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Thermal separation in near-axis boundary layers with intense swirl
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Swirling flows have a wide range of applications and exhibit a variety of interesting features. Gas
cooling near the axis in these flows, the so-called Ranque—Hilsch effect, is one of them. To gain
insight into this phenomenon, we have analyzed the thermal, near-axis boundary layer of a gas jet
driven by a class of conical inviscid quasi-incompressible flows whose axial and azimuthal velocity
componentsw andv, and stagnation temperatur€,, behave near the axis as=Wyr™ 2,v
=LWor™ 2, andT,—T,=Tor2(M 2, wherez andr are the axial and radial coordinatésjs the

Squire number directly related to the swirl strengthis any real number such as<sin<2, T, is

a reference temperature, awdy, and T are arbitrary dimensional constan®/, is assumed to be
positive whileT, may be either positive or negative. To simplify the boundary layer analysis, low
Mach number flows with small relative variations in the gas density have been considered. Radial
profiles of axial and azimuthal velocity components, and static and stagnation temperatures are
found to depend on the Squire paramétethe Prandtl number, Pr, and the rest of the parameters

of the problem. Even for the case of inviscid vortices with positive value$,offor which the
stagnation temperature increases towards the axis, is found that the stagnation temperature decreases
substantially in the vortex core for some range of values of ho#imd Pr(Ranque—Hilsch effegt

when the effect of both heat conduction and the work done by viscous forces are taken into account.
It is also found that there exists an optimum valyg for which the cooling effect reaches a sharp
maximum and that small deviations &f from L,, reduce drastically the cooling effect. The
appropriate tuning ot ,, can be dramatically important for the efficient operation of Ranque—
Hilsch tubes. The influence of the Prandtl number and the rest of the parameters of the problem has
been also considered. @999 American Institute of Physid$1070-663(099)02111-X

I. INTRODUCTION separation. In his experiment, Kurosaka found that effective

Thermal energy separation often presents itself in Swirl_thermal separation is usually accompanied by a loud whistle.

ing gas jets at high Reynolds numbers. In these cases, su%I_onethe_less, neither acoustic effects nor turbulent traljsport
stantial variations of the stagnation gas temperature along tHBeCha”'SmS seem to be essentla! fqr thermal separatlop ; n
radial distance to the axis are observed. The colder gas ﬂov\%ﬁect, turbulence should tend to eliminate nonhomo_genemes
near the axis while the hotter one is located at its periphery" the flow rather than to create them, and loud whistles are
This phenomenon must be added to the list of interesting ange!dom emitted by commercial Ranque tubes. Only much
striking features exhibited by swirling flowwortex break- shorter tubes, I|!<e those used in Kurosaka’'s experiment, emit
down, hysteresis, collapse of solutions, kt@he effect of ~Such aloud whistle. _ _ .
thermal separation was first reported by George Rahniue The use qf simple mathematical soluﬂon; of the Navier—
1933, and the first detailed study of this problem was pubStokes equations to model thermal effects in a vortex core
lished by Rudolf Hilschin 1940. Since then, numerous pa- Was first carried out by Roftwho used a circulatory motion
pers, technical reports, and patents have explored the cap@f the Burger’s type superposed to an axisymmetric stagna-
bilities of devices based on this effect to be used as low costion point meridional flow. More recently, the possibility of
environmentally clean, refrigerators. A list of relevant papersusing conical solutions of the Navier— Stokes equations to
on the subject can be found in Refs. 3 and 4. model some basic aspects of the flow inside vortex tubes has
Although Ranque—Hilsch vortex tubes are commerciallypeen pointed out in Ref. 9. In any case, the lack of a self-
available, their use is limited because their efficiency is lowconsistent, physically realistic, mathematical model of ther-
compared to that of conventional air conditioners. Successfunal separation puts severe obstacles to improving the effi-
attempts to improve the efficiency of these devices require giency of vortex tubes.
deeper knowledge of the thermal separation effect. A few The flow inside Ranque—Hilsch is quite complicated.
competing explanations of thermal separation have beeBasically, it consists of compressed air which enters the tube
given in the past. Some of them emphasize the role of turwith a strong swirling velocity component. The flow is fo-
bulent heat transport in thermal separatisee Refs. 5 and 6 cused toward a stagnation poiRt by means of a control
among others Kurosaké investigated the role of nonsteady valve at the tube exit, see Fig. 1. The dividing stream surface
effects (acoustic effectsas being responsible for thermal D separates the hot gas stream which leaves the tube through
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FIG. 1. The flow inside a vortex tube.

