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Thermal separation in near-axis boundary layers with intense swirl
M. A. Herrada, M. Pérez-Saborid, and A. Barrero
Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla, Spain

~Received 4 March 1998; accepted 26 July 1999!

Swirling flows have a wide range of applications and exhibit a variety of interesting features. Gas
cooling near the axis in these flows, the so-called Ranque–Hilsch effect, is one of them. To gain
insight into this phenomenon, we have analyzed the thermal, near-axis boundary layer of a gas jet
driven by a class of conical inviscid quasi-incompressible flows whose axial and azimuthal velocity
components,w and v, and stagnation temperature,Tt , behave near the axis asw5W0r m22,v
5LW0r m22, andTt2Tr5T0r 2(m22), wherez and r are the axial and radial coordinates,L is the
Squire number directly related to the swirl strength,m is any real number such as 1<m,2, Tr is
a reference temperature, andW0 andT0 are arbitrary dimensional constants;W0 is assumed to be
positive whileT0 may be either positive or negative. To simplify the boundary layer analysis, low
Mach number flows with small relative variations in the gas density have been considered. Radial
profiles of axial and azimuthal velocity components, and static and stagnation temperatures are
found to depend on the Squire parameterL, the Prandtl number, Pr, and the rest of the parameters
of the problem. Even for the case of inviscid vortices with positive values ofT0 , for which the
stagnation temperature increases towards the axis, is found that the stagnation temperature decreases
substantially in the vortex core for some range of values of bothL and Pr~Ranque–Hilsch effect!
when the effect of both heat conduction and the work done by viscous forces are taken into account.
It is also found that there exists an optimum valueLop for which the cooling effect reaches a sharp
maximum and that small deviations ofL from Lop reduce drastically the cooling effect. The
appropriate tuning ofLop can be dramatically important for the efficient operation of Ranque–
Hilsch tubes. The influence of the Prandtl number and the rest of the parameters of the problem has
been also considered. ©1999 American Institute of Physics.@S1070-6631~99!02111-X#
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I. INTRODUCTION

Thermal energy separation often presents itself in sw
ing gas jets at high Reynolds numbers. In these cases,
stantial variations of the stagnation gas temperature along
radial distance to the axis are observed. The colder gas fl
near the axis while the hotter one is located at its periph
This phenomenon must be added to the list of interesting
striking features exhibited by swirling flows~vortex break-
down, hysteresis, collapse of solutions, etc.!. The effect of
thermal separation was first reported by George Ranque1 in
1933, and the first detailed study of this problem was p
lished by Rudolf Hilsch2 in 1940. Since then, numerous p
pers, technical reports, and patents have explored the c
bilities of devices based on this effect to be used as low c
environmentally clean, refrigerators. A list of relevant pap
on the subject can be found in Refs. 3 and 4.

Although Ranque–Hilsch vortex tubes are commercia
available, their use is limited because their efficiency is l
compared to that of conventional air conditioners. Succes
attempts to improve the efficiency of these devices requi
deeper knowledge of the thermal separation effect. A f
competing explanations of thermal separation have b
given in the past. Some of them emphasize the role of
bulent heat transport in thermal separation~see Refs. 5 and 6
among others!. Kurosaka7 investigated the role of nonstead
effects ~acoustic effects! as being responsible for therm
3671070-6631/99/11(12)/3678/10/$15.00
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separation. In his experiment, Kurosaka found that effec
thermal separation is usually accompanied by a loud whis
Nonetheless, neither acoustic effects nor turbulent trans
mechanisms seem to be essential for thermal separatio
effect, turbulence should tend to eliminate nonhomogenei
in the flow rather than to create them, and loud whistles
seldom emitted by commercial Ranque tubes. Only mu
shorter tubes, like those used in Kurosaka’s experiment, e
such a loud whistle.

The use of simple mathematical solutions of the Navie
Stokes equations to model thermal effects in a vortex c
was first carried out by Rott,8 who used a circulatory motion
of the Burger’s type superposed to an axisymmetric stag
tion point meridional flow. More recently, the possibility o
using conical solutions of the Navier– Stokes equations
model some basic aspects of the flow inside vortex tubes
been pointed out in Ref. 9. In any case, the lack of a s
consistent, physically realistic, mathematical model of th
mal separation puts severe obstacles to improving the
ciency of vortex tubes.

The flow inside Ranque–Hilsch is quite complicate
Basically, it consists of compressed air which enters the t
with a strong swirling velocity component. The flow is fo
cused toward a stagnation pointP by means of a contro
valve at the tube exit, see Fig. 1. The dividing stream surf
D separates the hot gas stream which leaves the tube thr
8 © 1999 American Institute of Physics
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3679Phys. Fluids, Vol. 11, No. 12, December 1999 Thermal separation in near-axis boundary layers . . .
the control valve from the cold air which is forced to mo
back along the tube axis toward the opposite end. This h
cal counter flow is essential to generate the high swirl
velocities near the axis needed to decrease the pressur
achieve an efficient expansion and cooling of the air.

