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ABSTRACT
ON THE GAS DYNAMICS OF BINARY GAS MIXTURES WITH LARGE MASS DISPARITY

Ramén Fernandez-Feria
Yale University
1987

The standard Chapman-Enskog (CE) theory for binary mixtures applies when Knj<<M,
where M=mj/mj<1 is the molecular mass ratio and Knj is the light gas Knudsen number. For
disparate-mass mixtures (M<<1), the Knudsen number range of applicability of that theory is,
therefore, very restricted. In this dissertation, a variety of hydrodynamic and reduced kinetic
equations covering the broader range Knj<<1 are given for neutral, monatomic, disparate-
mass mixtures. Thus, the theories given here cover the same range of Knudsen numbers as the
CE theory for pure gases, or mixtures whose constituents have comparable molecular weights.

We start with a systematic mass-ratio expansion of the cross-collision integrals in the
Boltzmann equations (BE), leading to the Lorentz-Bernstein (LB) and Fokker-Planck (FP)
collision operators. A further Knudsen number expansion of the BE of the light gas (which after
the mass-ratio expansion becomes kinetically decoupled from the heavy gas) yields near-
equilibrium hydrodynamic equations for the light gas valid for Kny<<1, independently of whether
the heavy gas is also in near-equilibrium conditions. The resulting distribution function of the
light gas is used to obtain an explicit expression for the FP collision operator in terms of the
hydrodynamic quantities and their gradients. In the case in which ny/ni>>Kn; (where nj is the
number density of species i), a Knudsen number expansion of the heavy gas kinetic equation is
also possible, and the problem is reduced to its near-equilibrium hydrodynamic (two-fluid)
level. These two-fluid equations are also generalized to arbitrary mass ratios. The transport
coefficients are obtained via variational principles, using expansions in Sonine polynomials as
trial functions. Explicit expressions for these transport coefficients are given at the first
order of these Sonine polynomials expansions. In contrast to previous two-fluid theories, the
present derivation makes no heuristic assumption to simplify the Boltzmann equations, and is
not limited to a particular molecular model.

When ny/n1<O(M) (M-Kni<<1)}, the heavy gas is far removed from equilibrium and its full
BE has to be used, with only the simplification of the FP cross-collision operator. This equation
is substantially reduced to an equation of the FP type in the limit na/ny<<M, where the self-
collision term is negligible. Further simplification arises in the hypersonic limit of the heavy
gas, which for disparate-mass mixtures can be attained even for subsonic conditions of the
light gas. A hypersonic expansion of the FP equation yields closed sets of hydrodynamic
(hypersonic) equations at each level of the expansion.

To test the validity of these theories, we apply them to some specific problems. Thus,
the two fluid theory is applied to the accoustic problem and compared with experimental data in
He-Xe mixtures of Fuentes Losa (1972) and Bowler (1984), showing a good agreement. This
example also corroborates our predictions on the Knudsen number range of validity of both the
two-fluid and the standard CE theories. On the other hand, the hypersonic approximation for the
heavy gas and the near-equilibrium hydrodynamic equations for the light gas are applied to the
shock wave problem and to the flow through a converging nozzle. In the first case, the results
are compared with shock tube experiments in He-Xe mixtures made by Herczynski et al.
(1986), and in the nozzle example they are compared with our own discharge coefficient
measurements in CCls-He mixtures. A simplified version of the shock wave problem is solved

using the kinetic FP equation for the heavy gas, corroborating our predictions on the errors of
the hypersonic approximation.
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...criticism is the prime duty of the scientist and of anyone who wants to advance knowledge.
Seeing new problems and having new ideas, on the other hand, are notone's duty: originality is,

rather, a gift of the gods.  Popper (1982).
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Chapter 1
INTRODUCTION

1.1 Objectives and structure of the thesis

This dissertation is devoted to the study of some gasdynamic problems arising in binary
mixtures made up of species with very different molecular masses.

The two principal features that make such mixtures substantially different from
mixtures whose components have comparable molecular masses are the partial decoupling
between both species (due to the slower interspecies relaxation of momentum and energy
compared to the relaxation between identical molecules), and the almost deterministic behavior
of the heavy molecules (owing to their large mean speed compared to their thermal velocity).
As a consequence, we shall see in the next chapter that the standard hydrodynamic equations
for binary mixtures are not appropriate for this class of problems with the same degree of
validity as in ordinary mixtures whose components have similar molecular weights. Moreover,
we shall also see that the attempts made in the past to formulate suitable basic theories for
describing the behavior of these disparate-mass mixtures (DMM) either lack rigor or are
severely restricted in their region of validity. Therefore, the field is in need of more
systematic and rigorous theories to guide the increasingly important technological applications
of DMM. One of the principal objectives of this dissertation will be to furnish such a
framework for a large class of industrially relevant problems.

Another important objective of this work will be to test the validity of the theories
developed in the earliest part of it. This task will be accomplished in two ways: (i) by testing
the theories against existing and new experimental data, and (ii) by comparing among
themselves the results from the various hydrodynamic and kinetic theories developed here. The
specific problems selected include the propagation of sound, the structure of shock waves and
the quasi-one-dimensional flow through a converging nozzle.

