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An experimental study of fixed points and chaos
in the motion of spheres in a Stokes flow

T. MULLIN AND Y. LI

Manchester Centre for Nonlinear Dynamics,
University of Manchester, Oxford Road, Manchester M13 9PL, UK

C. DEL PINO

Department of Fluid Mechanics, University of Malaga, Spain

AND

J. ASHMORE

Department of Applied Mathematics & Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

We present the results of an investigation of a novel dynamical system in which one, two or three solid
spheres are free to move in a horizontal rotating cylinder which is completely filled with a highly viscous
fluid. At low rotation rates, steady motion is found where the balls adopt stable equilibrium positions
rotating adjacent to the rising wall at a speed which is in agreement with available theory. At higher
cylinder speeds time-dependent motion sets in via Hopf bifurcations, and when one or two balls are
present the motion is strictly periodic. Perhaps surprisingly, it is found that three balls are required to
produce low-dimensional chaos.

1. Introduction

The interaction between solid particles suspended in a viscous liquid in the Stokes flow limit is of
considerable scientific and practical importance as discussed by Happel & Brenner (1965). Examples
include particle interactions in colloids (Segre et al., 1997), bioconvection (Pedley & Kessler, 1992),
the motion of organisms (Orme et al., 2003), the stability of arrays of particles with reference to ink jet
printers (Crowley, 1971) and sedimentation processes (Peysson & Guazzelli, 2001). In the simplest of
these flows, predictions from models suggest that three particles undergoing sedimentation will exhibit
chaotic dynamics as discussed by Janosi et al. (1997). The chaos arises from particle–particle interaction
and is transient in the unbounded flow of the model. It is interesting to ask whether this would be the
case in a bounded domain and we believe our experiments shed some light on this possibility. A major
mathematical difficulty then arises because a complete description of the motion of particles in Stokes
flows is difficult when walls are nearby. Hence, walls are often ignored in theoretical studies of particle
interactions, although their important effects have been considered more recently by Goren (1983),
Brady (1988) and Dufresne et al. (2000). However, formulating a tractable mathematical model of the
experiment under consideration here remains a formidable challenge.

We have constructed a Stokes flow experiment on a convenient laboratory scale and used it to in-
vestigate the interactions between individual particles and the walls as well as inter-particle coupling.
The apparently simple physical system comprised a horizontal cylinder which was completely filled with
glycerine, and experiments were performed using one, two and three steel balls which were free to move.
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The balls are large and heavy and hence Brownian effects, which are important in many sedimentation
processes, are negligible here. The cylinder is rotated at a constant speed such that the Reynolds
number, Re, is typically of order one and hence the flow field is nearly Stokesian. Here Re = ωrcrb

ν
where ω is the angular velocity of the cylinder of radius rc, rb is the radius of the ball and ν is the
kinematic viscosity of the fluid. We have performed other sets of experiments using more viscous fluids
such that the Reynolds number was reduced by a factor of approximately 40 and the results for both
fixed-point and time-dependent motion (including chaos) were qualitatively unchanged, although the
time-scales became proportionally longer. Here we focus on the results obtained with glycerine.

The positions of the balls were monitored as a function of the rotation rate of the cylinder which
was set to prescribed values. Equilibrium points were observed for a wide range of rotation rates with
each ball adopting a fixed location so that it rotated adjacent to the ascending wall. A lubrication layer
existed between the ball and the wall and the gravitational force on the sphere was balanced by viscous
forces in the thin liquid film. A photograph showing a front view of the apparatus, with three balls, is
given in Fig. 1 and an overview of the different states is presented in Fig. 2. Above a critical rotation
rate of the cylinder, the fixed-point behaviour gave way to periodic motion in the Y–Z plane for both a
single and a pair of balls. The onset of time dependence occurred when the cylinder speed just exceeded
the rate required to keep the balls at approximately mid-height of the cylinder and initially took the form
of a small periodic oscillation above and below the mid-plane. At higher speeds, the amplitude of the
oscillation grew and the ball was dragged up past mid-height before falling from the wall, landing further
down and then dragged back up. Eventually, at high cylinder speeds, centrifugal effects dominated and
solid body rotation was achieved so that the balls adhered to the wall at fixed locations.