The Reynolds number of the flow inside Ranque tub
and other vortex devices is very large, so that, viscous
conduction effects are restricted to thin boundary layers n
the axis and tube walls. In the incompressible case, valu
information for the understanding of swirling flows an
some of the interesting phenomena they exhibit~vortex
breakdown, etc.! have been obtained from the analysis
some simplified, self-similar, near-axis boundary layers.10,11

Reference 11 contains the analysis of the incompress
boundary layer driven by a class of inviscid vortical motion12

which satisfies Euler equations and whose axial and
muthal velocities,w and v, and pressure behave near t
axis in the form

w5W0r m22, ~1!

v56LW0r m22, ~2!

p

r
5

pr

r
1

~LW0!2

2~m22!
r 2(m22), ~3!

where r is the distance to the axis and 1<m,2. In Eqs.
~1!–~3! pr is a reference pressure andr is the fluid density.
W0 and L are arbitrary~positive! constants. The swirl, o
Squire, parameterL is given by

L[iv/wi r→0 , ~4!

and represents the ratio between azimuthal and axial invi
velocities near the axis.

Although the flow field variables given by Eqs.~1!–~3!
have cylindrical symmetry, they correspond to the near-a
behavior (r /z!1) of a family of conically similar solutions
to the incompressible Euler equations resulting from the
perposition of a meridional flow like the one sketched in F
2 plus an azimuthal motion.

The casem51, which has been broadly considered, c
responds to Long’s vortex.10 The viscous vortex cores fo
mÞ1 analyzed in Ref. 11 are also of interest since, as s
gested by many experimental data, the azimuthal velocit
the inviscid flow around real vortex cores is not exactly
rotational (m51) but of the formr 2n with the powern, in
general, smaller than one (m larger than one!. Therefore, the
casemÞ1 flows exhibit a number of features in commo

FIG. 1. The flow inside a vortex tube.
Downloaded 06 Jul 2006 to 150.214.40.140. Redistribution subject to AIP
li-
g
and

s
d

ar
le

f

le

i-

id

is

-
.

-

g-
of

with earlier numerical and experimental results for less i
alized vortices. Form.1, it was shown that no boundar
layer solutions exist for values ofL larger than a critical one
L* (m);11 that is, no slender viscous swirling jets driven b
an inviscid outer flow of the forms~1!–~3! can exist if L
.L* . This catastrophic behavior due to the failure of t
quasi-cylindrical approximation of the boundary layer equ
tions was interpreted as vortex breakdown. It should
pointed out that for the casem51, the outer flow and near
axis boundary layer match only for a particular value ofL,
L5A2.10,11 In this case, the azimuthal and meridional m
tions are coupled and the parameterL is no longer suitable
for the description of them51 flows. Instead ofL, Long10

used the total axial momentum flux~flow force! to describe
the viscous vortex core for the casem51. An alternative
parameterS for the description of these flows, much mo
meaningful from the vortex breakdown point of view tha
the flow force, is the ratio of the maximum values of both t
azimuthal and axial velocities.13 As shown later, this param
eter can be also used to describe flows withmÞ1.

The results for the incompressible case, given in Ref.
can be used to analyze thermal boundary layers in situat
where compressibility effects are relatively small. As is w
known, compressibility effects can be neglected in the c
of gas flows where both the Mach number,M , and the rela-
tive gas temperature variations,DT/T, are small. As long as
those requirements are satisfied, the mechanical and the
problems decouple and the flow field found in Ref. 11 can
used to determine the temperature field by solving the ene
equation. Thermal boundary layer approximation of suc
simplified near-axis flow may provide a self-consiste
physically meaningful, and mathematically simple model
a complete parametric description of some essential feat
of the thermal separation effect.

Therefore, with the aim of enhancing the understand
of thermal separation in swirling flows we shall consider
this paper the simplified problem of the flow in a qua
incompressible, thermal, near-axis boundary layer driven
the outer velocity and pressure fields~1!–~3! together with
an outer temperature field which satisfies the energy equa
for a quasi-incompressible, inviscid, and nonconduct
fluid, and behaves near the axis as

FIG. 2. The considered class of conical inviscid and nonconducting flo
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3680 Phys. Fluids, Vol. 11, No. 12, December 1999 Herrada, Pérez-Saborid, and Barrero
T5Tr1a
~LW0!2

2cp~m22!
r 2(m22), ~5!

whereTr is a reference temperature,cp is the specific hea
ratio at constant pressure, and

a5
~m22!