r

. . . FIG. 2. The considered class of conical inviscid and nonconducting flows.
the control valve from the cold air which is forced to move 9

back along the tube axis toward the opposite end. This heli-
cal counter flow is essential to generate the high swirling
velocities near the axis needed to decrease the pressure and
achieve an efficient expansion and cooling of the air. with earlier numerical and experimental results for less ide-
The Reynolds number of the flow inside Ranque tubesilized vortices. Fom>1, it was shown that no boundary
and other vortex devices is very large, so that, viscous anthyer solutions exist for values &f larger than a critical one
conduction effects are restricted to thin boundary layers near* (m);! that is, no slender viscous swirling jets driven by
the axis and tube walls. In the incompressible case, valuablgn inviscid outer flow of the form$1)—(3) can exist ifL
information for the understanding of swirling flows and > *  This catastrophic behavior due to the failure of the
some of the interesting phenomena they exhibidrtex  quasi-cylindrical approximation of the boundary layer equa-
breakdown, et¢.have been obtained from the analysis oftions was interpreted as vortex breakdown. It should be
some simplified, self-similar, near-axis boundary lay8rS.  pointed out that for the cage=1, the outer flow and near-
Reference 11 contains the analysis of the incompressiblgxis boundary layer match only for a particular valueLof
boundary layer driven by a class of inviscid vortical motfon | = V2 1911y this case, the azimuthal and meridional mo-
which satisfies Euler equations and whose axial and azifons are coupled and the parameteis no longer suitable
muthal velocitiesw andv, and pressure behave near thefgr the description of then=1 flows. Instead ot., Long'°

axis in the form used the total axial momentum fly#ow force) to describe

w=Worm 2, (1)  the viscous vortex core for the case=1. An alternative
parameterS for the description of these flows, much more

v=2LWorm 2, (2 meaningful from the vortex breakdown point of view than
PP (LW)2 the flow force, is the ratio of the maximum values of both the
—=—t ———r2m2) (3)  azimuthal and axial velociti€s.As shown later, this param-
pp 2m=2) eter can be also used to describe flows wnitt 1.

wherer is the distance to the axis and<In<2. In Egs. The results for the incompressible case, given in Ref. 11,

(1—-(3) p, is a reference pressure apds the fluid density. can be used to analyze thermal boundary layers in situations
W, and L are arbitrary(positive) constants. The swirl, or where compressibility effects are relatively small. As is well
Squire, parametdr is given by known, compressibility effects can be neglected in the case

L=[viw] @ qf gas flows where both .th(.a Mach numbbst, and the rela-

r—0 tive gas temperature variationsT/T, are small. As long as
and represents the ratio between azimuthal and axial inviscithose requirements are satisfied, the mechanical and thermal
velocities near the axis. problems decouple and the flow field found in Ref. 11 can be

Although the flow field variables given by Egd)—(3)  used to determine the temperature field by solving the energy
have cylindrical symmetry, they correspond to the near-axiequation. Thermal boundary layer approximation of such a
behavior ¢(/z<1) of a family of conically similar solutions simplified near-axis flow may provide a self-consistent,
to the incompressible Euler equations resulting from the suphysically meaningful, and mathematically simple model for
perposition of a meridional flow like the one sketched in Fig.a complete parametric description of some essential features
2 plus an azimuthal motion. of the thermal separation effect.

The casen=1, which has been broadly considered, cor-  Therefore, with the aim of enhancing the understanding
responds to Long’s vorteX. The viscous vortex cores for of thermal separation in swirling flows we shall consider in
m+# 1 analyzed in Ref. 11 are also of interest since, as sughis paper the simplified problem of the flow in a quasi-
gested by many experimental data, the azimuthal velocity oincompressible, thermal, near-axis boundary layer driven by
the inviscid flow around real vortex cores is not exactly ir-the outer velocity and pressure fieltl5—(3) together with
rotational fn=1) but of the formr ~" with the powem, in  an outer temperature field which satisfies the energy equation
general, smaller than onen(larger than onge Therefore, the for a quasi-incompressible, inviscid, and nonconducting
casem#1 flows exhibit a number of features in common fluid, and behaves near the axis as
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(LW0)2 Il. NEAR-AXIS BOUNDARY LAYER EQUATIONS
T=T+ag5———or2M2), (5 . .
2¢,(m=2) In a gas flow, compressibility effects can be neglected if

both the relative variations of temperatutel/T and the
Mach number M are small. Then, assuming that/T<1
and M <1, the quasi-incompressible, steady, axisymmetric,
near-axis boundary layer equations written in cylindrical co-

whereT, is a reference temperature, is the specific heat
ratio at constant pressure, and

(Mm—2)| 2H m(Zm=4)/m

=7 WA —(1+L?)], (6)  ordinates ¢, 6,2) are
. . . . . . J oW
is a dimensionless parameter which contains the arbitrary —&—(ru)+ a—zo, (11
dimensional constarii ; characterizing the value of the total ror z
energy along a streamline. Equati@ follows from the fact vZ  a(plp)
that the stagnation temperature T o (12
w2 v?
cpTi=c,T+ —+—==c,T,+H(V), (7) av v vu 19/ ovy v
A R I —tW—t—=v| - —(r—|——
Yor ™YWz T T v\ Tar r2|’ (13
remains constant along the streamlines defined by
¥ = constant. For the self-similar flows considered here, we ~ dW dw  d(p/p) |1 9 dw
U—F+wW—=— v——|r—1||, (14)
have ar Jz Jz rar\ oar

