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Dam-break flow for arbitrary slopes of the bottom
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Abstract. The dam-break flow problem in the shallow-water approximation on an inclined bed for arbitrary slopes
of the bottom is considered. An analytical solution for the spreading of the water fronts at the initial stages is
given. A self-similar solution asymptotically valid at large time is also found. For intermediate times the problem
is solved numerically by the method of characteristics.
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1. Introduction

Dam-break flows, i.e., the instantaneous release of a fluid behind a vertical wall, constitutes
an important problem in civil and hydraulic engineering. The interest of studying this type of
flow resides not only on its practical importance for modelling the effects of the rupture of a
dam on its surrounding environment, but also has a fundamental interest in fluid mechanics.
Thus, among the simpler and more important non-trivial solutions to the so-called shallow-
water equations are the well-known self-similar solution for the dam-break flow on a hori-
zontal plane, first given by Ritter [1], and its extension for the dam-break flow upon a wet
horizontal plane [2, Chapter 10].

In this note, the one-dimensional dam-break flow problem on an inclined dry plane with
constant slope is considered. As a fundamental difference with the horizontal case, one has
now a finite mass of liquid, being thus more realistic for modelling the movement of a flood
wave down a river following a sudden release of water from a ruptured dam. A similar prob-
lem was considered previously by Hunt [3], but in a very different approach. That author, who
also considered the case of a wet channel, used the so-called kinematic-wave approximation
that makes use of approximate relations between the flow rate and the flow depth based on
empirical friction laws. Here we consider the ideal-flow shallow-water equations and obtain
analytical expressions for the movement of both the upstream and downstream water fronts,
valid for the initial stages after the release of the fluid. Analogous solutions for the drying and
wetting fronts were obtained by Hunt [4] in the limit of small channel slope, whereas here we
consider the general case of arbitrary slope. In addition, we also give a self-similar solution
for the movement of the whole mass of water asymptotically valid at large time. One of the
motivations for this work has been to provide analytical solutions to validate numerical stud-
ies based on the shallow-water equations for the flow upon non-horizontal beds. In particular,
for numerical schemes involving the advance of water fronts on a dry, inclined surface.

2. Formulation of the problem

The one-dimensional shallow-water equations have recently been generalized by Keller [5] to
arbitrary slopes of the bottom by just using a scaling method (see also the earlier work by
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Figure 1. Coordinates and sketch of the initial conditions for η(X) (a), and c2(x).

Savage and Hutter [6], and by Bouchut et al. [7]). These equations take a very simple form
when the slope of the bed is constant, for θx = 0, J = 1, and ht = 0 in Equations (3.4–3.5) in
[5] (note that there is a missprint in the sign of the last term of Equation (3.4) in [5]). Thus,
the one-dimensional shallow-water equations for the flow over a constant (but arbitrary) slop-
ing bed are formally the same as for a small bed angle (see, for example, [2, Chapter 2]), but
with different notation [see Figure 1(a)]:

∂η

∂t
+ ∂ηU

∂ X
=0, (1)

∂U

∂t
+U

∂U

∂ X
+ cos θ

∂η

∂ X
= sin θ, (2)

where θ is the angle between the bed and the horizontal (note that θ here is −θ in [5]), t
is the time, X is the coordinate along the bed, η is the depth of the water measured along
the coordinate Y perpendicular to the bed, and U is the depth-averaged velocity component
along X [see Figure 1(a)]. All the magnitudes in the above equations are dimensionless, and
have been non-dimensionalized with respect to a length scale η0, corresponding to some ini-
tial depth, and a velocity scale U0 =√

gη0, where g is the acceleration due to gravity.
We are interested here in solving these equations for the dam-break problem, i.e., for the

flow whose initial condition (t =0) is given by [see Figure 1(a)]

U (0, X)=0, (3)

η(0, X)=






0 for X <−1/e
eX +1 for −1/e ≤ X ≤0
−X/e +1 for 0< X ≤ e
0 for X > e

, (4)

where

e ≡ tan θ (5)



Dam-break flow for arbitrary slopes of the bottom 321

is the slope of the bed. At t =0, the vertical wall that intersects the bed at X = e is removed
instantaneously, causing the fluid to move over the sloping bed under the action of gravity.
Note that characteristic length η0 is the dimensional depth at X =0, t =0.