L2 F2H0m(2m24)/m

W0
4/m

2~11L2!G , ~6!

is a dimensionless parameter which contains the arbit
dimensional constantH0 characterizing the value of the tota
energy along a streamline. Equation~5! follows from the fact
that the stagnation temperature

cpTt5cpT1
w2

2
1

v2

2
5cpTr1H~C!, ~7!

remains constant along the streamlines defined
C5constant. For the self-similar flows considered here,
have

H~C!5H0C (2m24)/m5cpT0r 2(m22), ~8!

which together the flow velocity components~1! and~2! lead
to Eq. ~5!. Note that, in addition to exponentm, the inviscid
motions considered here are, therefore, characterized
three given values of the three integral constants of the
viscid motionW0 , L, andH0 ~or a) ~Bernouilli, Kelvin, and
stagnation enthalpy conservation theorems!. Note also that
for positive values of parametera, the temperature of the
gas in the inviscid motion decreases toward the axis for
ues of m between the interval (0, 2) while the stagnati
temperature

T1
w21v2

2cp
5Tr1F11L21

aL2

m22G W0
2

2cp
r 2(m22)

5T0r 2(m22), ~9!

increases towards the axis if

a<~22m!~111/L2!, or equivalently H0>0. ~10!

Observe that thermal separation cannot take place
steady, nonconducting, inviscid swirling~or nonswirling!
flows since the total enthalpy of a fluid particle remains co
stant when it moves along a streamline. As we shall se
the following, the situation is quite different in the near-ax
vortex core where heat conduction and the work done
viscous stresses can substantially decrease~or increase! the
total enthalpy on some streamlines at the expense of incr
ing ~decreasing! it on others.

The paper is organized as follows. The equations g
erning the near-axis flow with boundary conditions~1!–~3!
and ~5! and the resulting self-similar problems are given
Sec. II. A description of the numerical integration procedu
is given in Sec. III. Section IV contains numerical results
the thermal boundary layer with a discussion of the influe
of the swirl and energy parameters,L anda, on the thermal
separation effect. The influence of the Prandtl number is a
considered; asymptotic analyses for small and large value
the Prandtl number are also included. Finally, the results
summarized in Sec. V.
Downloaded 06 Jul 2006 to 150.214.40.140. Redistribution subject to AIP
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II. NEAR-AXIS BOUNDARY LAYER EQUATIONS

In a gas flow, compressibility effects can be neglected
both the relative variations of temperatureDT/T and the
Mach number M are small. Then, assuming thatDT/T!1
and M!1, the quasi-incompressible, steady, axisymmet
near-axis boundary layer equations written in cylindrical c
ordinates (r ,u,z) are

1

r

]

]r
~ru !1

]w

]z
50, ~11!

v2

r
5

]~p/r!

]r
, ~12!

u
]v
]r

1w
]v
]z

1
vu

r
5nF1

r

]

]r S r
]v
]r D2

v

r 2G , ~13!

u
]w

]r
1w

]w

]z
52

]~p/r!

]z
1nF1

r

]

]r S r
]w

]r D G , ~14!

u
]h

]r
1w

]h

]z
5u

]~p/r!

]r
1w

~]p/r!

]z
1

l

r F1

r

]

]r S r
]T

]r D G
1nF S ]w

]r D 2

1S ]v
]r

2
v
r D 2G , ~15!

where (u,v,w) are the components of the velocity field an
h5cpT is the enthalpy of the gas;cp , n, andl which are
assumed constant throughout the analysis are the spe
heat ratio at constant pressure, kinematic viscosity, and t
mal conductivity of the fluid, respectively. Although i
Ranque tubes the Mach number can be of order unity
some zones of the flow, especially at the entrance zone,
plausible to assume that, due to the action of viscosity,
Mach number of the flow is less than unity in the neighb
hood of the axis. On the other hand, typical temperat
differences as those found in Ranque tubes~50 K! allow for
the hypothesisDT/T!1.

Note that the mechanical problem defined by Eqs.~11!–
~14! with boundary conditions~1!–~3! and the thermal prob-
lem defined by Eq.~15! and condition~5! are uncoupled and
can be solved separately. The mechanical problem for
casem51 was solved by Long10 and the more general cas
0,m,2 has been recently considered by Ferna´ndez-Feria
et al.11 These authors took advantage of the self-sim
structure of the problem to arrive at a much more simplifi
problem of ordinary differential equations. Here we shall e
tend the analysis in a straightforward way to include therm
effects.

Defining the meridional stream functionC, azimuthal
velocity, and pressure and temperature fields in the form

C5nz f~h!, w5C r /r ,
~16!

u52Cz /r , v5
nz

d2
g~h!,

p

r
2

pr

r
5

~nz!2

d4
b~h!, T2Tr5

~nz!2

cpd4
Q~h!, ~17!

and the boundary layer variableh
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3681Phys. Fluids, Vol. 11, No. 12, December 1999 Thermal separation in near-axis boundary layers . . .
h5r /d~z!, ~18!

whered(z) is the boundary layer thickness, and introduci
the new variables into the boundary layer equations, one
rives at the following system ifj5h2 instead ofh is used as
independent variable:

g252jb8, ~19!

2
m21

m
g f 822 f g82

f g

j
54

d

dj
~jg8!2

g2

j
, ~20!

22m

m
f 821 f f 91

1

2m
@~22m!b1jb8#522

d

dj
~j f 9!, ~21!

