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Results are presented of experimental investigations into the motion of a heavy sphere in a
rotating cylinder which is completely filled with highly viscous fluid. For a given cylinder
rotation rate, the sphere adopts a fixed position and rotates adjacent to the cylinder
wall. For the case of a smooth sphere the motion is consistent with that predicted by
a Stokes flow model. Artificially roughened spheres exhibit particle-boundary contact
caused by impacts of surface asperities with the boundary for low cylinder speeds. For
higher cylinder speeds the behaviour of the roughened spheres crosses smoothly from the
particle-boundary contact regime to motion with hydrodynamically lubricated flow.

1. Introduction
The motion of a sphere in a Stokes flow near to a boundary is of fundamental im-

portance since it arises in many industrial problems, such as bearings, cleaning pro-
cesses, colloidal suspensions, fluidisation and filtration (Dowson & Taylor (1979), Segre,
Herbolzheimer & Chaikin (1997)). The simplest experimental system that can be used
to realise this kind of flow is that of a sphere immersed in a viscous fluid moving
down an inclined plane. (Smart, Beimfohr & Leighton (1993), Galvin, Zhao & Davis
(2001), Prokunin (2004)). This apparently simple configuration has been used to develop
models for the motion of both smooth and rough spheres.

Goldman, Cox & Brenner (1967) modelled the translational and rotational motion of
a perfectly smooth sphere near to a vertical smooth boundary by considering torque
and force balances tangential to the boundary. However, due to the reversibility of the
Stokes equations and the local symmetry of the flow geometry, this model contains no
net hydrodynamical force normal to the boundary. This implies that the sphere will
make contact with the wall in an experiment if the boundary is inclined at an angle less
than 90o. The resolution of this problem for the case of a heavy sphere was provided by
Ashmore, del Pino & Mullin (2005) who showed that cavitation in the lubrication layer
breaks the symmetry of the flow so that the flow exerts a normal force on the sphere,
which can balance the normal component of the sphere’s weight. Hence, a vapour cavity
exists in the lubricating layer between the sphere and the moving boundary and details
such as the size and position of the bubble have been verified experimentally.
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Now that the motion of a smooth heavy sphere near to a smooth boundary in a Stokes
flow is understood, one question to ask is the role of surface roughness. It is well known
(see e.g. Acheson (1990)) that there is a mathematical singularity when the distance
between a sphere and boundary asymptotically approaches zero, i.e. when the lubricating
layer depth tends to zero. Hence, a perfectly smooth sphere moving towards a perfectly
smooth wall can never make contact. Similarly, a perfectly smooth sphere touching a
perfectly smooth wall can never break contact. However, experimental data confirms
that particle-boundary contact can occur and be broken. This is believed to arise from
the presence of surface roughness. Smart, Beimfohr & Leighton (1993) provide a model
to describe the effects of roughness on spheres moving near to a boundary in a Stokes
flow. In the model the motion is considered to comprise tangential motion arising from
slip between the sphere and plane, normal motion of a part of the sphere surface relative
to the plane arising from rotation of the sphere, and pressure-driven channel flow in the
lubrication layer between the sphere and plane. Smart, Beimfohr & Leighton (1993) use
a classical mechanics approach to model the roughness effects by introducing a frictional
force into the theory of Goldman, Cox & Brenner (1967). This opposes the translational
motion of the sphere where a coefficient of friction is assumed to exist between the sphere
and boundary. The precise value of the coefficient of friction is obtained by fitting with
experimental data. Galvin, Zhao & Davis (2001) develop this model and use it to describe
the motion of a rough sphere in a Stokes flow close to a smooth boundary. Specifically
they include two distinctive roughness levels on the sphere.

The present study is an investigation into the effects of small roughness levels on a
heavy sphere moving near to a boundary in a Stokes flow, where the measure of roughness
ε is defined as the ratio of the maximum peak-valley depths of the rough asperities to the
sphere diameter. The system consists of a horizontal rotating cylinder filled with very
viscous fluid. Roughened steel spheres were placed within the fluid and found to rotate
at a fixed point adjacent to the upward moving wall in the lower quadrant of the cylinder
for a set rotation rate. When the cylinder was made to rotate faster the sphere moved
up the wall to new fixed points until it reached 90o, whereupon it fell from the wall and
oscillatory motion set in. This in turn could lead to periodic particle-particle interactions
when two spheres were present and spatio-temporal chaos with three spheres, all of which
are described in detail in Mullin, Li, del Pino & Ashmore (2005).