H (q,) — Hoq,(2m74)/m: CpTOrZ(m72),

(8) oh  oh  a(plp)  (dplp) x[1 a( &T”
U—+w-—=u +w +—|==|r—
ar 0z or 0z plroar\ or

aw)z (av v)2
- + PR
ar ar r

which together the flow velocity componerify and(2) lead
to Eqg.(5). Note that, in addition to exponent, the inviscid
motions considered here are, therefore, characterized by +v
three given values of the three integral constants of the in-

viscid motionW,, L, andH, (or «) (Bernouilli, Kelvin, and  where (,v,w) are the components of the velocity field and
stagnation enthalpy conservation theorgnidote also that h=c,T is the enthalpy of the gas,,, », and\ which are

for positive values of parameter, the temperature of the assumed constant throughout the analysis are the specific
gas in the inviscid motion decreases toward the axis for valheat ratio at constant pressure, kinematic viscosity, and ther-
ues of m between the interval (0,2) while the stagnationmal conductivity of the fluid, respectively. Although in

: (15

temperature Ranque tubes the Mach number can be of order unity in

2.2 L21W2 some zones of the flow, especially at the entrance zone, it is

T+ W_V:T 1412+ kel —0,2(m-2) plausible to assume that, due to the action of viscosity, the
2¢cp ' m—2|2c;, Mach number of the flow is less than unity in the neighbor-

= Tr2m-2), ©) hood of the axis. On the other hand, typical temperature

differences as those found in Ranque tul@&3 K) allow for
the hypothesiA T/T<1.
(10) Note that the mechanical problem defined by E@4)—

(14) with boundary condition$1)—(3) and the thermal prob-
Observe that thermal separation cannot take place item defined by Eq(15) and condition(5) are uncoupled and
steady, nonconducting, inviscid swirlingr nonswirling  can be solved separately. The mechanical problem for the

flows since the total enthalpy of a fluid particle remains con-casem=1 was solved by Lond and the more general case
stant when it moves along a streamline. As we shall see il<m<2 has been recently considered by Fewdez-Feria
the following, the situation is quite different in the near-axiset al** These authors took advantage of the self-similar
vortex core where heat conduction and the work done bytructure of the problem to arrive at a much more simplified
viscous stresses can substantially decréaséncreasgthe  problem of ordinary differential equations. Here we shall ex-
total enthalpy on some streamlines at the expense of increatsnd the analysis in a straightforward way to include thermal
ing (decreasingit on others. effects.

The paper is organized as follows. The equations gov- Defining the meridional stream functiolf, azimuthal
erning the near-axis flow with boundary conditiofis—(3)  velocity, and pressure and temperature fields in the form
and (5) and the resulting self-similar problems are given in

increases towards the axis if

a<(2—-m)(1+1/L?)), orequivalently Hy=0.

I o i V=vzf(n), w=W¥,/r,
Sec. Il. A description of the numerical integration procedure
o . : . : (16)
is given in Sec. lll. Section IV contains numerical results of vz
the thermal boundary layer with a discussion of the influence  U=—"V,/r, v= ; ¥(7),
of the swirl and energy parametetsand«, on the thermal
separation effect. The influence of the Prandtl numberisalso p p, (vz)? (vz)?
considered; asymptotic analyses for small and large values of 0 & B(n), T-T.= Y O(n), (17

the Prandtl number are also included. Finally, the results are p

summarized in Sec. V. and the boundary layer variablg
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n=rl8(2), (18

where §(z) is the boundary layer thickness, and introducing
the new variables into the boundary layer equations, one a
rives at the following system &= 7? instead ofy is used as
independent variable:

Y?=2¢B', (19
m-1 .ty e
ZT’yf —2f’)/ _? (f )__ (20)
2-m 12 ” 1 N d "
(m-2) ,
—2f[0' —B']+4— 1[0~ B]—161"%¢
(2y'é—y)? ,
B Prd§<§® ) 22

where Prpvc,/\ is the Prandtl number.
As shown by Eq.(1), the behavior of the meridional
stream function far from the axisyf—», {é—», r—x) is

W — (W /m)r™=(Wy/m) M y™=(Wy/m)sme™2. (23)

The boundary layer thicknes¥(z) and the behavior at the
infinity of the stream functiorf are given by matching Eqgs.
(16) and(23). Hence

8(z)=(mwz/Wy)*m

and

(29)