Our starting point will be the kinetic Boltzmann equations (BEs). The presence of a small
parameter, namely, the ratio of molecular weights M =m;/m, << 1, provides a perturbation
scheme to simplify the rather involved mathematics of these equations. This perturbation
attack of the BEs was in fact started long ago by Lorentz (1905). We shall have opportunity in
Sec. 2.3 of giving some remarks on the historical development and the details of these
perturbation techniques. A very desirable result would be to obtain, from the perturbatively
simplified BEs, a near-equilibrium hydrodynamic formulation with the same range of
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applicability as that of the hydrodynamic equations for a pure gas, obtained by means of the
Chapman-Enskog (CE) method for small Knudsen numbers (defined as the ratio between a
microscopic and a macroscopic time or lenght of the problem; see Sec. 2.1 for a more precise
definition). Unfortunately, we shall see in the next chapter that the richness of parameters in
the binary problem makes the unified near-equilibrium hydrodynamic picture of the pure gas
unrepeatable for mixtures, even \>r small Knudsen numbers.

One of the most important features of the expansion of the BEs in powers of the small
mass ratio M is the decoupling of the BE of the light gas from that of the heavy gas: we shall
see in Sec. 2.3 that, after the expansion, the heavy species distribution function enters into the
light gas BE only through its moments. Consequently, one can solve the light gas BE
independently of the heavy gas BE. In particular, we shall apply the CE method ™ to solve the
former equation in Sec. 2.4, obtaining near-equilibrium hydrodynamic equations for the light
gas valid to first order in M, in the light gas Knudsen number Kn;, and in the ratio v between
the difference of mean velocities among species and the light gas thermal speed. On the other
hand, the heavy gas BE does depend on the light gas distribution function, which must be
specified before solving that equation. To this end, we shall use in Sec.2.5 the near equilibrium
light gas distribution function obtained in Sec.2.4 and show that the CE method can only be
applied to the heavy gas BE in two situations: (i) when Kn;<< M, in which the standard CE
theory for binary mixtures may be applied to both species as a single fluid, and (ii) when the
ratio between heavy and light gas number densities n,/n, is much larger than Kn; [with Kn;<<1,
Kn,>0(M)], in which case a two-fluid CE theory may be used. Therefore, the class of problems

that obey a single set of near-equilibrium hydrodynamic equations for a pure gas or for a

binary mixture with components of comparable molecular weights must, for DMM, be described
by a mixture of hydrodynamic and kinetic equations, depending on the relative values of M, Kn,;

and ny/n,. In the particular limit Kny<<1 and ny/n, >>Kn;, both species are governed by near-

equilibrium hydrodynamic equations. These are two-fluid hydrodynamic equations rather than

. Although the method of Secs.2.4 and 2.5.2 shares with the Chapman-Enskog (CE) method for
pure gases (i.e., Chapman and Cowling, 1970, Ch.7) the expansion in the Knudsen number and
the elimination of time derivatives from the Euler-level conservation equations (at the first
order of the expansion), it differs in the conservation equations from which the time
derivatives are eliminated, which in Secs.2.4 and 2.5.2 contain additional terms of transfer of
momentum and energy between species. As we shall see, these new terms are essential in the
theory. However, since the main features or both methods are the same, and for simplicity
sake, we shall mantain the name CE method. On the other hand, the (single-fluid) CE theory for
binary mixtures given by Chapman and Cowling (1970), Ch.8, will be referred as the classical
or standard CE theory for binary mixtures, while the method of Chapter 3, and that of
Secs.2.4 and 2.5.2 taken together, will be termed two-fluid CE theory.
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the single-fluid hydrodynamic equations obtained from the standard CE theory for binary
mixtures, valid for Kn; <<M. On the other hand, for n,/n; << M-Kn,, as a consecuence of the
negligible role played by heavy-heavy collisions, the kinetic equation governing the heavy gas
distribution function is substantially simplified to a partial differential equation of the Fokker-
Planck (FP) form (Secs.2.5.3-4).

Based in the fact that, for M<<1, the lowest order distribution functions in the CE method
are Maxwellians with independent mean velocities and temperatures, a more general derivation
of the two-fluid hydrodynamic equations is given in Chapter 3, valid for any value of the mass
ratio M. These hydrodynamic equations contain those derived in Chapter 2 in the limit M<<1
though, of course, the equations corresponding to the heavy gas are not valid when
ny/ny;<O(Kny) (in this limit M~ Kny<<1). For M=0O(1), the hydrodynamic equations derived in
Chapter 3 coincide with the standard Navier-Stokes equations (NSEs) for binary mixtures when
both temperatures and mean velocities are equated. The conditions under which the two-fluid
hydrodynamic equations are equivalent to the standard NSEs for binary mixtures are discussed
in the last section of Chapter 3.