22 f @Q82b8#14
~m22!

m
f 8@Q2b#216f 92j

2
~2g8j2g!2

j
5

4

Pr

d

dj
~jQ8!, ~22!

where Pr5rncp /l is the Prandtl number.
As shown by Eq.~1!, the behavior of the meridiona

stream function far from the axis (h→`, j→`, r→`) is

C→~W0 /m!r m5~W0 /m!dmhm5~W0 /m!dmjm/2. ~23!

The boundary layer thicknessd(z) and the behavior at the
infinity of the stream functionf are given by matching Eqs
~16! and ~23!. Hence

d~z!5~mnz/W0!1/m ~24!

and

f→jm/2 as j→`. ~25!

The behavior at the infinity of the other dimensionle
variablesg, b, andQ are obtained by matching Eqs.~16!
and ~17! to Eqs.~2!, ~3!, and~5!. Then, one arrives at

g→mLj (m22)/2, b→ ~mL!2

2~m22!
jm22,

~26!
Q

b
→a, j→`.

On the other hand, the stream function and swirling veloc
must vanish at the axis, where the axial velocity, press
and temperature must satisfy appropriate regularity co
tions. Therefore, from Eqs.~16! and ~17!, one has

f ~0!5g~0!50, f 8~0!,b8~0!,Q8~0!,`. ~27!

III. NUMERICAL INTEGRATION FROM THE AXIS

Although the mechanical and thermal problems are
coupled and, therefore, they can be solved separately,
more convenient to solve them together numerically. W
have followed a numerical integration procedure entir
similar to the one carried out in Ref. 11 for the mechani
problem.

Solutions of the dimensionless equations@Eqs. ~19!–
~22!# behave near the axis as

f 5 f 1j1 f 2j21 f 3j31 • • • , ~28!
Downloaded 06 Jul 2006 to 150.214.40.140. Redistribution subject to AIP
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g5j1/2~g01g1j1g2j21 • • • !, ~29!

b5b01b1j1b2j21 • • • , ~30!

Q5Q01Q1j1Q2j21 • • . ~31!

Introducing Eqs.~28!–~31! into Eqs. ~19!–~22!, one deter-
mines completely all the coefficientsf i ,gi ,b i , and Q i in
terms of the first four constants of the expansionf 1 , g0 , b0 ,
andQ0 . For the lower-order terms one finds

b15g0
2/2, b25g0g1/2, ~32!

f 25
m22

4m S f 1
21

b0

2 D ,

f 35
1

48m
@4~m24! f 1f 22~32m!b1#, ~33!

g152g0f 1 /~4m!, ~34!

Q15Pr
~m22!

m
~Q02b0! f 1 , ~35!

Q25
Pr

8 F ~b12Q1! f 112
~m22!

m
~ f 1~Q12b1!12 f 2~Q0

2b0!!232f 2
2G . ~36!

As can be seen from Eqs.~28!–~36!, there are four degree
of freedom to start the integration atj50. Nonetheless, the
computational effort can be much reduced by taking adv
tage that Eqs.~19!–~22! are invariant under the uniparame
ric transformation group

f→ f , j→Cj, g→g/C,
~37!

b→b/C2, Q→Q/C2.

Similarly boundary conditions at infinity, given in Eqs.~25!
and ~26!, can be re-scaled, so that their absolute magnit
becomes irrelevant. In effect, choosingCin Eq. ~37! such
that b0521, the boundary conditions at both the axis a
the infinity read

j→0, f 5A1j1 • • • , g5A2j1/21 • • • ,

b5211 • • • , Q5T̂01 • • • ; ~38!

j→`, f→~Cj!m/2, g→Bj (m22)/2,

b→ B2

2~m22!
jm22, Q/b→a, ~39!

with

A15 f 1C, A25g0C~3/2!,

T̂05Q0C2, B5mLC~m/2!.

For given values ofm, a, and Pr, Eqs.~19!–~22! can be
integrated numerically starting fromj.0 with behaviors
~38! once we choose arbitrary values of the three free par
etersA1 , A2 , andT̂0 . Clearly, the correct behavior at infin
ity will not be met except for some exceptional values
those parameters. This circumstance requires picking u
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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couple of valuesA2(A1 ,m) and T̂0(A1 ,m,a,Pr) for each
realA1 in the interval21/A2,A1,`. As shown in Ref. 11,
boundary layer solutions can be characterized by the swir
parameterL which enters into the problem through th
boundary conditions at infinity. It was found that there exi
only one valueL(A1) for eachA1 in the interval ofA1’s
values where boundary layer solutions exist. For 1,m,2,
L(A1 ,m) presents a maximum~critical! L* (m) while reach-
ing a minimum for 0,m,1. Therefore, for flows in the
range 1,m,2 which exhibit a number of features in com
mon with the experimental results for less idealized vortic
there is no solution forL larger thanL* (m) and there are
two different solutions for eachL smaller thanL* (m). The
occurrence of no solution of the boundary layer type forL
.L* has been related to vortex breakdown.11 The two
branches in the curveL(A1) corresponding to the two pos
sible vortices have been termed as type I (A.A* ) and type
II ( A,A* ) solutions.14 A linear analysis of the stability o
these solutions15 shows that those of the type II are unstab
for axisymmetric perturbations.