A more interesting behaviour occurred with three balls where fixed points, periodic motion and
low-dimensional chaos were observed over well-defined ranges of Re. In the time-dependent regime,

FIG. 1. (a) Front view of the apparatus showing the X, Y axes and labels used to identify the spheres S1, S2 and S3 which rotate
at the shown fixed positions. The (b) the fixed-point, (c) cascading and (d) solid body regimes for a single ball are shown in the
schematic below. A lubrication layer exists between the ball and the wall in (b). (Gap not shown.)
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FIG. 2. Domain diagram with photographs superposed show typical behaviour for Case I (one ball), Case II (two balls) and Case III
(three balls). The photographs illustrate examples of the dynamical states within the fixed-point (solid line), Y–Z periodic (dotted
line), X–Y–Z chaotic (shaded) and solid body rotation regimes (dashed line). The critical Reynolds numbers which separate the
regions are marked.

each ball acted as a local oscillator which was coupled to the others via the viscous medium during
the falling phase of the sphere’s motion. At a critical Re, this coupled oscillator system gave rise
to a low-dimensional chaos which is in accord with dynamical systems theory (Baesens et al., 1991;
Terry et al., 1999). One interesting feature of our experiment is that the presence of walls helps to
sustain the chaos since particles cannot move far from each other. This is in contrast with the transient
behaviour in the unbounded model of sedimentation for three particles by Janosi et al. (1997). Chaotic
motion is found when the particles are close together but this ceases when one of the particles leaves
the domain of influence of the others. In the system we consider, similar processes are likely to be
involved when the spheres sediment but the chaos persists in our bounded domain. The effects are
complicated by shear and rotation but serve as an illustration of chaotic motion in an apparently simple
Stokes flow.

2. The experiment

The apparatus consisted of a 250-mm-long precision bored and polished Plexiglas cylinder of inner
radius 59.00 ± 0.05 mm. The end caps of the cylinder contained centered ball races which were used
to mount the cylinder with its axis accurately horizontal. The interior of the cylinder was filled with
pure glycerine (ρ = 1.26 × 103 kg m−3) which had a measured kinematic viscosity of 936 ± 6 mm2

s−1 at 22.3 ± 0.1◦C, the controlled temperature. A small amount of Mearlmaid AA ‘pearlessence’ was
added as a flow-visualizing agent in some experiments and viewing normal to an incident sheet of light
enabled observation of the fluid motion. Results obtained with one, two and three 16-mm-diameter steel
(ρ = 7.8 × 103 kg m−3) spheres are presented here, although glass and plastic balls were also used and
the principal findings remain qualitatively the same (Mullin et al., 2005).

The spheres were placed in the cylinder which was rotated at a constant angular velocity, ω, using
a DC feedback controlled motor connected via a gear box and belt drive and the speed of the cylinder
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was monitored using an optical shaft encoder. The rotation rate of the balls was measured using a
stop watch to time the passage of coloured marks on their surfaces via the cross-hairs of a travelling
telescope. The marks were lightly applied and tests showed that they had a negligible effect on the
motion. Measurements of the angle θ subtended by the balls were made using an engineers protractor
aligned with the travelling telescope. The spatial locations of the spheres were recorded using a digital
video technique and analysis of the dynamical motion was carried out off-line using a purpose-made
image-processing software. This was used to identify the centres of the spheres and thereby extract
positional time series.

3. Results

3.1 Single sphere

Consider first a single steel ball in the fixed-point regime which is Case I in the photograph in Fig. 2(a).
At low Re, the sphere was located at an equilibrium point midway between the ends of the cylinder. The
ball rotated smoothly adjacent to the ascending wall of the cylinder with a thin lubrication layer between
the ball and the wall. As the rotation rate of the cylinder was increased the ball moved smoothly up the
ascending wall to a new equilibrium point. As discussed below, the sine of the angle, θ , subtended
by the ball varied approximately linearly with wall speed over a range of cylinder rotation rates. The
linear relationship breaks down for angles less than approximately 10◦ when roughness effects become
important. This is the subject of ongoing research and results will be published in due course by Mullin
et al. (2005). Also, there is a clear departure from linearity for angles greater than 80◦, just prior to
the onset of time dependence. It is interesting to note that the surface speed of the cylinder required to
maintain the ball in equilibrium was between a factor of two and eight less than its free-fall speed, i.e.
the action of the wall was significant.