N gm/Z

as &—o, (25

The behavior at the infinity of the other dimensionless
variablesy, B8, and® are obtained by matching Eqkl6)
and(17) to Egs.(2), (3), and(5). Then, one arrives at

(mL)?

mLem-22 g T em-2
y—mLé . B 2(m=2) :

0 . (26)
——a — 00,

5@

On the other hand, the stream function and swirling velocity

Thermal separation in near-axis boundary layers . . . 3681
y=E"got+ 916+ 028+ - - ), (29)
B=Bo+ Bré+ B+ - - -, (30)

r_
®:®O+®l§+®2§2+ (31)

Introducing Eqgs.(28)—(31) into Egs.(19)—(22), one deter-
mines completely all the coefficienfs,g;,8;, and ©; in
terms of the first four constants of the expansiongg, Bo,
and®,. For the lower-order terms one finds

B1=05/2, Ba=9091/2, (32
m—2

fz:m(ff+%)’
1

fa= 28m [4(m 4)f,1f,—(3—m)B4], (33

91=—gof1/(4m), (34
(m—2)

®,=Pr (00— Bo)f1, (35
Pr (m—2)

®2:§[(/31_®1)f1+2 (f1(O@1—B1)+2f5(0g
—Bo))—32f4- (36)

As can be seen from Eq&8)—(36), there are four degrees
of freedom to start the integration &&= 0. Nonetheless, the
computational effort can be much reduced by taking advan-
tage that Eqs(19)—(22) are invariant under the uniparamet-
ric transformation group

f—f, §-C¢
B—pBIC?, ©—-0/C?

Similarly boundary conditions at infinity, given in EqR5)

and (26), can be re-scaled, so that their absolute magnitude
becomes irrelevant. In effect, choosi@jn Eq. (37) such
that B,=—1, the boundary conditions at both the axis and
the infinity read

£-0, f=Agé+ -

y—vIC,
(37

y=APE

must vanish at the axis, where the axial velocity, pressure,

and temperature must satisfy appropriate regularity condi
tions. Therefore, from Eq4$16) and(17), one has

f(0)=%(0)=0, £'(0),8(0),0'(0) <. (27)

IIl. NUMERICAL INTEGRATION FROM THE AXIS

Although the mechanical and thermal problems are un
coupled and, therefore, they can be solved separately, it

more convenient to solve them together numerically. We
have followed a numerical integration procedure entirely
similar to the one carried out in Ref. 11 for the mechanical;

problem.
Solutions of the dimensionless equatiofisgs. (19)—
(22)] behave near the axis as

f=f &+ F,82+ 383+ (28
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f—(C&™?,
BZ
2(m—2)

B=—1+ O=Tot - - -; (39)

g_)oo ,)/_>B§(m*2)/2'

B— M2 0/B—a, (39

with
A=1.C, Ay=goC (312,

is .
To=0,C%, B=mLCM™?,

For given values o, «, and Pr, Eqs(19)—(22) can be
integrated numerically starting fronj=0 with behaviors
(38) once we choose arbitrary values of the three free param-
etersA., A,, andT,. Clearly, the correct behavior at infin-
ity will not be met except for some exceptional values of
those parameters. This circumstance requires picking up a
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FIG. 3. Axial and azimuthal velocities and static and total temperatures as a n

function of the self-similar distance to the axis for=1.2, L=1.079 71,

Pr=0.72, anda=1. FIG. 4. Values of the right hand side of E¢10) as a function of the
self-similar distance. It accounts for both the effect of heat conduction and
the work due to viscous forces.

couple of valuesA,(A;,m) and To(A;,m,a,Pr) for each

realA; in the interval— 1/\/§<A1<00. As shown in Ref. 11, _2f®,+4m_—2f,®
boundary layer solutions can be characterized by the swirling t m t
parameterL which enters into the problem through the

’ 2

boundary conditions at infinity. It was found that there exists  —_ i(gr)Jr 162+ M +16f’ i(éf")
only one valuelL (A;) for eachA; in the interval ofA;’s Prdé 3 dé
values where boundary layer solutions exist. Ferm<2, d e
L(A;,m) presents a maximurgeritical) L* (m) while reach- +4yd—§(§y’)— i (40)
ing a minimum for 6<m<1. Therefore, for flows in the
range XXm<2 which exhibit a number of features in com- where the self-similar stagnation temperature is
mon with the experimental results for less idealized vortices,