IV. NUMERICAL RESULTS

Normalized profiles of the axial and azimuthal veloc
components,d2(z)w/(nz) and d2(z)v/(nz), and tempera-
ture and stagnation temperature of the gas,cp(T
2Tr)d

4(z)/(nz)2 andcp(Tt2Tr)d
4/(nz)2, as a function of

the self-similar distance to the axish5r /d(z) have been
plotted in Fig. 3 for Pr50.72, a51, m51.2, and L
51.079. Note both the qualitative agreement of these res
and those obtained from experiments in real vortex tube5,6

and the reduction of the stagnation temperature of the
which takes place in the near-axis zone of the bound
layer. This phenomenon can be clarified by using the s
nation temperature equation which can be obtained by a
ing to Eq.~15! the result of multiplying Eqs.~13! and~14! by
v and w, respectively. In self-similar variables, the stagn
tion temperature equation reads

FIG. 3. Axial and azimuthal velocities and static and total temperatures
function of the self-similar distance to the axis form51.2, L51.079 71,
Pr50.72, anda51.
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m
f 8Q t

5
4

Pr

d

dj
~jQ8!116f 92j1

~2g8j2g!2

j
116f 8

d

dj
~j f 9!

14g
d

dj
~jg8!2

g2

j
, ~40!

where the self-similar stagnation temperature is

Q t5Q12 f 821 1
2 g2. ~41!

Equation~40! accounts for the contribution of both therm
conduction and the work per unit volume and time done
viscous forces, and the axial and radial convective flux
total enthalpy; the right-hand side of Eq.~40! which repre-
sents the contribution of heat conduction and work by sh
stresses as a function of the radial distance is plotted in
4 for the case considered in Fig. 3. As shown in Fig. 4, t
contribution is positive near the axis while the radial conve
tive flux vanishes there~the radial velocity,u, and the stream
function f going to zero at the axis!. Therefore, to satisfy
~40!, the axial convection of total enthalpy, 4(m
22) f 8Q t /m, must be positive near the axis and sincem
,2, Q t must be necessarily negative there~stagnation tem-
perature less than reference temperature!.

In fact, the self-similar analysis shows the existence o
downstream convective flux of total enthalpy which balanc
the conductive heat flux toward the axis and the work
viscous forces. Therefore, as shown by expressions~41! to-
gether with~16!, ~17!, and ~24!, the total enthalpy along a
streamline increases downstream giving rise to a reductio
the thermal separation effect in the downstream direction
should be pointed out that an explanation of how therm
splitting is originated cannot be provided by the self-simi
analysis presented here, but it requires the study of a n
self-similar evolution of the vortex core emerging from th
converging flow in the turning region close to pointP in Fig.
1. For appropriate values of the parameters of the probl

a

FIG. 4. Values of the right hand side of Eq.~40! as a function of the
self-similar distance. It accounts for both the effect of heat conduction
the work due to viscous forces.
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the structure of the viscous vortex core will evolve even
ally, for sufficiently largez, to the self-similar structure pre
sented here.

Let us discuss in the following the influence on the th
mal separation phenomenon of the relevant parameters o
problem: The swirl parameterL ~or the azimuthal to axia
inviscid velocity ratio at the axis!, the dimensionless energ
constanta, the Prandtl number, and the exponentm charac-
terizing the velocity and temperature flow field.

A. Influence of the swirl parameter L

Figure 5 shows the stagnation temperature profi
cp(Tt2Tr)/wmax

2 for Pr50.72,a51 andm51.2 and differ-
ent values ofL. For convenience, the maximum value of t
axial velocity have been used to normalize the stagna
temperature. Note that for a given maximum axial veloc
of the swirling jet, the thermal separation effect depen
strongly of the swirling parameterL.

It is useful to calculate the maximum value of the the
mal separation defined as the maximum stagnation temp
ture jump

H~L !5
cp~Tr2Ttmin

!

wmax
2

, ~42!

as a function ofL. Results ofH(L) for m51.1, Pr50.72,
anda50 are plotted in Fig. 6. The upper branch of the cur
in Fig. 6 corresponds to values ofA1 larger than the critical
valueA1* while the lowest corresponds to unstable solutio
of type II. The maximum valueHopt5H(Lopt) is reached at a
certain valueLopt which lies very close toL* . Note that there
exists on the upper branch a very narrow interval of value
L where H is very close to the valueHopt. Outside this
interval the cooling effect falls down abruptly. These resu
suggest that the efficiency of the thermal separation pro
in the vortices considered here critically depends onL and it
may explain why devices based on the Ranque effect wo
not work efficiently outside a narrow range of operating co
ditions.