3.1.1 A mathematical model Establishing a tractable theoretical model for the complete flow field is
difficult. However, we can make progress with the steady motion of a single sphere if we assume that
the wall is locally planar and the finite size of outer flow does not have a significant effect. The closely
related problem of the Stokes flow associated with a ball adjacent to a vertical wall in a semi-infinite
expanse of fluid was first considered by Goldman et al. (1967). Their model requires modification when
applied to particle motion adjacent to an inclined plane since the force normal to the boundary must be
quantified. The symmetry of Stokes flows means that the pressure field generated in the lubrication layer
is antisymmetric about the ambient pressure, and an important consequence is that there is no normal
force exerted by the flow on the ball to balance its weight. Smart et al. (1993) included small inertial
effects which break this symmetry and applied the model to a ball rolling down an inclined plane. They
investigated both solid contact and fully lubricated flows for small particles (typical diameters were
hundreds of microns) and obtained a good agreement between model and experiment. The effect of an
applied linear shear on the lift force on the particles was later included by King & Leighton (1997).

More recently, Ashmore et al. (2005) have shown that for the larger particles typical of the present
experiments, the pressure drops below the vapor pressure and generates a cavitation bubble in the diverg-
ing gap of the lubrication layer. This breaks the symmetry of the flow and provides sufficient normal
force to balance the weight of the ball. The principle assumptions are that the flow is Stokesian, the
outer flow is in solid body rotation and curvature effects of the cylinder wall are ignored. Justification
of these assumptions and details of the model can be found in Ashmore et al. and we will only outline
the essential aspects below.
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The model comprises a sphere rotating at a rate ω in a semi-infinite bath of fluid adjacent to a planar
boundary moving at velocity U inclined at an angle θ . The flow field is dominated by the motion in the
narrow gap between the sphere and the wall since the minimum separation h0 of the narrowest part of
the gap is small compared to the sphere radius rb. Hence, the characteristic length scale parallel to the
boundary (2h0rb)

1/2 is large compared to h0 so that a lubrication approximation to Stokes equations is
justified. A polar coordinate system (r, φ) is used on the boundary such that the origin is at the point of
minimum separation between the sphere and the plane, and the angle φ is equal to zero on the line in
the direction of the sphere’s motion.

We denote the deviation from atmospheric pressure by p(r, φ), the difference between atmospheric
and vapor pressure by pb and the density difference by �ρ = ρs − ρ f . The model uses the force and
torque balances on the sphere to calculate h0, U and ω. Assuming that the tangential force and torque
balances are not significantly affected by the small bubble, the results of Goldman et al. are valid:
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are the asymptotic expansions for the hydrodynamic force and torque where θ is the local angle of
inclination of the boundary relative to the horizontal. First-order terms in the asymptotic expansion are
retained as the expansion in [ln(rb/h0)]−1 converges relatively slowly.

The force balance normal to the plane is:
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We approximate the pressure distribution using the lubrication pressure plub between a rotating sphere
and a translating boundary, truncated at the vapor pressure to incorporate the effects of cavitation:
p(r, φ) = max{plub(r, φ), −pb}, where
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b
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0

r
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Equations (1)–(3) are solved using the Newton–Rhapson method to determine U , ω and h0 for a
specified value of the non-dimensional vapor pressure pb. Further details are given in Ashmore et al.

3.2 Comparison between theory and experiment for the steady motion of a single sphere

We present a graph of the measured speed of the cylinder required to maintain the ball at a given angle
θ plotted as a function of the angle in Fig. 3(a). The comparison between the experimental data points
and the theory outlined above can be seen to be very good. A range of fixed points exist between ∼5◦
and ∼90◦ where the ball rotates adjacent to the wall with a thin lubrication layer which is predicted to
be ≈10µm thick. Unfortunately, we have no method of measuring the gap at present. The low angle
limit is set by the roughness of the steel ball which is ≈2–3µm and this interesting region is the subject
of current investigation.

The rotation rate of the ball is slightly underestimated by the theory as can be seen in Fig. 3(b). The
theoretical line has an average slope of ≈0.17, whereas the experimental estimate is ≈0.2. We believe
that the small offset between the experimental and theoretical estimates of speed of rotation of the ball
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FIG. 3. Comparison between theory and experiment for cylinder and ball speeds plotted as a function of sin θ ; (a) cylinder speed
required to maintain the ball at a fixed point at given value of sin θ (b) ball speed plotted as a function of sin θ .

may arise from neglecting the outer flow field as discussed by Goldman et al. (1967). Flow-visualization
investigations showed that the bulk of the flow was in solid body rotation but the ball sat within a wake
which propagated around the circumference of the cylinder. This complication could well be the source
of the difference between theory and experiment. The conclusion we draw from the results presented in
Fig. 3 is that a thin lubricating layer is formed between the sphere and the wall and cavitation plays a
central role in providing the origins for a normal force.