0,=0+2f'%+ 342 (41)

there is no solution fot larger thanL* (m) and there are
two different solutions for each smaller thanL*(m). The  Equation(40) accounts for the contribution of both thermal
occurrence of no solution of the boundary layer typelfor conduction and the work per unit volume and time done by
>L* has been related to vortex breakdoWnThe two yiscous forces, and the axial and radial convective flux of
branches in the curve(A;) corresponding to the two pos- total enthalpy; the right-hand side of E@O0) which repre-
sible vortices have been termed as typé\I{A*) and type  sents the contribution of heat conduction and work by shear
Il (A<A*) solutions:* A linear analysis of the stability of stresses as a function of the radial distance is plotted in Fig.
these SO|uti0r‘i1§ shows that those of the type Il are unStab|84 for the case considered in F|g 3. As shown in F|g 4’ this
for axisymmetric perturbations. contribution is positive near the axis while the radial convec-
tive flux vanishes theréhe radial velocityu, and the stream
function f going to zero at the axis Therefore, to satisfy
IV. NUMERICAL RESULTS (40), the axial convection of total enthalpy, mh(
—2)f’®:/m, must be positive near the axis and sinoe
Normalized profiles of the axial and azimuthal velocity <2, ®, must be necessarily negative théstagnation tem-
components,5?(z)w/(vz) and 6*(z)v/(vz), and tempera- perature less than reference temperature
ture and stagnation temperature of the gas,(T In fact, the self-similar analysis shows the existence of a
~T,)8%(2)/(vz)? andc,(T,—T,)8*(vz)? as a function of downstream convective flux of total enthalpy which balances
the self-similar distance to the axis=r/&6(z) have been the conductive heat flux toward the axis and the work of
plotted in Fig. 3 for P#0.72, a=1, m=1.2, andL viscous forces. Therefore, as shown by express{dsto-
=1.079. Note both the qualitative agreement of these resultgether with(16), (17), and (24), the total enthalpy along a
and those obtained from experiments in real vortex tibes streamline increases downstream giving rise to a reduction of
and the reduction of the stagnation temperature of the gathe thermal separation effect in the downstream direction. It
which takes place in the near-axis zone of the boundarghould be pointed out that an explanation of how thermal
layer. This phenomenon can be clarified by using the stagsplitting is originated cannot be provided by the self-similar
nation temperature equation which can be obtained by addznalysis presented here, but it requires the study of a non-
ing to Eq.(15) the result of multiplying Eqs(13) and(14) by  self-similar evolution of the vortex core emerging from the
v andw, respectively. In self-similar variables, the stagna-converging flow in the turning region close to poiin Fig.
tion temperature equation reads 1. For appropriate values of the parameters of the problem,
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FIG. 5. Normalized stagnation temperature as a function of the self-simila

distance for several values of the swirling paraméter FIG. 6. Normalized values of the maximum thermal separatieac,(T,

—T, )W, as a function oL.

min’

the structure of the viscous vortex core will evolve eventu-
ally, for sufficiently largez, to the self-similar structure pre-
sented here.

analysis; let us assume a maximum axial velocity component
of the order of 100 m/s; then, using data from Fig. 6, we
Let us discuss in the following the influence on the ther-have that the maximum difference in the stagnation tempera-

mal separation phenomenon of the relevant parameters of tHdre IS almost 50 K for values df close toL =1.21 while
problem: The swirl parameter (or the azimuthal to axial "€ maximum Mach number of the flow and the maximum

inviscid velocity ratio at the axjsthe dimensionless energy "atio AT/T are about 0.3 and, respectively, which makes

constant, the Prandtl number, and the exponentharac-  Plausible the hypothesis of quasi-incompressible flow.
terizing the velocity and temperature flow field. For the sake of completeness, we plot in Fig. 7 values of
the maximum thermal separation for the case=1, Pr

_ =0.72, anda=1. As indicated before, the relevant vortex
A. Influence of the swirl parameter L breakdown parameter fan=1 is the ratioS introduced in
Figure 5 shows the Stagnation temperature prof”eBef. 13 between the maximum values of the azimuthal and
Cp(Tt_Tr)/Wﬁ']ax for Pr=0.72,a=1 andm=1.2 and differ-  a@xial velocities but it can be also used to describe boundary

ent values of_. For convenience, the maximum value of the layer solutions withm=# 1. In fact, for a givenm such as 1
axial velocity have been used to normalize the stagnation=M<2 there exists two self-similar solutions 8 is less
temperature. Note that for a given maximum axial velocitythan a critical values* (m) and there are no solutions f&

of the swirling jet, the thermal separation effect depends>S” - Note that the maximum thermal separation curve ver-
strongly of the swirling parametér. susS presents a sharp maximum. For comparison, values of