We will concern ourselves with fixed point behaviour where the sphere sits in the lower
quadrant of the cylinder. This is analogous to a sphere rolling down an inclined plane:
where the plane can lie at an angle between 0 and 90o, the tangent to the sphere at
the point of nearest approach to the cylinder wall can also lie between 0 and 90o. Our
experimental observations show that particle-boundary contact is possible for roughened
spheres at small angles, but that the motion of roughened spheres can be described by the
hydrodynamic model of Ashmore, del Pino & Mullin (2005) over a wide range of angles up
the cylinder wall. Moreover, there is a smooth crossover between the particle-boundary
contact and the hydrodynamic regimes.

2. Experimental setup
The experiments were carried out using a precision bored, right glass cylinder of length

195 mm and inner radius 60.00±0.02mm. A schematic diagram of the apparatus is given
in Figure 1 (a). The end caps of the cylinder contained centered ball races which were
used to mount the cylinder horizontally and this was checked with a precision level. The
cylinder was rotated at constant angular velocity using a dc feedback controlled motor
connected via a gear box and toothed-belt drive. Its rotational frequency was monitored
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Figure 1. Overview of the experimental apparatus. (a) Front view showing the sphere inside
the cylinder. (b) Sphere rotating close to the cylinder wall in the fixed-point regime.

using an optical shaft encoder and was found to be constant to within ± 0.001Hz. Sphere
rotation rates were estimated using a stop watch to measure the passage time of lightly
applied pen marks on the sphere to pass a known position averaged over 50 orbits.

The two fluids used in this study were silicone oil and glycerine, held at a constant
temperature to an accuracy of ±0.1 oC. The kinematic viscosities were found by interpo-
lating viscosity-temperature calibration charts provided by the fluid manufacturers and
the values used in the experiments here were 813 and 1192mm2s−1 for glycerine (corre-
sponding to temperatures of 19.5 and 23.6 oC respectively) and 1089mm2s−1 for silicone
oil (only one temperature was used for silicone oil, 21.7 oC). Prokunin (2004) showed
that air dissolved in the system can form a bubble in the lubrication layer between the
sphere and boundary. Degassing the fluids before carrying out the experiments reduced
any dissolved air that may have otherwise interfered with the sphere motion. The effects
caused by gassy fluids will be discussed in section 3.

The steel spheres used in the experiments had densities of 7800±5 kgm−3 and diameters
of 15.8 and 25.0mm. Tolerances on the diameter of the spheres were 2.5 µm and the
inherent roughness of the smooth spheres was ε = 5.0± 0.2 × 10−6. In addition to these,
a 15.8mm sphere and three 25 mm spheres were artificially roughened. This was done by
uniformly grinding the spheres in a rotating drum with grits of well defined sizes over a
period of 3 days. The 25mm artificially roughened spheres had measured roughnesses of
ε = 84 ± 4 × 10−6, 164 ± 4 × 10−6 and 440 ± 20 × 10−6 and the 15.8mm sphere was
roughened to ε = 481 ± 19 × 10−6. Surface roughness was measured using an optical
interferometric profilometry device where a light beam was reflected off the sphere and
its surface topography was recorded by measuring the scattered light.

For slow cylinder rotation rates the spheres rotated at fixed points up the cylinder wall,
separated from the boundary by a thin lubrication layer as shown schematically in Figure
1 (b) and described in detail by Mullin, Li, del Pino & Ashmore (2005). All experiments
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Figure 2. Relationship between the cylinder wall speed and sphere speeds for the 25mm spheres
with roughnesses of ε = 5 × 10−6 (circles), 84 × 10−6 (squares), 164 × 10−6 (diamonds)
and 440 × 10−6 (stars). The motion can be described in terms of a particle-boundary contact
regime (A) and a hydrodynamic regime (B) with a smooth crossover (C) between the two. The
transition between region A and B is labelled 1 and that between B and C is labelled 2 for the
ε = 440 × 10−6 sphere. The solid curve represents the theoretical predictions of Ashmore, del
Pino & Mullin (2005).

were carried out in the single sphere fixed-point regime. Increasing the cylinder speed
increased the angle up the wall that the sphere was fixed at until, at 90 o, the motion of
the sphere became unstable and it began to oscillate.