in Chapter 4 we discuss the heavy gas hypersonic limit. This limit is relevant because,
as a consequence of the mass disparity, the heavy gas may be in hypersonic conditions even for

subsonic conditions of the light gas. For instance, in a He-Xe mixture (M=0.03) with a Mach
number of one for the light gas [Ma;= Ull(ylle/ml)l’2 =1, where U; and T are the light gas

mean velocity and temperature, v, is its specific heat ratio and k is Boltzmann'’s constant], and
the same mean velocity for both components, the heavy gas Mach number Ma; is equal to M-12-
5.75. We shall consider the limit n,/n; << M<<1, Knj<<1, for which the heavy gas is governed
by a FP equation and perform an expansion of this equation in powers of Ma,~1. More precisely,

we shall expand in powers of M2, assuming that the light gas Mach number is O(1) and that v
(the ratio between the difference of mean velocities among species and the light gas thermal
speed) is small. In particular, two different hypersonic expansions of the FP equation will be
considered. In the first of them, the pressure tensor will be neglected in the momentum
equation corresponding to the lowest order of the expansion, while, in the second hypersonic
expansion, the pressure tensor will be retained in that equation. At the lowest order of both
expansions we shall obtain an anisotropic Gaussian distribution as the normal solution, whose
first and third moments, density and pressure tensor respectively, obey the standard
continuity equation and the pressure tensor equation without the heat flux term (that is, a
hypersonic closure of the moment equations). One of the most important results of Chapter 4 is

about the order of magnitude of the errors in the above hypersonic hydrodynamic equations. We
shall show that the errors in the pressure tensor are O(M) [when Ma;=0(1) and provided that
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the normal Gaussian distribution applies), instead of O(M!/2) as one might have expected from
the ordinary scaling of the hypersonic closure. Therefore, in the limit ny/n; << M, Kn;<<1 (for
which the near-equilibrium hydrodynamic equations for the heavy gas are not valid), and
provided that the heavy gas is in hypersonic conditions, one can still have a hydrodynamic
description for both components of the mixture with errors O(Kn{,M).

The hydrodynamic equations at the lowest order of the expansion (hypersonic closure)
will also be obtained without the restrictions v<<1 and ny/n; << M in the last section of Chapter
4. To this end we shall use a generalized form of the FP equation valid for arbitrary values of v
(given in Ch.2), and include a self-collision term in the pressure tensor equation.

In the second part of this dissertation, Chapters 5 to 8, we shall apply the theories given
in chapters 2, 3 and 4 to some specific problems with the objective of testing them. Thus, the
two-fluid CE theory of Chapter 3 (which contains the limit M<<1 considered in Chapter 2), is
applied to the propagation of sound in Chapter 5. In particular, it is applied to the sound
propagation in He-Xe mixtures for which experimental data on absorption and dispersion of
sound can be found in the literature (Fuentes Losa, 1972, and Bowler, 1984). It is shown that,
at low frequencies, the resulting expression for the absorption of sound coincides with Kohler's
expression derived from the classical CE theory for binary mixtures, and the agreement with
the experiments is excellent. As the frequency increases, the predictions of the standard CE
theory become poor, while the two-fluid theory agrees reasonably well with experimental data
on absorption. These results are in accordance with the discussion given in Section 2.1 on the
frequency (Knudsen number) range of validity of both the standard CE theory for binary
mixtures and the two-fluid CE theory.

In Chapter 6 we consider the structure of normal shock waves for DMM in the limit
p2/p1<0O(1), where pj is the mass density of species i. This is an example where the near-
equilibrium hydrodynamic equations for the heavy gas are not valid, even when the light gas is
in near equlibrium conditions over most of the flow field. That the heavy gas is far from
equilibrium has been clear since the work of Sherman (1960), who applied the standard NSEs
for binary mixtures to solve this problem. For He-Ar mixtures (M=0.1) and small
concentrations of the heavy gas (Ar), Sherman obtained an unphysical overshoot in the heavy
gas velocity profile, which was obviously not found in subsequent experiments made by Center
(1967). To solve this problem we shall use the hypersonic approximation discussed in Chapter
4 for the heavy component, and the near-equilibrium equations of Chapter 2 for the light gas.
In particular, we shall use the lowest hypersonic order of the momentum equation in which the
pressure tensor is neglected, since it will permit an algebraic solution in phase space for the



heavy gas velocity. This solution is valid throughout the shock wave (with errors of order M)
when the light gas Mach number Ma, is less than one [but larger than the minimum admisible

value (1+ py/ pl)—llz], corresponding to a so-called fully dispersed wave. When Ma;>1, the

behavior is similar to that of a dusty gas, with the algebraic solution valid in the relaxation or
outer layer that follows a narrow boundary layer, corresponding, in first approximation, to the
shock wave of the light component as a pure gas. This sharp distinction between inner shock of
the light gas and relaxation zone governed by a phase space algebraic solution, becomes blurred
as Ma, approaches unity, and the shock structure must be obtained by integration of a
numerically unstable system of three differential equations. However, we shall take advantage

of the near conservation of the light gas entropy at the head of the shock to reduce the order of
the system of equations and make it stable. Our results, for both strong [ Ma; -1=0(1)] and

weak shocks [ Ma;=1], are in excellent agreement with shock-tube experiments in He-Xe
mixtures made at the Polish Accademy of Sciences by Herczynski, Tarczynski and Walenta
(1986).