It is convenient to make the following change of variables,

x = X − 1
2

sin θ t2, u =U − sin θ t, c =√
η cos θ, (6)

leaving t unchanged, which transforms Equations (1–2) and the initial condition (3–4) into
(note that for t =0, x = X )

2
∂c

∂t
+ c

∂u

∂x
+2u

∂c

∂x
=0, (7)

∂u

∂t
+u

∂u

∂x
+2c

∂c

∂x
=0, (8)

u(0, x)=0, (9)

c(0, x)=






0 for x <−1/e√
cos θ(1+ ex) for −1/e ≤ x ≤0

√
cos θ(1− x/e) for 0< x ≤ e

0 for x > e

. (10)

Equations (7–8) are the shallow-water equations for the flow over a horizontal bed in terms
of the non-dimensional horizontal velocity u and wave speed c ≡ √

h, where h is the non-
dimensional vertical depth. Therefore, with this change of variables, the original dam-break
problem on a sloping bed is mathematically equivalent to the one-dimensional spreading of
an initially triangle-shaped mass of water over a horizontal bed [see Figure 1(b)].

As it is well known, the characteristic form of equations (7–8) takes the very simple form
(see, e.g., [2, Chapter 10])

u +2c = constant along
dx

dt
=u + c (characteristics C+), (11)

u −2c = constant along
dx

dt
=u − c (characteristics C−), (12)

where u ±2c are the Riemann invariants.

3. Analytic solution for the advance of the water-fronts at the initial stages

Equations (11–12) may be used to solve (7–8) numerically by the method of characteristics,
starting from the initial conditions (9–10). However, at t =0, both fronts, at x =−1/e and at
x = e, where c = u = 0, are singular points, so that the method of characteristics cannot be
started from them. It would therefore be convenient to have a solution near these points at
the initial stages after the dam-break. In addition to serve as the starting condition for the
method of characteristics near these singular points, this solution will provide the spreading
of the two water fronts at the initial stages after the collapse of the dam.

For sufficiently small t (see below), the solution near each of the two singular points x =
−1/e and x = e depends only on the local values of c and u at the vicinity of them. There-
fore, one may try to solve (7–8) with the initial condition u(0, x)=0, c(0, x)= Ax1/2 for x >0,
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and c(0, x)=0 for x ≤0, where A is any constant, which corresponds to an initial semi-infinite
mass of water with linear depth to the right of x = 0. This problem has the following exact
analytical solution,

u(t, x)=−A2t, (13)

c(t, x)=
{

0 for x <−A2t2/2
A
√

x + A2t2/2 for x ≥−A2t2/2
, (14)

as may be checked by direct substitution in the equations and the fact that it satisfies the
initial condition. Although not given explicitly, this solution is contained within the class
of exact solutions to the shallow-water equations with linear velocity profiles given by [8].
The water front, initially at x = 0, advances to the left according to the trajectory x = l(t)≡
−A2t2/2. Although this might not be the only solution to the nonlinear problem, as com-
mented on below it is the only physically relevant one for the particular cases of a horizon-
tal, and a vertical, free surface on an inclined bed. Obviously, this solution is not valid for the
classical dam-break problem on a horizontal plane [1], for which A →∞. The characteristics
curves C+ and C− starting at x0 >0 for t =0 are

x =− A2t2

4
+√

x0 At + x0 (C+), (15)

x =− A2t2

4
−√

x0 At + x0 (C−). (16)