3.3 Onset of oscillations

When the ball reached approximately mid-height (θ = 90◦), the viscous force was insufficient to over-
come the effects of gravity and small amplitude oscillations developed. In the case of a single ball, the
periodic motion was strictly in the Y–Z plane midway between the two ends. Flow-visualization studies
showed that the disturbances associated with this motion were local to the ball and located near the
central plane. The ball moved up and down on a closed orbit as shown schematically in Fig. 1(c). The
Y-projection of the oscillation of the ball was measured using the image-processing system and a plot
of the square of this amplitude versus rotation rate is given in Fig. 4 for the case of the centre ball in the
three spheres case. It can be seen that the constant level corresponding to the fixed point gives way to a
square root growth in amplitude of the orbit for Re > 1.21.

A sequence of segments of time series taken close to onset for the centre ball in the three spheres
case is shown in Fig. 5. The first onset of oscillations had the same characteristic for one, two and
three balls, i.e it was localized and showed the same growth behaviour. It may be seen that the onset of
oscillations is initially intermittent so that long time series are required to obtain good averages of the
amplitude. Bursting behaviour of this type is common in Hopf bifurcations in the presence of noise as
discussed by Juel et al. (1997). We assume that the ‘noise’ in this case arises from surface roughness
effects and it is interesting to note that there was no clear correlation between the bursting of individual
spheres. Hence, the interaction was localized, unlike the free-fall motion discussed below, where strong
correlation between the motion of individual spheres was evident. The amplitude of the oscillations
increased in size as Re was increased such that the ball fell and was then dragged back up the ascending
wall. The falling and rising phases of the motion are clear in the time series shown in Fig. 5 (d) where
a distinct asymmetry has appeared.
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FIG. 4. The square of the amplitude of the Y oscillation plotted versus Reynolds number. Steady motion was found below
Re = 1.21 and periodic above this value.

FIG. 5. The Y amplitude of the motion near the onset of oscillations. (a) Re = 1.19, (b) Re = 1.22, (c) Re = 1.24, (d) Re = 1.26.

In summary, the periodicity of the motion together with the square root dependence of the amplitude
on the control parameter is consistent with a Hopf bifurcation (Strogatz, 1994). Clearly, the ball now
has sufficient numbers of degrees of freedom for more complicated motions to occur and indeed chaos
has been found for the case of a spheroid in a Stokes flow by Yarin et al. (1997). However, the motion
was always singly periodic for the single sphere, although the cycle contained both ‘free-fall’ and ‘wall-
dominated’ segments.

3.4 Two balls

We now compare the time-dependent motion, cascading regime, for 1.21 < Re < 4.53 for a single
ball (Case I) and a pair of balls (Case II). The single ball oscillates at a fixed X location as shown
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FIG. 6. Non-dimensional oscillation frequency of one and two balls versus Reynolds number. The least squares fitted line is an
exponential.

in Fig. 2(a) and the amplitude of the oscillation grows until it equals the circumference of the cylinder.
The frequency of the orbit grows until it matches that of the cylinder as shown in Fig. 6 where we
combine the results for one and two balls. It can be seen that the ball and wall speeds eventually become
equal at high rotation rates, i.e. the sphere does not move relative to the wall.

One of the fixed-point configurations for two balls is shown in the photograph of Fig. 2(b) where the
balls are approximately six diameters apart and two diameters from the ends. Each of the balls acted in
isolation and had the same speed ratio between ball and cylinder as in the single ball case shown in Fig. 3
(b). Another set of fixed points was possible with two touching spheres located midway along the cylin-
der (Li et al., 2005). This non-uniqueness in the steady states disappeared at the onset of oscillations so
that the photograph shown in Fig. 2(c) is representative of the dynamical behaviour over a range of Re.

An interesting aspect of the dynamical motion of two balls was that, while it was always strictly
periodic, the two equally spaced balls oscillated such that they were locked in anti-phase as in the
photograph of Fig. 2(c) and this persisted over the range of Re from 1.21 to 2.81. The stability of
this motion was tested by briefly stopping one of the balls using a magnet and noting that the anti-phase
motion returned immediately when the magnet was removed. Hence, this system provides an example of
a spatially extended coupled oscillator in a viscous flow where the coupling is provided by the dynamic
long-range interactions between moving particles (Feng & Joseph, 1995).