Another test of the hypersonic approximation is made in Chapter 7 where, again, we
make use of the shock wave problem. However, this new test is not against experiments as in
Chapter 6, but with respect to an exact solution of the kinetic FP equation governing the heavy
gas velocity distribution function. In order to find an exact solution of the FP equation, we use a
simplified form of the shock wave problem: we assume that the heavy gas is extremely dilute
and that the width of the internal light gas shock is negligible. The predictions made in Chapter
4 on the order of magnitude of the errors in the lowest order hypersonic approximation are
corroborated by direct comparison of the velocity distribution functions. We also compare the
next order of the hypersonic expansion with the exact FP results.

Finally, in Chapter 8, the Euler-level of the light gas equations (ideal flow), and the
hypersonic closure of the heavy gas moment equations, but without the assumptions ny/n; << M
and v<<1, are applied to the flow through a converging nozzle. We assume quasi-one-

dimensional flow and the resulting values for the discharge coefficient are compared with
experimental measurements made with CCl;-He mixtures exhausting through a conical-shaped

converging nozzle. The discharge coefficient Cy is defined as the ratio between the actual mass

flow through the nozzle and the ideal mass flow predicted by the Euler-level of the standard CE

theory for binary mixtures. For a binary mixture whose components have similar molecular
weights, the maximum value of G4 is unity. However, for DMM, the discharge coefficient may

be larger than one because the species are not in equilibrium at the exit of the nozzle. We have
measured discharge coefficients for CCls-He mixtures larger than one in spite of the fact that

the viscous effects were important. When these measured values are corrected to account for
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the viscous effects (using discharge coefficients for pure He measured at the same Reynolds
number), they agree quite well with the values predicted by the theory.

Chapters 2 to 7 outlined above are based on the following papers:

Ch.2, Fernandez de la Mora and Fernandez Feria, 1987a (1),

Ch.3, Feméandez de la Mora and Femandez Feria, 1987b (lll),

Ch.4, Fernandez Feria and Fernandez de la Mora, 1987¢ (IV),

Ch.5, Femandez Feria and Fernandez de la Mora, 1986  (V),

Ch.6, Femandez Feria and Fernandez de la Mora, 1987a (VI),

Ch.7, Femandez Feria and Femandez de la Mora, 1987b (VIl).
Reference will be made to them (using roman numerals in brackets) for the most involved
derivations.

1.2 Brief review of the technological applications of DMM and their historical
development
Because potential industrial applications have been a major driving force on the evolution
of this field, before undertaking the program outlined above we will sketch here some of the
developments in applied aspects of DMM.

The technological exploitation of the two main features of DMM that were mentioned at
the begining of the preceding section is relatively recent. The oldest and most important
industrial application of DMM was in the separation of isotopes of uranium, which followed the
early work of Becker et al. (1954, 1955,1957,1960). These authors observed species
separation effects in supersonic jets exhausting from a nozzle into a vacuum chamber. Similar
phenomena were subsequently observed by other investigators like Waterman and Stern
(1959,1960), Chow (1959) and Reis and Fenn (1963). Reis and Fenn also gave the first
plausible explanation of these separation effects on the basis of the deceleration in the bow
shock in front of the meassuring probe immersed in the jet: the light gas is deflected but the
heavy gas is not, because of its larger molecular mass and, therefore, larger inertia. Reis and
Fenn made an analogy between this problem and the similar situation occurring in the separation
of aerosols and fine particles from a high-velocity air stream by impaction. This analogy of
heavy molecules and particles has proven to be very fruitful in the field of DMM (see, e.g.,
Fernandez de la Mora, 1984). Subsequent to these findings, Becker's group designed different
types of nozzles (based on this principle of separation by deflection) for the industrial
separation of uranium isotopes from uranium hexafluoride and a lighter gas (see, for instance,
Becker et al., 1979, and Bley and Ehrfeld, 1981).



New technological applications of DMM result from the possibility of producing molecular
beams with kinetic energies in the interesting energy range of tens of electron volts by seeding
heavy molecules in a supersonic jet of He or H, [Anderson, Andres and Fenn (1966)].
Basically, the method is based on converting the thermal energy of the seeded gas into kinetic
energy by expanding it through a nozzle. Due to the mass disparity among species, the kinetic
energy acquired by the heavy gas, when it is dilute, may be about M-1 times larger than the
kinetic energy of the host gas. Thus, in a He-Xe mixture, the energy of the xenon molecules
would be of the order of 3 eV if the nozzle temperature were 300K, and 30 eV if the nozzle
temperature were 3000K. Molecules with kinetic energies between 1 and 100 eV are able to
break chemical bounds and, therefore, to activate chemical reactions, to clean surfaces of
adsorbed species, etc. These beam energies cannot be reached with the conventional oven
beam by vacuum evaporation. Moreover, although much higher energies may be achieved
through electrostatic acceleration of ions, neutral beams have considerable advantages over ion
beams in the range of energies between 1 and 100 eV.