This solution is valid for sufficiently small t in the vicinity of both x =−1/e and x = e if
one makes the changes of variables x �→ x + 1/e, A �→√

sin θ , and x �→ e − x , A �→√
cos θ/e,

respectively. That is to say, the initial stages of the advance of the left water front is given by

u(t, x)=− sin θ t, (17)

c(t, x)=
{

0 for x < l0
2(t)≡−1/e − sin θ t2/2√

sin θ
√

x +1/e + sin θ t2/2 for x ≥−l0
2(t)

, (18)

while that of the right front is given by

u(t, x)= cos θ

e
t, (19)

c(t, x)=





0 for x > l0
1(t)≡ e + cos θ

e
t2

2√
cos θ

e

√

−x + e + cos θ
e

t2

2 for x ≤ l0
1(t)

. (20)

The validity range in the plane (x, t) of each one of these two solutions can be deter-
mined from the corresponding characteristics (15–16) starting at the point x0 =0. In view of
Figure 2, the characteristic C2, corresponding to the C− characteristic obtained with (17–18)
and starting at (x0 =0, t =0), separates the region of influence of the right (x >0) portion of
the initial water depth h(0, x) on the left portion of h (h(0, x) is also plotted in Figure 2 for
reference); i.e., the solution (17–18) is valid to the left of C2(t). Thus, the advance of the left
water front (17–18) is valid in the region of the (t, x) plane given by

l0
2(t)=−1

e
− sin θ

t2

2
≤ x ≤C2(t)=−√

cos θ t − sin θ
t2

4
. (21)
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Figure 2. Water fronts at the initial stages, l0
1 (t), l0

2 (t), and characteristics C2(t) and C1(t) on the plane (x, t) for
e =0·5 (t2 �4·2, t1 �1·1). Also plotted for reference is the initial water-depth distribution h(0, x).

This region is labelled with (II) in Figure 2. The curves l0
2(t) and C2(t) cross each other at

the time

t2 ≡2

√
cos θ

sin θ
, (22)

so that the solution is valid for t ≤ t2. Note that t2 may be very large if θ is small. Note also
that during the interval of time for which this solution (17–18) is valid, in the original coor-
dinate X on the inclined bed, both the left water front L0

2(t)≡ l0
2(t)+ 1

2 sin θ t2 and the water
level remain steady, L0

2 = −1/e, and η = e(X + 1/e), respectively, as it should be for a semi-
infinite mass of water with a horizontal free surface.

Similarly, the solution (19–20) for the advance of the right water front is valid to the right
of C1, i.e., in the region of the (t, x) plane given by

C1(t)=√
cos θ t + cos θ

e

t2

4
≤ x ≤ l0

1(t)= e + cos θ

e

t2

2
, (23)

labelled with (I) in Figure 2. The curves l0
1(t) and C1(t) become tangent at

t1 ≡2
e√

cos θ
. (24)

Outside regions (I) and (II) [region (III) in Figure 2], the solution has to be obtained
numerically (for instance by the method of characteristics; see next section), but these two
solutions for the advances of the right (wetting) and left (drying) water fronts give analyti-
cally important information about the initial water spreading. The total extent of the water
spreading is given by

l0
s (t)≡ l0

1(t)− l0
2(t)= e + 1

e
+ 1

sin θ

t2

2
, (25)
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Figure 3. x-profiles of c (a) and u (b) for several instants of time, as indicated in (a), for e =0·2.

valid for t < ti ≡ min(t1, t2). In the original coordinate X along the inclined bed, the water
extent for t < ti is [by using (6) and the expressions for l0

1 and l0
2 ]:

L0
2(t)≡−1

e
≤ X ≤ L0

1(t)≡ e + 1
sin θ

t2

2
. (26)

Note that the left water front remains at rest in the coordinate X for t < t2, which is larger
than t1 if θ <45o (e <1). Thus, the left (drying) water front remains at rest until the informa-
tion about the break of the dam, travelling along the characteristic C2, reaches it. This result
coincides with that of [4] for small θ .