We can now investigate the validity of the quas
incompressible flow hypothesis assumed throughout

FIG. 5. Normalized stagnation temperature as a function of the self-sim
distance for several values of the swirling parameterL.
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analysis; let us assume a maximum axial velocity compon
of the order of 100 m/s; then, using data from Fig. 6, w
have that the maximum difference in the stagnation temp
ture is almost 50 K for values ofL close toL51.21 while
the maximum Mach number of the flow and the maximu
ratio DT/T are about 0.3 and16, respectively, which makes
plausible the hypothesis of quasi-incompressible flow.

For the sake of completeness, we plot in Fig. 7 values
the maximum thermal separation for the casem51, Pr
50.72, anda51. As indicated before, the relevant vorte
breakdown parameter form51 is the ratioS introduced in
Ref. 13 between the maximum values of the azimuthal a
axial velocities but it can be also used to describe bound
layer solutions withmÞ1. In fact, for a givenm such as 1
<m,2 there exists two self-similar solutions ifS is less
than a critical valueS* (m) and there are no solutions forS
.S* . Note that the maximum thermal separation curve v
susS presents a sharp maximum. For comparison, value
the maximum thermal separation has been also plotted
the casesm51.1 andm51.2. Figure 7 shows that for a
given value of parameterS, H reaches its minimum for a
value of m between the interval 1,m,1.2. Note that the

ar
FIG. 6. Normalized values of the maximum thermal separationH5cp(Tr

2Ttmin
)/wmax

2 as a function ofL.

FIG. 7. Normalized values of the maximum thermal separationH5cp(Tr

2Ttmin
)/wmax

2 as a function ofS for three different values ofm.
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value of the exponentm influences not only the matchin
conditions far from the axis but also the numerical values
the coefficients of the boundary layer equations.

Figure 8 shows the results obtained for a flow of the ty
II ~unstable solutions! for the indicated values ofL, a, and
m in the figure. In this case, a two-cell flow develops whe
the fluid moves towards the origin~negative velocities! near
the axis and in the opposite direction~positive velocities!
away from it. Note that the minimum temperature is reach
outside the axis and just near the point corresponding to
maximum values of the azimuthal and axial velocity.

B. Influence of the energy parameter a

The conservation energy equation of the class of invis
and nonconducting gas flow we have considered for ma
ing the conducting and viscous vortex core requires that
stagnation temperature of the gas behaves near the axis

Tt5Tr1S 11L21
aL2

m22D Wo
2

2cp
r 2m24. ~43!

For values ofa such as 0<a,(22m)(111/L2) the stag-
nation temperature increases toward the axis and it decre
if (2 2m)(111/L2),a. Negative values ofa has not been
considered since they lead to results that are quite unreal
In fact, for m,2 anda,0 the static gas temperature in th
inviscid vortex flow increases toward the axis@see Eq.~5!#.
Note that, similar to the values ofW andL which are fixed
by the conservation of momentum and angular momentum
the inviscid flow, the value ofa is given by the conservation
of total enthalpy.

The influence ofa in the thermal splitting is shown in
Fig. 9 where normalized profiles of the total temperature
different values of the parametera are plotted, (a
50, 0.5, 1, 2, and 3). Note that the thermal separation p
nomenon depends substantially ona and its effect increase
when a decreases. The explanation of this behavior lies
the fact that the heat conduction flux towards the axis
creases witha; a50 corresponds to uniform outer temper
tures@see Eq.~5!#. Interestingly enough are vortices witha
52 and 3 for which an inverse thermal separation ta

FIG. 8. Radial profiles of the axial and azimuthal velocities and static
total temperatures for a typical two cell regime.
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place in the viscous vortex core~increasing of the total en
thalpy and heating of the gas in the near axis zone! in spite
that both the static and stagnation temperatures of the in
cid vortex decrease toward the axis. In these cases, the
conduction flux towards the axis becomes so large that b
the stagnation and static temperatures increase. These re
show that contrary to what one may think at first sight inv
cid vortices with both static and stagnation temperatures
creasing toward the axis are not the flow structures neede
produce effective splitting thermal separation in efficie
Ranque vortex tubes. The analysis given here also seem
indicate that thermal separation phenomenon is due to d
pative effects and takes place inside swirling thermal bou
ary layers; the influence of the high Reynolds number vor
flow on the thermal splitting is exclusively limited to th
values of L and a which are external parameters for th
boundary layer and they are fixed through the conserva
theorems of the inviscid and nonconducting flow.

C. Influence of the Prandtl number

Figure 10 shows the dimensionless stagnation temp
ture profiles for three different values of the Prandtl numb
but identical values of the other three parametersL51.113,

dFIG. 9. Normalized total temperature profiles for three different values
a.

FIG. 10. Normalized total temperature profiles for three different values
the Prandtl number.
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a51, andm51.1. Note that both the minimum value of th
stagnation temperature and the thickness of the layer w
thermal separation takes place decrease with the Pra
number.

To obtain deeper insight into both the thermal near a
boundary layer investigated here and the role that the Pra
number plays in the thermal separation phenomenon it i
interest to analyze the boundary layer problem in the t
asymptotic limit cases Pr→` and Pr→0, in spite of the re-
lation h5cpT used as an equation of state which is on
valid for a gas (Pr;1).

