before 6nishing this section, it is of interest to present PSE results for the case of a swirless  ow

(L = 0). As it is well known, the Hagen-Poiseuille  ow is always linearly stable (e.g. Cotton and
Salwen, 1981). In addition, since there is no azimuthal velocity component, the stability results are
symmetric with respect to !=0, for a given n. Fig. 5 shows ,(!) for Re = 500, n = −1 and −2,
for di7erent values of x. Only the less stable mode is shown. The di7erence between ,NP and ,PSE
is as important as in Fig. 4 for L = 0:5, but now this has no physical consequences on the  ow
because all the perturbations are stable. The axial evolutions of the less stable mode obtained with
both formulations for !=−0:06 are compared in Fig. 6.

4.2. Comparison between PSE results and experimental results

In this section we consider three of the cases that were analyzed experimentally by Imao et al.
(1992) with more detail. Using laser doppler anemometry, these authors characterized the appearance
of helical waves in the  ow in an axially rotating pipe for Re=500 and several values of L. The  ow
developed from an uniform velocity pro6le at the inlet to rotating Hagen-Poiseuille  ow downstream.
However, at certain rotation rates, the  ow  uctuated before this downstream state was reached, and
they were able to characterize the frequency, axial wavelength, and azimuthal wavenumber of the
spiral waves formed after instability of the basic  ow.
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4.2.1. Re = 500 and L= 0:5
PSE results for this case have already been shown in Figs. 3 and 4. Fig. 7 shows the isocontours

of , and - on the (x; !)-plane of the most unstable mode for n = −1 and −2. The length of the
pipe used in the numerical simulation of the basic  ow was �−1 = 400 (note that the abscissas in
Fig. 7 is x=� = z=R). The axial location at which the  ow becomes unstable is better appreciated
in Fig. 8(a), where the maximum values of , along the pipe are plotted for n = −1 and −2. The
corresponding frequencies and the axial wavenumbers are plotted in Fig. 9. These results show
that the  ow becomes unstable quickly, much before the downstream asymptotic  ow is reached.
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Fig. 8. (a): Maximum values of , as functions of z=R corresponding to the cases plotted in Fig. 7. (b): The same results
but for a basic  ow with Hagen-Poiseuille  ow at the inlet.

In particular, the mode with n=−1 is the 6rst to become unstable, at z=R � 9:6 (see Fig. 8(a)), for
a frequency ! � −0:1, and an axial wavenumber - � 0:72 (see Fig. 9). However, the mode with
n=−2 becomes unstable just after the n=−1 one, at z=R � 11:8, with a growth rate that surpasses
that of the mode n=−1, becoming the most unstable mode in the downstream solid-body rotating
 ow (see Fig. 8(a)). The corresponding frequency and axial wavenumber of this mode n=−2 when
it becomes unstable at z=R � 12:4 are ! � −0:47 and - � −0:72, respectively (Fig. 9).
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Fig. 9. Values of the frequency (a) and the axial wavenumber (b) corresponding to the growth rates plotted in Fig. 8(a).

The experimental results of Imao et al. (1992) for this case Re=500 and L=0:5(Rez=500; N =1
in their notation) show that the  ow becomes unstable before reaching the downstream rotating state.
In particular, at z=R = 60 these authors characterize a spiral wave (which is 6rst detected slightly
before z=R=30) superimposed to the basic  ow with an azimuthal wavenumber |n|=2, a frequency
which approximately coincides with the rotation frequency of the pipe, and a wavelength about eight
times the pipe diameter, which in our notation corresponds to ! � −0:5 and - � 0:78, respectively.
These two last values are very close to the theoretical ones found with the PSE for n=−2. However,
there are two important discrepancies: the PSE predicts that the 6rst mode to become unstable is
n = −1, instead of n = −2, and the axial location for instability predicted by the PSE is quite
upstream of the experimental value z=R � 30. It must be admitted that there exists some uncertainty
in the axial location for instability measured experimentally, because the perturbation has to evolve
some distance downstream, after its growth rate has become positive, before being measurable. In
addition, the PSE results show that the growth rate for n=−2 increases with x faster than the growth
rate for n = −1, surpassing it at z=R � 33 (Fig. 8(a)), so that at z=R = 60, where the experimental
spiral wave is described, the most unstable mode corresponds to n =−2. These two circumstances
may explain why the spiral wave observed experimentally corresponds to n = −2, with that good
agreement between the experimental and theoretical frequencies and axial wavenumbers (! � −0:5
and - � 0:78 in the experiments, and ! � −0:47 and - � 0:72 with the PSE).
In Figs. 8(b) and 10 we have included results obtained for the same  ow parameters (Re = 500,