3. Results and discussion
Plots of the rotation speed of the 25 mm diameter spheres versus that of the cylinder

are shown in Figure 2 where each data point was recorded at a fixed point of the sphere.
The left most data points correspond to cases where spheres were near the bottom of the
cylinder and the right hand points where it was adjacent to the near vertical rising wall.
The cylinder was completely filled with glycerine and held at a constant temperature of
23.6± 0.1 oC, corresponding to a viscosity of 813± 7 mm2s−1.

The motion of the smooth sphere was governed by the flow of fluid in the lubrication
layer. Deviations between the experimental data for this sphere and the theoretical pre-
dictions of Ashmore, del Pino & Mullin (2005) can be attributed to three factors. The
model describes the translation and rotation of a sphere down an inclined plane, with
boundary conditions that all motion tends to zero in the outer flow field. In the experi-
ment the inclined plane is replaced with a cylinder of finite curvature and the outer flow
field is limited by the cylinder diameter. Moreover, after one complete rotation of the
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Figure 3. Comparison of the vapour cavity size in-between the cylinder wall and the smooth
(circles) and the roughest (squares) 25mm diameter steel spheres. Angle represents the sphere
position up the wall, defined in Figure 1. Bubble area is the measured viewable area (projected
as a disk) of the cavitation bubble, normalised by the square of the sphere radius. The fluid is
glycerine at 23.6 oC. The solid curve represents the theoretical predictions of Ashmore, del Pino
& Mullin (2005).

cylinder the sphere travels in the wake created from its previous passing of that point
on the cylinder wall. A key feature of the theoretical predictions is the nucleation of a
vapour cavity between the sphere and boundary. The size of the bubble is defined as its
measured area when viewed through the cylinder wall. This is plotted in Figure 3 as a
function of its position angle for both the smooth and roughest 25mm diameter spheres.
The data for the smooth sphere is in good agreement with the theory.

The three roughened spheres possessed quite different behaviour from the smooth
sphere at low cylinder rotation rates. Rough spheres rotated at the same speed as the
boundary as may be seen in region A of Figure 2). This suggests that continual impacts
occurred between rough asperities on the sphere and cylinder wall and the sphere was
driven by frictional contact with the boundary. However, a vapour cavity was observed
over the entire speed range i.e. even in the sphere-boundary contact regime. Estimates
for the size of the vapour cavity for the roughest sphere are plotted as a function of
angular location of the fixed points in Figure 3. It is interesting to note that the bubble
size is little affected by the roughness. The cavitation bubble was always found in the
same position and approximately the same size as for the case of the smooth sphere. This
suggests that there was a continuous flow of fluid around the rough asperities capable of
creating the pressure distribution required to cause cavitation even in the contact regime.

At faster cylinder rotation rates the roughened spheres began to slip with respect
to the cylinder wall and departed from the sphere-boundary contact regime. A smooth
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transition (region C) was found between the contact and the hydrodynamic regimes
where the latter is in accord with previous results for smooth spheres (region B). Slippage
between the rough spheres and boundary first occurred at angles of 11, 13 and 15 ± 2 o

for the ε = 84 × 10−6, 164 × 10−6 and 440 × 10−6 spheres respectively and departure
from the contact regime appeared sharp. The motion of the spheres crossed over to the
hydrodynamic limit gradually and joined it at angles of 18, 22 and 26 ± 2 o for the
three increasing roughnesses. The roughened spheres continued to move according to the
hydrodynamical theory until the cylinder rotation rate was increased sufficiently for the
spheres’ location angle to exceed 90 o, whereupon they left the fixed point motion and
began to oscillate. Hence, the roughened spheres rotated in accord with the hydrodynamic
behaviour of the smooth sphere for a large range of position angles and cylinder speeds.
Most importantly, the behaviour of the spheres in all three regimes (contact, transition
and hydrodynamic) was found to be both continuous and reversible i.e. no hysteretic
behaviour was found with increasing and decreasing cylinder speed.