1. Pr@1

For large values of the Prandtl number, the thickness
the thermal boundary layer is much smaller than the visc
thicknessd(z), so that heat conduction is negligible outsi
the very thin inner thermal layer. In the outer viscous regi
the equation governing the temperature field results of
glecting the conduction term in Eq.~22!

22 f @Q82b8#14
~m22!

m
f 8@Q2b#216f 92j

2
~2g8j2g!2

j
50. ~44!

Taking into account the behaviors of the flow field variab
given by Eqs.~28!–~30!, it is easy to show that near the ax
temperatureu behaves as

Q→Kj2(m22)/m as j→0, ~45!

whereK is an unknown constant. Since temperature beco
singular near the axis, it must be regularized throughou
thermal conduction sublayer. In fact, defining the inner va
ables

s5Prj, f5QPr2(m22)/m, ~46!

Eq. ~22! becomes at lowest order

s
]2f

]s2
1S 11

f 1s

2 D ]f

]s
2

m22

m
f 1f50. ~47!

It may be easily verified that a solution of Eq.~47! satisfying
the boundary condition at the axis behaves as

f5foS 11
m22

m
f 1s1 • • • D as s→0 , ~48!

where the normalized temperaturefo is unknown and mus
be calculated from the analysis. On the other hand, at
infinity, solutions of~47! behave as

f5Js2(m22)/m, as s→` . ~49!

The matching of behaviors~45! and ~49! leads toJ5K.
Therefore, choosing an arbitrary value offo and starting the
numerical integration of Eq.~47! with behavior ~48!, one
finds, far from the axis, the valueJ(fo)5K(fo). Hence,
Eq. ~44! can be integrated numerically starting fromj!1
with condition~45! to arrive at the infinity with the behavio

Q/b→a* ~fo!, as j→`, ~50!
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whereb is given by Eq.~26!. The value offo which yields
the correct valuea* 5a is obtained by shooting. The nor
malized static temperature radial profile for large values
the Prandtl number is given in Fig. 11. Note that the thic
ness of the layerD in which exists a substantial reduction o
the stagnation temperature decreases with the Prandtl n
ber,D;Pr21/2 while the normalized stagnation temperatu
d4cp(Tr2Tt)/(nz)2 increases as Pr2(22m)/m.

2. Pr!1

For small values of the Prandtl number the viscous la
is much thinner than the thermal boundary layer. In the v
cous sublayer, temperature is uniform to lowest order,Q
5Q0 , since heat conduction is dominant there@see Eq.~22!
for values ofj of order unity#. Introducing the new variables

s5jPr2/m, Q5Pr2(22m)/mf, ~51!

into Eq. ~22!, one obtains to lowest order

s
d2f

ds2
1~11sm/2/2!

df

ds
2

m22

2
s(m22)/2f50, ~52!

whose solution behaves near the axis as

f5foF112
m22

m2
sm/21 • • • G , ~53!

where fo is unknown. At infinity, solutions satisfying Eq
~52! behave as

f5Ksm22, ~54!

behavior ~54! together with condition ~5! lead to K
5a(mL)2/@2(m22)#. Choosing an arbitrary value offo

~let us sayfo* ) and starting the integration of Eq.~52! from
the origin with behavior~53!, one finds numerically at the
infinity a value of K ~say K* ) which in general will be
different from the correct onea(mL)2/@2(m22)#. Taking
advantage of the linear character of Eq.~52!, one can easily
calculate the correct value offo5fo* (mL)2/@2(m
22)K* #.

The normalized static temperature radial profile f
small values of the Prandtl number is plotted in Fig. 12. N
that the thicknessD of the layer in which there is a substan

FIG. 11. Temperature profile for large values of the Prandtl number
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tial reduction of the stagnation temperature increases w
the Prandtl number,D;Pr2/m, while the normalized stagna
tion temperature d4cp(Tr2Tt)/(nz)2 decreases a
Pr2(22m)/m.

V. CONCLUSIONS

We have analyzed the quasi-incompressible ther
near-axis boundary layer flows driven by an inviscid but v
tical velocity field which decays asr m22 with the distancer
to the axis. Far from the axis the stagnation temperatur
the inviscid and nonconducting flow is

Tt5Tr1F11L21
aL2

m22G W0
2

2cp
r 2(m22), ~55!

while the static temperature is given by

T5Tr1a
~LW0!2

2cp~m22!
r 2(m22). ~56!

The flow, which is self-similar, depends on the followin
parameters: The swirl parameterL ~or the azimuthal to axia
inviscid velocity ratio at the axis!, the parametera which
characterizes the temperature field outside the thermal n
axis boundary layer, the Prandtl number, and the exponem
which characterize both the outer velocity and the tempe
ture fields.

Profiles of velocity, temperature, and stagnation te
perature as a function of the self-similar distance to the a
have been obtained for several values of the paramete
previously indicated. The obtained results agree qualitativ
well with experimental measurements in the vortex tub
Asymptotic results for large and small values of the Pran
number have also been carried out.