L = 0:5) but with di7erent inlet conditions of the basic  ow. Instead of uniform axial velocity at
the inlet we have considered the case in which the  ow enters the pipe with the Hagen-Poiseuille
velocity pro6le already formed, but, of course, without rotation, which develops along the pipe.
This inlet condition does not correspond to the experimental setup of Imao et al. (1992), but it is
interesting to see how the stability results change with the inlet conditions. It is observed that the
results for n=−1 are very similar. However, there are important di7erences for n=−2, particularly
for the axial wavenumber (compare Fig. 10(b) with Fig. 9(b)), and for the location where the  ow
6rst becomes unstable (compare Fig. 8(a) with Fig. 8(b)).
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Fig. 10. Values of the frequency (a) and the axial wavenumber (b) corresponding to the growth rates plotted in Fig. 8(b).
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Fig. 11. (a) Maximum values of , as functions of z=R for Re = 500 and L = 1, and their corresponding frequencies (b).
Continuous lines are for n=−1 and dashed lines for n=−2.

4.2.2. Re = 500 and L= 1
The above described shift between n = −1 and −2 modes is more evident for L = 1. For this

rotation rate, Imao et al. (1992) report (L= 1 corresponds to N = 2 in their notation) that the two
kinds of spiral waves ‘appear alternately’. The PSE results show that maximum values of the growth
rates for the modes n = −1 and −2 are in fact very close to each other all along the pipe [Fig.
11(a)]. Moreover, the frequencies corresponding to ,= 0 for n=−1 and −2 are both in agreement
with the experimental results: Imao et al. 6nd that |!=n| � 0:7, which agree quite well with the PSE
results ! � −0:65 for n=−1, and ! � −1:3 for n=−2 [see Fig. 11(b)].
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Fig. 12. Surfaces ,(!; x=�) and -(!; x=�) for Re=500, L=1:5. n=−1 [(a) and (b)], and n=−2 [(c) and (d)]. x0 =0:01
(x0=�= 4), �x = 0:005.