It is useful to calculate the maximum value of the ther-the maximum thermal separation has been also plotted for
mal separation defined as the maximum stagnation temperfl€ casesn=1.1 andm=1.2. Figure 7 shows that for a
ture jump given value of paramete8, H reaches its minimum for a

value of m between the interval £m<1.2. Note that the

C,(T,—T; )
pLitr t
HL=——F—. (42)
WmaX 2.9
as a function ofL. Results ofH(L) for m=1.1, P=0.72, ' [Pr=0.72 m=1:2

anda=0 are plotted in Fig. 6. The upper branch of the curve
in Fig. 6 corresponds to values Af larger than the critical
value AT while the lowest corresponds to unstable solutions - ! | . | ‘ :
of type Il. The maximum valuél ;= H (L, is reached at a [l It Sl S  H AN
certain valud. . which lies very close td.* . Note that there H |
exists on the upper branch a very narrow interval of values of
L whereH is very close to the valuéi,y. Outside this
interval the cooling effect falls down abruptly. These results T ! : , , , :
suggest that the efficiency of the thermal separation process 08 s h e
in the vortices considered here critically dependd_cend it I S
may explain why devices based on the Ranque effect would P P S U S DU U ST PO T
not work efficiently outside a narrow range of operating con- 05 052 054 056 058 06 062 084 066 068
ditions. S

We can now investigate the validity of the quasi- FiG. 7. Normalized values of the maximum thermal separationc,(T,
incompressible flow hypothesis assumed throughout the T, )7, as a function ofs for three different values af.

L o=l A R LT 4 11 =) [

1.4 -.___:____: ___1____:_____5__ 21 __:__,,,_: _____
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FIG. 8. Radial profiles of the axial and azimuthal velocities and static an

dFIG. 9. Normalized total temperature profiles for three different values of
total temperatures for a typical two cell regime. @

. . place in the viscous vortex cok@creasing of the total en-
value of the exponentn influences not only the matching ; . SN .
” . ) halpy and heating of the gas in the near axis zonespite
conditions far from the axis but also the numerical values o . : L
. : that both the static and stagnation temperatures of the invis-
the coefficients of the boundary layer equations. . .
cid vortex decrease toward the axis. In these cases, the heat

Figure 8 shows the results obtained for a flow of the type . .
Il (unstable solutionsfor the indicated values df, a, and conduction flux towards the axis becomes so large that both

. . . the stagnation and static temperatures increase. These results
m in the figure. In this case, a two-cell flow develops where

. L . I show that contrary to what one may think at first sight invis-
the fluid moves towards the origimegative velocitiesnear . . . . .

: . i A - I cid vortices with both static and stagnation temperatures de-
the axis and in the opposite directi¢positive velocitie

away from it. Note that the minimum temperature is reached€2SINg toward the axis are not the flow structures needed to

) . i . . roduce effective splitting thermal separation in efficient
outside the axis and just near the point corresponding to th C

. . : . anque vortex tubes. The analysis given here also seems to
maximum values of the azimuthal and axial velocity.

indicate that thermal separation phenomenon is due to dissi-
pative effects and takes place inside swirling thermal bound-
B. Influence of the energy parameter « ary layers; the influence of the high Reynolds number vortex
d‘low on the thermal splitting is exclusively limited to the

The conservation energy equation of the class of invisci | fL and hich . | ters for th
and nonconducting gas flow we have considered for matcrga ues ofL and a which areé external parameters for the

ing the conducting and viscous vortex core requires that th oundary Ia?/tir "’?”d. th%y arde fixed thdrou?h t?le conservation
stagnation temperature of the gas behaves near the axis a eorems of the Inviscid and nonconducting flow.

1+L%+

2

2 0 om—4a C. Influence of the Prandtl number
—r . (43

m—2/ 2c,

T=T,+
Figure 10 shows the dimensionless stagnation tempera-
For values ofa such as & a<(2—m)(1+1/L?) the stag- ture profiles for three different values of the Prandtl number
nation temperature increases toward the axis and it decreasest identical values of the other three parametersl.113,

if (2—m)(1+1/L?)<a. Negative values of has not been

considered since they lead to results that are quite unrealistic.

In fact, form<2 anda<0 the static gas temperature in the 05

inviscid vortex flow increases toward the aksee Eq.(5)]. L

Note that, similar to the values & andL which are fixed 0 Y R S

by the conservation of momentum and angular momentum in I -

the inviscid flow, the value o# is given by the conservation [ ; P [L=1134

of total enthalpy. _ o _ P R A g"m_=1‘-1 """
The influence ofa in the thermal splitting is shown in P med L ‘ E oz .

Fig. 9 where normalized profiles of the total temperature for 1 _",7" """ coTtees el

different values of the parametex are plotted, & F f I

=0,0.5,1,2, and 3). Note that the thermal separation phe- R S H— —Prat.2

nomenon depends substantially @rand its effect increases H/ : E :

when a decreases. The explanation of this behavior lies in P A I N R

the fact that the heat conduction flux towards the axis de- 0 25 5 75 10

creases withy; a=0 corresponds to uniform outer tempera- n

tures[see Eq.(5)]. I_ntereStihgly enough are VOI’tiC€SI with FIG. 10. Normalized total temperature profiles for three different values of
=2 and 3 for which an inverse thermal separation takeshe Prandtl number.
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a=1, andm=1.1. Note that both the minimum value of the 00002
stagnation temperature and the thickness of the layer where
thermal separation takes place decrease with the Prandtl ;
number. -0.0002 [

To obtain deeper insight into both the thermal near axis '
boundary layer investigated here and the role that the Prandtles pr2(2-mym ™ _
number plays in the thermal separation phenomenon it is of -0.0006
interest to analyze the boundary layer problem in the two ‘
asymptotic limit cases P~ and Pr0, in spite of the re-
lation h=c,T used as an equation of state which is only
valid for a gas (Pr1).