A number of studies have utilized seeded beams to achieve energetic molecule-surface
interactions. Fenn and his colleagues [e.g. Prada-Silva et al. (1979) and Tsou et al. (1987))

studied the effect of the translational energy on the kinetics of chemical reactions, such as the
isomerization of cyclopropane. Connoly et al. (1981) decomposed W(CO)¢ molecules seeded in a

supersonic Hop jet by impact on glass surfaces. Some of the fragments of the W(CO)¢ condense

upon dissociation allowing to visualize the progress of the reaction. Similar experiments were
made by Kolodney and Amirav (1983) who studied the effect of the translational energy on the
dissociation of iodine molecules by collision with a solid surface. By exploiting the large inertia
of the W(CO)¢ molecules, Fernandez de la Mora (1985) reproduced the surface reactions of
Connolly et al. at much larger background pressures (smaller Knudsen number), thus achieving
far higher fluxes with rather modest pumps.

One of the most promising applications of seeded molecular beams operating at large
background densities is in the production of thin and high quality deposits and coatings on solid
surfaces by impaction of heavy molecules. The industrialization of these techniques is being
attempted by the newly established company Schmitt Technologies Associates. As a
consequence of the chemical range of the impaction energy, the surface is chemically modified,
with the possibility of achieving very remarkable material properties, as it has been observed
by Takagi's group (e.g. Yamada et al.,1983) using ionized cluster beams. The principal
advantages of seeded neutral molecules beams in contrast to ionized cluster beams or ion beams
reside in the higher fluxes attainable and in the better controllability of the impact energy,
which are fundamental parameters affecting the deposit properties. Progress in the
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characterization of seeded jets impacting on surfaces at large densities has been made by
Fernandez de la Mora et al. (1986), who determined impact energies of W(CO)g molecules

seeded in H, jets as a function of the source pressure and the distance between the nozzle and

the impact surface, by measuring the amount of carbonyl deposited on the surface at different
conditions.



Chapter 2
KINETIC THEORY OF BINARY MIXTURES WITH LARGE MASS DISPARITY

In this chapter, the cross-collision integrals in the kinetic Boltzmann equations for DMM
are expanded in powers of the small mass ratio M. The simplified Boltzmann equations are used
to derive a variety of hydrodynamic and reduced kinetic equations for DMM which will cover a
broad Knudsen number region in which the standard CE theory for binary mixtures (Chapman
and Cowling, 1970, Ch.8; referred as | from now on) is not applicable (see Sec.2.1). In
particular, a further expansion in the light gas Knudsen number is used to solve the reduced BE
of the light gas by the CE method for any heavy gas distribution function (Sec.2.4). In the case
in which the molar fractions of both species are comparable (specifically, ny/n;>>Kny), a
Knudsen number expansion is also possible for the heavy gas kinetic equation (Sec. 2.5.2), and
the problem is reduced to its near-equilibrium hydrodynamic (two-fluid) level. When the CE
method is not valid, the simplified BEs (particularly the heavy gas BE which is simplified to a
Fokker-Planck equation) will permit one to solve some kinetic problems whose solution from the
full BEs is extremely difficult (e.g. Ch.7). Furthermore, the kinetic Fokker-Planck equation
given in Secs. 2.5.3-4 will be the basis of the hypersonic approach of Chapter 4, subsequently
used in Chapters 6 and 8. Almost all the previous works on the subject have been limited to the
derivation of two-fluid near-equilibrium hydrodynamic equations. A brief review of them is
- givenin Sec.2.2.

2.1 Insufficiency of the standard CE theory for DMM

As is well known, the failure of the classical Chapman-Enskog theory (Ref.l, Ch.8) for
gas mixtures with large mass disparity is a consequence of the presence of very different
relaxation times in the problem. On the one hand, there are two self-relaxation times of
equilibration, one for each species due to collisions with themselves, which are of order
ri/PiETi (wj and pj are the viscosity and partial pressure of the species i, respectively). When
the molar fractions of both species are comparable (n;~n, or p;~p,), because the experimental
values of the viscosity for noble gases are roughly mass independent (see, e.g., Vargaftik,
1975), both self-relaxation times are of the same order. On the other hand, there is a slower
relaxation time that characterizes the process of interspecies equilibration. For instance, the

" See footnote on page 2.
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order of the interspecies energy relaxation time tg is M~1 times larger than the self-relaxation
time. Therefore, for n;~n,, the problem is characterized by two Knudsen numbers: Kn; = orj
and wtg ~ Kny/M << Knj, where o is a characteristic frequency of the system (similar Knudsen
numbers may be written in terms of a mean free path between collisions and a characteristic
length of the system).