4.2.3. Re = 500 and L= 1:5
Fig. 12 shows the surfaces ,(!; x) and -(!; x) for the less stable modes with n = −1 and −2

obtained with the PSE for this case (the length of the pipe in the numerical simulation of the basic
 ow was �−1 = 400). The maximum values of , along the pipe are plotted in Fig. 13 for n = −1
and −2. The corresponding values of the frequency and the axial wavenumber are plotted in Fig.
14. According to these 6gures, the  ow 6rst becomes unstable at z=R � 5:5 for a perturbation with
n=−1, ! � −1:2, and - � 0:41. The experiments of Imao et al. (1992) for this case (Rez = 500,
N = 3, in their notation) show that at z=R � 26 there already exists an spiral wave with azimuthal
wavenumber |n| = 1, with a frequency about 0:8 times the rotation frequency of the pipe, and a
wavelength about ten times the pipe diameter, which in our notation corresponds to ! � −1:2 and
- � 0:32, respectively. These experimental values of n, ! and - are then in very good agreement
with those obtained with the PSE (as discussed above, the axial location where the spiral wave is
6rst detected experimentally may be quite downstream the location where the growth rate , becomes
positive).
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An important di7erence of the present case in relation to those considered in the previous sections
is that the downstream rotating Hagen-Poiseuille  ow for Re=500 and L=1:5 is not only convectively
unstable, but also absolutely unstable (see Fernandez-Feria and del Pino, 2002, Figs. 10 and 11).
Therefore, this case may serve to check whether the absolute instability appears before the asymptotic
downstream  ow is formed (like it occurs for the convective instabilities just described), and, in
that case, to analyze the formation of an absolute instability in an axially developing  ow. Actually,
Fig. 12(b) for n = −1 shows that at z=R � 22 (x � 0:055) there exists a saddle point in the axial
wavenumber function -(!; x) for ! � −1:23, which coincides with a cusp point of ,(!; x) in Fig.
12(a) (remember that the convective instability for n=−1 appears quite upstream, at z=R � 5). This
behavior, which, according to the Briggs-Bers criterion may indicate the onset of absolute instability
(see, e.g., Huerre and Monkewitz, 1990), is better appreciated in Fig. 15, where cross sections ,(!)
and -(!) of the surfaces depicted in Figs. 12(a)–(b) are plotted for several values of x. At x � 0:055,
both @-=@! and @,=@! become in6nity at ! � −1:23, due to the saddle point of - and the cusp
point of ,, respectively, so that the complex group velocity vg = @!=@- + i@!=@, vanishes. This is
a necessary, though not suGcient, condition for the absolute instability of the  ow. Nevertheless, it
was found in Fernandez-Feria and del Pino (2002), that the condition vg=0 was always linked to the
onset of absolute instability of the fully developed rotating Hagen-Poiseuille  ow, so that one may
think that this is also the case for the developing  ow (it is not easy to characterize the merging
of two spatial branches of the dispersion relation using the PSE formulation). If this is so, the  ow
becomes absolutely unstable before it is fully developed. A similar behavior appears for n = −2,
but further downstream, at z=R � 44 (x � 0:11) for ! � −2:56 [see Figs. 12(c)–(d)]. However,
the spatial stability analysis on which the PSE is based is no longer valid once the complex group
velocity vanishes at z=R � 22 for n=−1.
In relation to the experimental results of Imao et al. (1992), these authors report that the  uc-

tuations appearing in this case with L = 1:5 are much more ampli6ed than in the cases considered
in the previous sections (at z=R= 60 the amplitude of the  uctuations amounts to 30 percent of the
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mean axial velocity!). This behavior may be related to the appearance of the absolute instability. Far
downstream, however, the  ow becomes turbulent. No vortex breakdown phenomenon is reported
by Imao et al. (1992).

5. Conclusions

It has been shown that the use of parabolized stability equations (PSE) is a good and eGcient tool
for analyzing the nonparallel stability of the axially developing  ow in a rotating pipe. Although
the less stable mode at the pipe inlet does not coincide, in general, with the less stable mode
downstream, the PSE always follow correctly the mode that becomes the less stable one downstream
in the pipe. When the  ow becomes (convectively) unstable (to nonaxisymmetric perturbations) it
does so quite before reaching the asymptotic Hagen-Poiseuille  ow with superimposed solid-body
rotation, in agreement with previous experimental results by Imao et al. (1992). Actually, a good
agreement with the experimental frequencies, axial and azimuthal wavenumbers of the unstable
disturbances reported by these authors is found. The method is also appropriate for detecting one of
the conditions characterizing the onset of absolute instability of the axially developing  ow, which
also appears before the downstream  ow is fully developed. However, downstream the axial location
where some perturbations have negative group velocities the spatial stability analysis on which the
PSE method is based is no longer valid. From these results, we are con6dent that the method can
be used for the stability analysis of more complex axially developing swirling  ows of practical and
theoretical interest.
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