1. Pr>1

For large values of the Prandtl number, the thickness of FiG. 11. Temperature profile for large values of the Prandtl number.
the thermal boundary layer is much smaller than the viscous
thicknesséd(z), so that heat conduction is negligible outside o . )
the very thin inner thermal layer. In the outer viscous regionWheres is given by Eq.(26). The value of¢, which yields

the equation governing the temperature field results of neth® correct valuex* =« is obtained by shooting. The nor-
glecting the conduction term in ER2) malized static temperature radial profile for large values of

the Prandtl number is given in Fig. 11. Note that the thick-
., (m=2) | o ness of the layeA in which exists a substantial reduction of
—2fO'-p]+4 m Fo-p1-161"¢ the stagnation temperature decreases with the Prandtl num-
oo 2 ber, A~ Pr~ 2 while the normalized stagnation temperature
_ Mzo (44 O'cy(T,—TY/(v2)? increases as PP~ ™™,
g .

Taking into account the behaviors of the flow field variables?- Pr<1
given by Eqs(28)—(30), it is easy to show that near the axis For small values of the Prandtl number the viscous layer
temperatured behaves as is much thinner than the thermal boundary layer. In the vis-
2(m—2)/m cous sublayer, temperature is uniform to lowest order,
0K as -0, (45) =0, since heat conduction is dominant thésee Eq(22)
whereK is an unknown constant. Since temperature becomef®r values ofé of order unity. Introducing the new variables
singular near the axis, it must be regularized throughout a

— /m — (2—m)/m
thermal conduction sublayer. In fact, defining the inner vari- s=¢PPm, O =pr 4 (5D)
ables into Eqg. (22), one obtains to lowest order
s=Pr¢, ¢=0pPpRM2/m (46) d2¢ d$p m-2
s— +(1+sM%2) — — ——s(M 22y, 52
Eqg. (22) becomes at lowest order ds? ( ) ds 2 ¢ (52)
P p fis\ d¢p m—2 whose solution behaves near the axis as
s— |1+ - | 5o - ——f¢=0. 47
Js 2 ) 0s m m— 2
: " : o =po| L+2———s™2+ . . . |, 53
It may be easily verified that a solution of Ed.7) satisfying $= %o m? ®3

the boundary condition at the axis behaves as , o . o
where ¢, is unknown. At infinity, solutions satisfying Eq.

(52) behave as
p=Ks™ 2, (54)
where the normalized temperatugg is unknown and must behavior (54) together with condition(5) lead to K
be calculated from the analysis. On the other hand, at the. a(mL)?/[2(m-2)]. Choosing an arbitrary value ab
. (o]

infinity, solutions of(47) behave as (let us say}) and starting the integration of E¢52) from
p=32M"2M " 35 s o0, (49)  the origin with behavior(53), one finds numerically at the

S . S )

The matching of behavioré45) and (49) leads toJ=K. |n_f|n|ty a value of K (say K*) Wh|c2h in general W|II_ be

Therefore, choosing an arbitrary value@f and starting the different from the correct one(mL) /[ 2(m~2)]. Taking
oo ng Itrary vaiu o ) Ny advantage of the linear character of E§2), one can easily

numerical integration of Eq(47) with behavior(48), one calculate the correct value ofdy= ¥ (ML)2/[2(m

finds, far from the axis, the valu&($,)=K(¢,). Hence, C2)K*] o o

EqQ. (44) can be integrated numerically starting frofe<1 '

) " . L . . The normalized static temperature radial profile for
with condition(45) to arrive at the infinity with the behavior small values of the Prandtl number is plotted in Fig. 12. Note

O/B—a*(¢p,), as &—w, (500 that the thicknesa of the layer in which there is a substan-

m—2
1+

b=, fis+ - .- as s—0, (48)
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o value A; while the lowest corresponds to the unstable solu-
01 b Teeteeitens tions of type Il. The maximum valueH,=H (Lo is
VR Lo reached at a certain vallig,, which lies very close th.* . It

m=1.1

az ool L a3 | e close ta
P Y Pre<]  |-i---ioo- is of interest to remark that a_fact(nlmost 5in the_ dlmen-
E [ b sionless temperature drops like the one shown in Fig. 6 for
ope2maym ]I o=1 values ofL near the optimum one accounts for the tempera-
08 oo cne e ture measurements in Ranque—Hilsch tulf@either acous-
06 tic effects nor turbulence are, therefore, needed to explain the

occurrence of thermal separation in vortex tubes. Note also
that the upper branch in Fig. 6 presentplateauin a very