When Re was increased to 2.81 the anti-phase state became unstable and both balls moved to the
mid-length position and rotated around each other in the mid-plane as shown in Fig. 2(d). This transition
was reversible so that reduction in rotation rate led to the separated anti-phase state being regained after
a transient. Yet, a further increase in Re led to the balls becoming attached to opposite sides of the wall
and moving in solid body rotation as in the case of the single ball. Hence, as with the single ball, there
was a sequence of steady states, periodic motion and solid body rotation as Re was increased.

3.5 Three balls

We now turn to a discussion of the experiment with three balls, which is Case III in Fig. 2. For
Re < 1.21, each ball acted as if in isolation and, as in the single sphere case, the ratio of the rotation
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speeds was 0.19. As with two balls, there was multiplicity in the fixed-point configurations (Li et al.,
2005) which disappeared at the onset of oscillations so that, within the range 1.21 < Re < 2.12, the
state shown in the photograph of Fig. 2(f) was observed.

The onset of simply periodic motion occurred at a Hopf bifurcation at Re = 1.21 as in the case of
single and pair of balls. The motion of the outer two balls was in anti-phase, while the phase of the
central one was intermediate as indicated in the snapshot shown in Fig. 2(f). Flow visualization showed
that the disturbance generated by the balls was localized around each of them. The periodic motion
persisted with increasing Re up to Re = 2.12. At this critical value of Re, a reversible transition took
place such that the balls began to wander erratically in the X direction, i.e. along the cylinder. This was
superposed on the established motion in the Y–Z plane so that, unlike the cases of one and two balls,
fully 3D motion was observed. A snapshot of this motion is shown in Fig. 2(g) where two balls have
collided on the left-hand side of the cylinder.

The motion was no longer periodic and took the form of a chaotic longitudinal drift of the balls.
A characteristic speed of this drift in the X direction was approximately 1 mm s−1 and was hence two
orders of magnitude smaller than the circumferential motion. It was quite unlike that observed with two
balls where all the sustained dynamics took place in the Y–Z plane alone. Now more degrees of freedom
of the system were explored by the balls and spatio-temporal chaos was observed.

We show in Fig. 7 a 400-s segment of the X component time series for all three balls. The irregularity
of the motion in this short segment is clear and contrasts sharply with the single and two ball cases where
only periodic motion in the Y–Z plane was observed with no persistent motion in the X direction. The
smallest lateral gaps in the time sequences correspond to the diameter of the spheres and are hence
the closest points of approach of any two spheres. It is also interesting to note that there is motion of
the third isolated sphere in the X direction when the other pair meet. Much longer time sequences
recorded for periods of several hours confirmed this irregularity. Increase in Re over the range 2.12 <
Re < 4.53, labelled chaotic regime in Fig. 2, leads to increasingly complicated motion before solid
body motion sets in at Re = 4.53. Here, the rotation rate was fast enough to overcome the effects of
gravity so that the three balls remained at fixed locations on the cylinder wall.

FIG. 7. A 400-s segment of the X component time series for the three spheres. The lateral motion is irregular when viewed on
longer time-scales. The interaction between all spheres is evident.
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4. Summary

A rich variety of interesting behaviour has been uncovered in this simple physical flow which is close to
the Stokes limit. The steady behaviour for all configurations (one, two and three balls) is in surprisingly
good quantitative agreement with available theory. Time dependence arises via a Hopf bifurcation and is
strictly periodic for one or two balls. Perhaps, the most interesting aspect of all is that the interaction of
three spheres in a Stokes flow moving under constant external forcing has provided a striking example of
an apparently simple physical system which displays sustained low-dimensional spatio-temporal chaos
in a non-trivial way. The non-linearity arises through the particle–particle and particle–wall interactions
and the chaos is robust. These results are in accord with the transient behaviour found in simulations
of three particle interactions in an unbounded sedimenting flow by Janosi et al. (1997), suggesting that
the inclusion of walls may lead to a persistent behaviour. Thus, the observed phenomena may be of
relevance to a wide variety of particulate flows. The device may also have relevance in chaotic mixers
of very viscous fluids as discussed by Finn & Cox (2001).
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