4. Numerical solution for e=0·2

Figure 3 shows several x-profiles of c and u for different instants of time up to t =1·5 when
the slope is e=0·2 (θ �11·31o). These solutions are obtained numerically by use of the method
of characteristics based on (11–12), starting at t = 0 with the initial distribution (9–10). A
predictor-corrector method, second-order accurate in time, with a time step �t =0·01, is used.
To avoid the singularity near the initial water fronts at x =−1/e and x =e, the analytical solu-
tions (17–18) and (19–20) are used, respectively, near these points for the first 20 time steps.

For this value of e, t1 � 0·4079 and t2 � 10·0985, so that the advance of the left front is
given by l0

2(t) for all the values of t plotted in Figure 3, while the advance of the right front
is given by l0

1(t) only for 0 ≤ t ≤ t1 < 1·5. This is illustrated in Figure 4, where the numeri-
cal values of the trajectories of the right and left fronts, l1(t) and l2(t), are compared to l0

1(t)
and l0

2(t), respectively (note that a larger interval of time, 0≤ t ≤12, is plotted in Figure 4(b)).
Figure 5 shows the water-depth profiles, and the velocity U , in the original coordinate X
along the sloping bed for the same instants of time as used in Figure 3. According to (6)
and Figure 1, the horizontal and vertical coordinates in Figure 5(a) are, respectively,

cos θ(x + 1
2

sin θ t2)+ ec2(t, x)≡ xe, and (1+ e2)c2(t, x)− exe. (27)
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larly for t =0·1 and t =0·2 (remember that t1 �0·4039). Note that the solutions for U plotted in (b) are only valid
in the region between the fronts, since there is no water outside it and U =0. However, constant values of U have
been plotted outside the water regions to better mark the velocity at the water fronts.

Note that the left water front remains at rest during the complete time interval plotted in that
figure. To check the validity of the analytical solution during the initial stages, and the char-
acteristic solution, we have included in Figure 5 the solutions obtained from an alternative
finite-volume method (dashed lines; see [9] for the numerical details; the finite-volume method
is mostly based on [10]). It is observed that for t < t1 �0·4039 the numerical solution is indis-
tinguishable from the analytical solution.
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Figure 6 shows the water depth, and the velocity U , in the original coordinate X up to t =
20 (for larger times, η becomes too small to be appreciated on the scale used in Figure 6(a)).
These results were obtained numerically by the method of characteristics (also included with
dashed lines are the solutions obtained from a finite-volume method [9]). Figure 7 shows the
trajectories of the right and left water fronts in the coordinate x , l1(t) and l2(t), and in the
coordinate X , L1(t) and L2(t). It is observed in Figure 7(b) that the left water front in the X
coordinate, L2(t), remains constant until t = t2 �10·0985, and then moves downward with the
rest of the fluid (towards increasing X ). In relation to l1(t) and l2(t), it is interesting to note
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that they become straight lines just after t > t1 and t > t2, respectively [see also Figure 4(a)].
This is a consequence of the fact that the fluid velocity u in the vicinity of the water fronts
tend to constant values as time increases. These properties will be used in the next section to
generate a similarity solution for large time.

5. Long-time self-similar solution

Figure 8 shows the profiles of c and u for several instants of time up to t = 70 for e = 0·2.
Figure 8(a) suggests that the profiles of c tend to become independent of the initial depth
distribution as time increases, thus indicating that the problem may have a self-similar solu-
tion (of the second kind; see, e.g., [11]) for large t . In addition, Figure 7 shows that the water
spreading in the coordinate x is a linear function of time for sufficiently large t . Thus, one
may define the self-similar variable

ξ ≡ x − l∞2 (t)

l∞s (t)
, 0≤ ξ ≤1, (28)

with

l∞s (t)≡ l∞1 (t)− l∞2 (t)=umt + l0, (29)

l∞1 (t)=u1t + l01, l∞2 (t)=−u2t + l02, um =u1 +u2, l0 = l01 − l02, (30)

where u1, u2, um , l0, l01 and l02 are constants. A first approximation of the solution for large
t may be written as

c(t, x)= cm(t) f (ξ), u(t, x)=um g(ξ), (31)

with

f (0)= f (1)=0, g(0)=−u2/um, g(1)=u1/um . (32)