The classical CE theory for binary mixtures assumes that the two relaxation times are
comparable. Therefore, it can be applied to ordinary (similar-masses) binary mixtures, in

which both Knudsen numbers are comparable, when the characteristic frequency of the system
is much smaller than the frequency of self-collision 1, that is, when Knj<<1. For disparate-

mass mixtures, because of the presence of the slower relaxation time 1o, the range of validity
of the classical CE theory is reduced to the more restrictive condition wrg << 1, or Knj << M <<
1. In order to enlarge the Knudsen number range of validity of the CE method for DMM to Kn;
<< 1 (but wtg~1 or even larger) as in mixtures with similar molecular masses, two
temperatures and two velocities must be allowed in the method. In other words, a
hydrodynamic description for DMM with the same Knudsen number range of validity as the
classical CE theory for similar-masses mixtures has to be a two-fluid description. However,
as we shall see, the two-fluid hydrodynamic theory is not so general as the equivalent
hydrodynamic description for mixtures with similar masses. In particular, it is not valid when
n, /ny = O(M) or smaller, so that one cannot avoid a kinetic formualtion of the problem, even if

the mixture Knudsen number is small.

2.2 Review of previous works

Except for a number of works on the mass ratio expansion of the cross-collision
integrals in the BEs and on the FP equation (which will be commented along sections 2.3 and
2.5), most previous theoretical works on DMM are focused on the derivation of two-fluid
hydrodynamic equations. Some of them are reviewed next.

Two-fluid hydrodynamic theories for neutral monoatomic gases have been attempted
since the work of Grad (1960). This author noticed that the ordering of the different terms of
the BE implicit in the classical CE method is not appropriate for DMM, proposing three (in some

way heuristic) alternative orderings. Grad assumed that the light species relaxes by self-
collisions on the order of M~12 faster than the heavy species. This assumption, which for p; ~

p, implies the unusual scaling p/up = O(M172) (the coefficient of viscosity is practically mass
independent at room temperature for the noble gases) has been followed by many subsequent
works in the field.

Sirovich (1962) and Hamel (1966) used relaxation-type models to replace the
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Boltzmann coliision integrals. Both authors made use of Maxwell molecules in order to derive
the model for the cross-collision integrals. These models were extended to other types of

molecules by Morse (1963). From Morse's models, Hamel (1966) estimated the order of
magnitude of the different relaxation times appearing in the problem obtaining that, for n;~n,,

1e>>1),1y, Where 1, is the interspecies momentum relaxation time. For n,<<n; Hamel obtained
T, Ty, 2>>1) Which implies that, even when the light gas is close to equilibrium (Kn; = ety << 1),

the heavy species need not be close to a Maxwellian distribution in the limit n,<<n; (we shall
arrive at a similar result in Sec. 2.5.2). Using the CE method to solve the model equations for
ni~ np, Hamel also gave the first set of DMM two-fluid hydrodynamic equations, to our
knowledge. These equations, in accordance with the orders of magnitude referred above,
contain two temperatures but only one mixture mean velocity (which coincides with that of the
heavy gas), in addition to a diffusion-like equation for the velocity difference, as in the
standard NSEs. Thermal diffusion is missing in Hamel's equations as a consequence of the use of
the Maxwell molecules model, and the light gas stress tensor does not enter into the momentum
equations as a result of following Grad's assumption t,/7) = oMm!72),

Chmielski and Ferziger (1967) used an ordering of the collision terms different from
those suggested by Grad (1960) as the basis of their modified CE method. They assumed that
the cross-collision term in the heavy species BE is of order M!/2 with respect to the self-
collision term, and that both collision integrals in the light gas BE are comparable. The
resulting hydrodynamic equations from this ad hoc ordering contain two temperatures and only
one mean velocity. The transport coefficients calculated by these authors coincide, when both
temperatures are made equal, with those of the standard CE theory in the limit M—0. A
similar procedure was carried out by Johnson (1973), using one of the heuristic orderings
suggested by Grad with M2 a5 the small parameter.

Goldman and Sirovich (1967,1969a) developed a rigorous two-fluid CE theory for
Maxwell molecules. Since the collision integrals can be evaluated explicitly with this molecular
model, they calculated the pressure tensors and the heat fluxes to first order in the CE
expansion without the need of the velocity distribution functions. The transport coefficients
for the mixture calculated by Goldman and Sirovich are identical to those given by the standard
CE method for Maxwell molecules.

Goebel et al. (1976), followed quite a different approach based on Grad's (1949) thirteen
moments approximation for a binary mixture of Maxwell molecules. The two-fluid
hydrodynamic equations of these authors (valid for n;~n, ) consist of two sets of equations for
the first 13 moments of each species. A somewhat similar treatment, allowing for arbitrary
interaction potentials, was followed by Tiem (1984), who made an expansion of the distribution
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functions in Hermite polynomials, a technique also introduced by Grad (1949). Tiem estimated
the order of magnitude of the collision terms making use of the Hermite expansion of the
collision integrals and the hard sphere model. Then, according to this ordering, he applied the CE

method, with the additional restriction Kn=0O(M!/2). To derive his scaling, Tiem also assumed
similar molecular diameters for light and heavy species [6,/5,=0(1)] which is equivalent to the

already mentioned hypothesis p;/u,=O(M12). As a consequence, the two-fluid hydrodynamic
equations derived by Tiem lack the light gas stress tensor, which is not correct even in the
case n;~M, he considered.