The depths of the lubrication layer between the smooth sphere and cylinder wall is
estimated to be 5− 10 µm, corresponding to a pressure variation of ±1MPa. For rough-
ened spheres in the crossover regime the lubrication depth will be between that predicted
for the hydrodynamic limit and particle-boundary contact. The corresponding pressure
variation will significantly increase from ±1MPa as contact is approached and pressure
dependent effects of viscosity may become important. For pressure dependent effects of
viscosity to be significant the pressure variation must exceed 100MPa (Kapitza (1965);
Cook, King, Herbst & Herschback (1994)). To test whether the sphere motion was affected
by this the experiment was repeated in both glycerine (T = 20.4 ± 0.1 oC) and silicone
oil (T = 21.8 ± 0.1 oC). At these temperatures the two fluids have similar viscosities at
atmospheric pressure (ν = 1095± 10mm2s−1 for glycerine and ν = 1086± 3mm2s−1 for
silicone oil) but at higher pressures a 50% increase in viscosity of silicon oil is achieved at
a pressure of 100MPa compared with 600 MPa for glycerine. Plots of the rotation speed
of the 15.8 µm diameter sphere against that of the cylinder for both fluids is shown in
Figure 4. Both sets of data overlay each other showing that any effects from the pressure
dependence of viscosity are negligible.

An investigation of the effects of dissolved air in the system was carried out by repeating
the experiment with the smooth 25mm sphere without degassing the fluid. The reduced
pressure required to form a bubble from dissolved gases in the fluid are considerably less
than for a vapour cavity and hence the observed bubble ought to be larger. Images are
shown in Figure 5 of the cavitation bubble for both a degassed and a gassy system. The
gas bubble was saturated with air and had an area approximately 8 times larger than
the cavitation bubble in the degassed system. When reducing the cylinder rotation rate
to zero and allowing the sphere to come to rest, the cavitation bubble collapsed and the
dissolved air was released and floated to the top of the cylinder, as reported by Prokunin
(2004). No difference was detected in the relationship between cylinder wall speed and
sphere speed in either system. Hence the bubble has little effect on the tangential forces
and its primary role is in facilitating a net normal force.

4. Conclusions
We have observed the effects of surface roughness on spheres moving near to a boundary

in a Stokes flow in a rotating cylinder. Smooth spheres move in the hydrodynamical
regime described by Ashmore, del Pino & Mullin (2005).

At low cylinder rotation rates the roughened spheres rotate at the same rate as the
cylinder, indicating particle-boundary contact. As the cylinder rotation rate is increased
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Figure 4. Relationship between the cylinder wall speed and sphere speeds for 15.8mm rough
sphere in glycerine (squares) and silicone oil (circles).

Figure 5. Images of the cavitation bubble for a degassed experiment (left) and an experiment
where the fluid had not been degassed (right). The sphere is a 25mm roughened steel sphere
and the rotation direction is bottom to top. The fluid is glycerine at 23.6 oC.

the spheres slip with respect to the cylinder wall and there is a continuous crossover from
the particle-boundary contact regime and the hydrodynamic limit.

The hydrodynamical regime, in which roughness effects are negligible, is understood.
The symmetry of the problem is broken by the truncation of the pressure distribution at
the vapour pressure in the lubricating layer. Here we have shown that the vapour cavity
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in the system is robust to roughness level and system impurities, such as dissolved air.
The actual size of the cavitation bubble does not appear to have a significant effect on
the motion of the sphere.

The model of Smart, Beimfohr & Leighton (1993) cannot be used to explain the re-
sults presented here for heavy spheres. Their model predicts that the crossover from the
particle-boundary contact regime reaches the hydrodynamical limit (transition 2 in our
nomenclature) at a sphere position angle of 90 o, whereas this is found to occur much
less than 90 o experimentally (∼ 26 o for the roughest 25mm sphere). The effect that
surface roughness has on the flow dynamics is a complicated issue and the possibility of
including cavitation in the model of Smart, Beimfohr & Leighton (1993) is left open.
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