Here cm(t) is the maximum of c as a function of time for large t , whose functional form may
be obtained from the integral form of the mass-conservation equation. Thus, multiplying (7)
by c and integrating between l1(t) and l2(t), one obtains

∫ l2(t)

l1(t)

∂c2

∂t
dx + c2u

∣
∣
∣
l2

l1
=0. (33)

Since c =0 at x = l1 and x = l2, after applying Leibnitz’s rule,

d
dt

∫ l2(t)

l1(t)
c2dx =0, (34)
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328 R. Fernandez-Feria

so that the quantity

I ≡
∫ l2(t)

l1(t)
c2dx, (35)

remains constant in time. From the initial distribution (10), one has

I = 1
2 sin θ

. (36)

The substitution of (31) and (28) in (35) yields

I = c2
m(t)l∞s (t)

∫ 1

0
f 2(ξ)dξ. (37)

Therefore,

cm(t)= K0√
umt + l0

, (38)

where K0 is a constant that satisfies

I = 1
2 sin θ

= K 2
0

∫ 1

0
f 2(ξ)dξ. (39)

The substitution of (31), (28) and (38) in the momentum equation (8) gives

(u2 −umξ)g′ +um gg′ +2
K 2

0

um(umt + l0)
f f ′ =0, (40)

where primes denote derivatives with respect to ξ . For large t , the last term is small. Hence,
as a first approximation, discarding the trivial solution g′ =0, one has the linear solution

g(ξ)= umξ −u2

um
. (41)

This solution satisfies both boundary conditions for u [see (28–32)]: for ξ =0 [corresponding
to x = l∞2 (t)], u =−u2, and for ξ =1 [x = l∞1 (t)], u =u1. On the other hand, (31) with (38) and
(41) satisfy identically the continuity equation (7). Thus, any function f (ξ) in (31) satisfying
the boundary conditions f (0)= f (1)=0 is a solution to the problem in the first approxima-
tion (31) for large t .

To obtain f (ξ), one has to consider the next approximation to u(t, x) for large t . Writing

u(t, x)=um[1+φ(t)]g(ξ), (42)

with g given by (41) and |φ|
1 for t �1, and substituting in Equation (8), one obtains

(umξ −u2)

(
dφ

dt
+φ

)

+ 2K 2
0

umt + l0
f f ′ =0. (43)

This equation has a solution provided that

dφ

dt
+φ = α

umt + l0
and f f ′ =− α

2K 2
0

(umξ −u2) , (44)

where α is an arbitrary constant. The solution of the first equation is

φ = k1e−t − α

um
e−t−l0/um E1(−t − l0/um), (45)
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where k1 is an integration constant and E1 is the exponential integral function (e.g. [12, Chap-
ter 5]). For large t , as a first approximation one has

φ(t)∼ α

umt + l0
. (46)

The solution of the second equation in (44) can be written as

f =
√

k2 − α

2um K 2
0

(umξ −u2)
2, (47)

where k2 is an integration constant. The boundary condition f (ξ = 0) = 0 implies that k2 =
αu2

2/(2um K 2
0 ). Then, the second boundary condition f (ξ =1)=0 can only be satisfied if

u1 =u2 =um/2. (48)

Thus,

f (ξ)=
√

αum

2K 2
0

(ξ − ξ2). (49)

One can obtain the constant α in terms of K0 by normalizing this function at its maximum
value at ξ =1/2, i.e., f (ξ =1/2)=1, which yields

α = 8K 2
0

um
, f (ξ)=

√

4(ξ − ξ2). (50)

Finally, K0 is obtained from (39):

K0 = 1
2

√
3

sin θ
. (51)

Summing up, the self-similar solution for large t can be written as

c(t, x)= cm(t)
√

4(ξ − ξ2), cm(t)= 1
2

√
3

sin θ

1√
umt + l0

, (52)

u(t, x)=um [1+φ(t)]
(

ξ − 1
2

)