The above two-fluid theories either are for a specific molecular model (Maxwell
molecules) or are derived from a not very rigorous method such as the use of mode! equations,
the ordering of the collision terms in a rather unsystematic way, or the expansion in Hermite
polynomials whose truncation is somewhat arbitrary. In sections 2.4 and 2.5.2 we shall derive
a two-fluid near-equilibrium theory valid for arbitrary potentials of molecular interaction
based on the systematic mass ratio expansion of the cross-collision integrals given in the next
section. The two-fluid theory will be extended to arbitrary mass ratios in Chapter 3.

2.3 Lorentz-Bernstein and Fokker-Planck collision operators

The objective of this section is to provide reduced forms for the Boltzmann cross-
collision integrals by systematic exploitation of the smallness of the parameter M.

Consider the Boltzmann equations for a binary mixture,

o,

Dfy = 3p+ WV = Jyg(ffy) + Jyalfy ), (2.3.1)
at,

Df?_ = 3{'4- U'sz = J21(f2,f1) + J22(f2,f2), (232)

where f;(t,x,u) and fy(t,x,u) are the velocity distribution functions for species 1 (light) and 2
(heavy), and u is the molecular velocity. The collision terms Jij are given by the Boltzmann

collision integrals
Jilfify) = JdPuj da g oij(g,0) [ fi(u')) fy(ury) - filuy) fy(ug)], (2.3.3)

where u'jand u;, i, = 1,2, are the molecular velocity of the component i before and after the
molecular encounter; g = uy-u;; g'=u'y-u'y; g= |g|=I|g'; dQ = sine de do, where (g, o, ¢) are

the spherical coordinates of g' in a reference frame in which g is along the polar axis, and
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5ij(9.8) is the differential scattering cross section.

The expansion of the light gas cross-collision integral Jy,(f;, f,) in powers of M is based
on the small recoil velocity of the heavy gas upon collision ( u'y-u, is of order M relatively to
u'; or up), and on the small width of the heavy gas distribution function compared to that of the

light gas (of order M1/2). This expansion was carried out by Bernstein (1969a) to first order in
M, using a reference frame in which the heavy gas is at rest. A similar expansion, but allowing
for an arbitrary reference frame (with the only limitation that the heavy gas mean velocity U,
must be small compared to the light gas thermal speed in that reference frame) is made in Ref.

Il, Sec. Il. The usefulness of this new reference frame follows from the following arguments:
in the subsequent CE derivation of f,, it will be assumed that the difference between light and

heavy gas mean velocities is small compared to the light gas thermal speed (2kT,/m;)!/2,
where T, is the light gas temperature and k is Boltzmann's constant; that is, it will be assumed

that the magnitude v of the vector

U,-u,
V= BaE (2.3.4)

is a small number, where U; is the mean velocity of the componenti. Thus, with the reference
frame used in Ref. |i, it will be possible to choose a frame in which U;=0, where the

computations are much simpler than in a frame in which U,=0 (see below).
To first order in M, Jy,(f1.f,) can be written as (Ret.ll, Egs.(14) and (15)):

Jialf.f) = N(f}) + Uy -[L(f;) -VN (f))]
kT
f[=2 4 U, UyJ:[ v {- L(Fy) + 15Vu N(f;)} - IEY ()]
+MV,R(f)+...

= L(f), (2.3..5)
N(f;) = Jda v [fj(x) - fi(u)], (2.3.6)
L(fy) = [ do v [V, f(x) - vyfi(u)], (2.3.7)

R(f;) = Jda v (u-x) f(x), (2.3.8)

Y (f;) = Jda v [V, ¥, fi(x) - Vu¥yfiu) . (2.3.9)

In the above expressions, x is the vector into which u transforms after a (6,4) rotation and
v=N,Uo;,(u,8) is the frequency for heavy-light collisions. The most remarkable feature of the
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cross-collision operator (2.3.5) is that f, appears in it only through its moments n,, U,, Py,
T, = Py/nyk, ..., defined in Appendix A. Therefore, the light gas BE is kinetically decoupled
from that of the heavy gas, and can be solved independently. The lowest order term N(f;)
coincides with the cross-collision integral derived by Lorentz (1905) using the physical

arguments that are behind the above mass-ratio expansion (basically, at the lowest order,
up'=uy,  is a delta-function and u'=x ). For this reason, the cross-collision operator (2.3.5)

will be called the Lorentz-Bernstein (LB) operator (as in Ref.ll).