] ' T narrow interval of values of whereH is very close to the

09 bnlinbonbin b bbb bon Lo valueH,. Outside this interval the cooling efficiency falls
down abruptly. These results show that the efficiency of the
thermal separation process in the vortices considered here
FIG. 12. Temperature profile for small values of the Prandtl number. depends critically orL. and suggests that devices based on
the Ranque effect will not work efficiently outside a narrow

tial reduction of the stagnation temperature increases withe 9¢ of operating conditions,
9 P For the sake of completeness, in Fig. 7 we have plotted

the Prandtl numberA ~Pr?™, while the normalized stagna- . ; ;
values of the normalized maximum cooling for the case

i _ 2
g?ﬂz_nfﬁrﬂn perature 54Cp(T’ T/(v2) decreases as _ 1. As was indicated previously, the relevant vortex break-

down parameter fom=1 is the ratio between the maximum
values of the azimuthal and axial velociti8dntroduced in
Ref. 13. For a givem such lI=m<2, there exists two self-
We have analyzed the quasi-incompressible thermasimilar solutions ifS is less than a critical on&* (m) and
near-axis boundary layer flows driven by an inviscid but vor-there are no solutions fd8>S*. Note that the normalized
tical velocity field which decays as" 2 with the distance maximum cooling curve versiBpresents a sharp maximum.
to the axis. Far from the axis the stagnation temperature dfor comparison, values of the normalized maximum cooling

07 fF--r--- R R EEEr R

' ' ' ' l ' ' ' '

08 I---+---- L g g [ (gD N
0.8 v ' ' ' ' ' ' ' f
' ' ' ' ' '

V. CONCLUSIONS

the inviscid and nonconducting flow is has been plotted for the cases=1.1 andm=1.2.
2 2 The effect of the Prandtl number on the thermal splitting
al WO _ . . .
T=T,+|1+L%+ —r2(m-2) (55) has been also investigated. Asymptotic results for large and
m—2] 2¢, small values of the Prandtl number are given. We found that
while the static temperature is given by thermal separation increases with the Prandtl number; in par-
LWa)2 ticular the scaling for large and small values of the Prandtl
T=T,+a (LWo) r2(m-2) (56) number is
2¢p(m—2)
T, —T~PpPRE-mim (58)

The flow, which is self-similar, depends on the following
parameters: The swirl parameter(or the azimuthal to axial which shows that when P¥0 the thermal splitting is negli-
inviscid velocity ratio at the ax)s the parameterr which  gible (m<2) due to the smoothness effect of heat conduc-
characterizes the temperature field outside the thermal neation.
axis boundary layer, the Prandtl number, and the expament The radius of the core where the gas is cooR(d)
which characterize both the outer velocity and the temperadepends also on the Prandtl number. For Prandtl of order
ture fields. unity, this thickness is of the order of the viscous cé(e)
Profiles of velocity, temperature, and stagnation temgiven by (24). For large values of the Prandtl number the
perature as a function of the self-similar distance to the axisadius of the thermal core is of the order &{z)/Pr
have been obtained for several values of the parameters ass(z) while it is of the order ofSPr Y™ ¢ for small values
previously indicated. The obtained results agree qualitativelpf Pr.
well with experimental measurements in the vortex tubes.  The results of the self-similar analysis allows for deter-
Asymptotic results for large and small values of the Prandtimining some characteristic values such as the cooled gas
number have also been carried out. flow rate G(z) or the mean stagnation temperature which
As can be seen from Fig. 6, for valuesrofin the range  may be useful in Ranque vortex tubes. In fact, the character-
of interest(slightly larger than ong the maximum value of istic value of the cooled gas flow ratd can be also esti-
the thermal separation in swirling axisymmetric boundarymated from
layer flows is defined as

HL) Cp(T =T ) . G(z)=27rJ0 wrdr. (59
-T2
Winax As usual in boundary layer analysis, this integral is un-

and depends strongly dn The upper branch of the curve in bounded, so that the integration must be limited to distances
Fig. 6 corresponds to values &f; larger than the critical from the origin where the axial velocity, for instance, reaches

Downloaded 06 Jul 2006 to 150.214.40.140. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 12, December 1999 Thermal separation in near-axis boundary layers . . . 3687

an arbitrary fixed valu€5%, 10%) of itsmaximum value. z<(q*/q)1/(3—2m) if 1<=sm<3/2, (65)
Taking into account Eqg16) and(18) one has or
7
G(z)=2mzf f'dp=2mvzy™, (60) z>(q*/q)VE 2 if 32<m<2. (66)
o

if Eq. (25) is used. Choosing and arbitrary valye= 10, for
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