, φ(t)= 6
um sin θ(umt + l0)

, (53)

with

ξ = x +umt/2− l02

umt + l0
, 0≤ ξ ≤1. (54)

The constants um , l0, and l02 (or um , l01, and l02) depend on the initial conditions (i.e., just
on the slope of the bed e in this problem) and have to be obtained numerically. This is typ-
ical of self-similar solutions of the second kind, where some constants have to be obtained
by connecting numerically the particular initial condition with the final self-similar state (see,
e.g., [11, Section 12.3]).

Numerical solution for the trajectories of the water fronts l1(t) and l2(t) for e = 0·2 (see
Figure 7) up to t = 200 shows that l1 � 1·929t + 1·81 and l2 � −1·929t + 5·191 (note that the
numerical values of u1 and u2 coincide, as predicted by the self-similar solution). Thus, um �
3·858, l0 � −3·381 and l02 � 5·191 for the slope e = 0·2. Figure 9 shows the solutions, using
these numerical values, for c(t, x)/cm(t) and u/[um(1+φ(t))] as functions of ξ for several val-
ues of t , and compares them with f (ξ) = √

4(ξ − ξ2) and g(ξ) = ξ − 1/2, respectively. It is
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Figure 9. (a): c(t, x)/cm (t) as a function of ξ for several values of t , as indicated, for e =0·2; the dashed line corre-
sponds to f (ξ)=

√
4(ξ − ξ2). (b): u(t, x)/[um (1 +φ(t))] as a function of ξ for several values of t , as indicated, for

e =0·2; the dashed line corresponds to g(ξ)= ξ −1/2.

observed that u converges faster than c to the self-similar solution [according to (52–53), u
converges to the self-similar solution as t−1, while c converges as t−1/2].

In the original variables along the sloping bed, the similarity solution (52–54) reads

η(t, X)= 3(ξ − ξ2)

sin θ cos θ(umt + l0)
, (55)

U (t, X)= sin θ t +um [1+φ(t)]
(

ξ − 1
2

)

, (56)

ξ = X + (umt − sin θ t2)/2− l02

umt + l0
, (57)

with φ(t) given in (53). This solution is valid for 0≤ ξ ≤1; i.e., for

L∞
2 (t)≡ 1

2
sin θ t2 − um

2
t + l02 ≤ X ≤ L∞

1 (t)≡ 1
2

sin θ t2 + um

2
t + l0 + l02. (58)

6. Conclusions

In this paper we have presented analytical solutions of the shallow-water equations valid for
different stages of the dam-break flow problem on a constant-slope bed. The different solu-
tions are connected to each other numerically by the method of characteristics. Quantitative
results are given for a slope e = 0·2. The model equations are approximately valid for any
slope of the bed provided that the characteristic flow length along the bed is much larger
than the characteristic length normal to the bed. As discussed in Section 3, the analytical
solutions given here are fundamentally different from the classical self-similar solution to the
dam-break problem on a horizontal plane due to the finite mass of water released after the
rupture of the dam.

One of the main limitations of the given solutions is that friction is neglected, so that cau-
tion must be taken when applying these results. However, these frictionless models may cap-
ture some of the essential features of the dynamics of the water spreading after the breaking
of a dam on an inclined bed, in addition to providing benchmark solutions to validate numer-
ical studies based on the shallow-water equations for the flow upon non-horizontal beds.

In connection with this, we have used both the analytical solution for the spreading of the
water front at the initial stages and the similarity solution for large time to validate a finite-
volume numerical code for the general flow on an inclined bed of arbitrary slope [9]. The sim-
ilarity solution may also be used to estimate in a simple way a maximum limit for the velocity
of avalanches down a river following a sudden release of water from a ruptured dam. Finally,
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this similarity solution may also serve as a simple basic flow to analyze the stability properties
of the flow down a sloping channel (when friction is neglected).
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