As can be seen from Fig. 6, for values ofm in the range
of interest~slightly larger than one!, the maximum value of
the thermal separation in swirling axisymmetric bounda
layer flows is defined as

H~L !5
cp~Tr2Ttmin

!

wmax
2

, ~57!

and depends strongly onL. The upper branch of the curve i
Fig. 6 corresponds to values ofA1 larger than the critical

FIG. 12. Temperature profile for small values of the Prandtl number
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valueA1 while the lowest corresponds to the unstable so
tions of type II. The maximum valueHopt5H(Lopt) is
reached at a certain valueLopt which lies very close toL* . It
is of interest to remark that a factor~almost 5! in the dimen-
sionless temperature drops like the one shown in Fig. 6
values ofL near the optimum one accounts for the tempe
ture measurements in Ranque–Hilsch tubes.16 Neither acous-
tic effects nor turbulence are, therefore, needed to explain
occurrence of thermal separation in vortex tubes. Note a
that the upper branch in Fig. 6 presents aplateau in a very
narrow interval of values ofL whereH is very close to the
valueHopt. Outside this interval the cooling efficiency fall
down abruptly. These results show that the efficiency of
thermal separation process in the vortices considered
depends critically onL and suggests that devices based
the Ranque effect will not work efficiently outside a narro
range of operating conditions.

For the sake of completeness, in Fig. 7 we have plot
values of the normalized maximum cooling for the casem
51. As was indicated previously, the relevant vortex bre
down parameter form51 is the ratio between the maximum
values of the azimuthal and axial velocitiesS introduced in
Ref. 13. For a givenm such 1<m,2, there exists two self-
similar solutions ifS is less than a critical oneS* (m) and
there are no solutions forS.S* . Note that the normalized
maximum cooling curve versusS presents a sharp maximum
For comparison, values of the normalized maximum cool
has been plotted for the casesm51.1 andm51.2.

The effect of the Prandtl number on the thermal splitti
has been also investigated. Asymptotic results for large
small values of the Prandtl number are given. We found t
thermal separation increases with the Prandtl number; in
ticular the scaling for large and small values of the Pran
number is

Tr2Tt;Pr2(22m)/m, ~58!

which shows that when Pr→0 the thermal splitting is negli-
gible (m,2) due to the smoothness effect of heat cond
tion.

The radius of the core where the gas is cooledR(z)
depends also on the Prandtl number. For Prandtl of or
unity, this thickness is of the order of the viscous cored(z)
given by ~24!. For large values of the Prandtl number th
radius of the thermal core is of the order ofd(z)/Pr1/2

!d(z) while it is of the order ofdPr21/m@d for small values
of Pr.

The results of the self-similar analysis allows for dete
mining some characteristic values such as the cooled
flow rate G(z) or the mean stagnation temperature whi
may be useful in Ranque vortex tubes. In fact, the charac
istic value of the cooled gas flow rateM can be also esti-
mated from

G~z!52pE
o

`

wrdr. ~59!

As usual in boundary layer analysis, this integral is u
bounded, so that the integration must be limited to distan
from the origin where the axial velocity, for instance, reach
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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an arbitrary fixed value(5%, 10%) of itsmaximum value.
Taking into account Eqs.~16! and ~18! one has

G~z!52pnzE
o

h
f 8dh52pnzhm, ~60!

if Eq. ~25! is used. Choosing and arbitrary valueh510, for
which is the case given in Fig. 3, is still larger than 10%
the maximum axial velocity and assuming a columnar
vortex of typical lengthz530 cm, one has for the data o
Fig. 3 G50.6 l s21. This characteristic value agrees we
with the typical values of the cooled flow rate in comme
cially available vortex tubes of the dimensions conside
here.

Analogously, the mean stagnation temperatureTt̄ of the
cooled gas can be defined as

Tt̄2Tr5
2p

M ~z!
E

o

`

~Tt2Tr !wrdr, ~61!

which in self-similar variables becomes

Tt̄2Tr5
~nz!2

cpd4

1

hmEo

`

Q t f 8dh. ~62!

Using Eq.~58!, it is easy to verify that the mean temperatu
scales up the Prandtl number as Pr2(22m)/m.

Let us finally discuss the validity of the self-similar tem
perature field given by Eq.~17!. As is well known, these
self-similar solutions are not valid near the origin (z→0)
where the flow turns back. Viscous dissipation is import
in this region and since the flow there cannot be solved a
lytically its effect has been modeled elsewhere by means
heat point source at the origin.17 The resulting temperatur
field is thenT2Tr5q/z, whereq is related to the total hea
flux from the source. Clearly, the self-similar solution pr
sented here will be valid as long as

q

z
!q* z2m24, ~63!

where

q* 5n (2m24)/mS W0 /m

cp
m/4 D 4/m

. ~64!

Therefore, the self-similar solution is valid in a region d
fined by
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z!~q* /q!1/(322m) if 1<m<3/2, ~65!

or

z@~q* /q!1/(322m) if 3/2,m,2. ~66!
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