A similar mass-ratio expansion based on the small recoil velocity of the heavy gas upon
collision with a light molecule can be made in the cross-collision term Jy;(f,.f)) appearing in the

heavy gas BE, resulting (Fernandez de la Mora and Mercer, 1982):

1
Joy(fa.f1) = V- [b(f ) f5 + EVU-{H (fou) L +..., (2.3.10)
where

bif,:u)= M, [ g g g Qp(g) fy(u - g), (2.3.11)

I (fy:u)= M,2[ % 0 [5 (621 -390) Qpy(0) + 209 Qpa()] f1(u - @), (2.3.12)

M= —ai— (2.3.13)
mp + my

The functions Q1|2 are defined in Appendix C, Eq.(C10), and /is the unit tensor. Equation

(2.3.10) is the general form of the Fokker-Planck (FP) collision operator. Further progress can
be made once the light gas distribution function f, is known. For example, Wang Chang and

Uhlenbeck (1970) used a Maxwellian distributon for f;, so that their expression for Jy; is valid

when the light gas is in equilibrium (their expression coincides with the standard form of the FP

operator). Fernandez de la Mora and Mercer (1982) extended the previous result to a non-
equilibrium light gas by using the first order of the CE expansion for f; (with the light gas

considered as a pure gas). Since the light gas BE is decoupled from the heavy gas, the right
procedure is to solve first the light gas BE and, then, substitute the resulting f; into

Eq.(2.3.10). This is done in Sec. 2.5 using the expression for f; obtained in Sec. 2.4 from a

Knudsen number expansion of the light gas BE.

2.4 Near-equilibrium hydrodynamic equations for the light gas
A near-equilibrium closure of the light gas moment equations, which are given in the
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Appendix A [Eqgs.(A26-28)] with

M = my [L(f,), ¢4, (2.4.1)
c,?
Ey=m[L(f). 1. (2.4.2)

[the inner product is defined in Eq.(A5) of Appendix A], can be obtained in the limit Kny<<1 by
means of an expansion of f; in powers of Kn;. Since only the moments of f, enter into

Egs.(2.4.1-2), the resulting hydrodynamic equations for the light gas will be valid regardless of
whether the heavy gas is also in near-equilibrium conditions; that is, regardless of whether a
similar Knudsen number expansion for the heavy gas is also possible. Moreover, in contrast to
some previous works cited in Sec.2.2, there will be no limitation in the relative values of Kn;
and M; that is to say, the small parameter Kn; will be independent of the small parameter M in
the respective expansions in powers of M and Kn,. We shall retain terms up to the first order in
both Kn; and M.

For the computation of the integrals in the LB operator, we shall use a reference frame
in which U;=0, so that U, must be substituted by U,-U; in Eq.(2.3.5). At the first order, only
the terms of order v will be retained. Thus, we make an expansion of f,,

fy=fiolt +61+--7), (2.4.3)

in such a way that ¢, will contain the first order corrections in Kn;, M and v. Relatively to
Ji1(f1.fy), the streaming term in Eq.(2.3.1) is O(Kn,), and all the terms of L(f;), except the
first one N (f,), are either O(M) or O(v), or smaller. Hence, at the lowest order we have

J11 (fro.fio) + N(fyp) = 0, (2.4.4)

whose unique solution is the Maxwellian”

My Ju Uy
flo =Ny (271'le) exp {- m; 2kT1 }. (2.4.5)

The term N(f;o) is O(ny/n,) relatively to J),(f;0.f10), SO that it is not important when ny<<n;

" Notice that N(f)=0 for any spherically symmetric function f, that the unique solution of
J11(f10.f10)=0 is (2.4.5) and that, as it is shown in Ref.Il, Appendix A, N(f) is a nonpositive

operator, and so is J11 (see Ref.l, Ch.4).
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[that this is so can be seen in Appendix C, where the calculated transport coefficients of the
light gas contains corrections O(n,/n,) with respect to the pure gas values].

To first order in M, Kn, and v, we have the following equation for ¢;:
Dty - Lf10) = Ky (¢1) + N(f1061) . (2.4.6)

where Ki(o1) =Jy1(f10,f1001) + J11(f1001.f10) is the linear integral operator -n,2I(¢;) of Ref.l,

Eq.(4.4,3). Proceeding as in the CE theory for a pure gas (Ref.l, Ch.7),” itis shown in Ref.ll,
Secs. IlIB-D, that the solution of Eq.(2.4.6) can be written as

01 = Bl(§1)§1 §I:V°U1 + Dl (&1)51 ‘V + Al(E,l)cl . VInTl + kl + k2' él o (El) + k35_,12 ' (247)
where
Ki(B181 %61 ) + N(f19B1&; %€) ) = 2f}0&1°&1 = Y, (2.4.8)
Ki(D1&1) + N(t1o D181 ) =2 f1ov1 &1 =Yy (2.4.9)
Ki(Ajer) + N(fig Ajep ) = fio&;2 - g)cl =V, (2.4.10)
Ki(agy )+ N(flgak; ) =208 =Y, (2.4.11)
_ !
& = KT Jm 172 (2.4.12)
1
vi =M1 Q) (cy) (2.4.13)

1
while Q,,(c,) is defined in Eq.(C10) and v°U; is the symmetric traceless velocity gradient

tensor. The functions 1, &;a(&1) and &;2 are the solutions of the homogeneous equation
corresponding to (2.4.6).T In a pure gas, the solutions of the corresponding homogeneous
equation are the collision invariants 1, &; and &;2, so that the function E;a(§;) plays here the
same role as §; in the CE theory for a pure gas. k, k, and k5 are arbitrary constants which are
chosen in such a way that ¢; does not contribute to n, U; and T; that is, [f;g¢;,1] = [f1001.1j]

" See footnote on page 2.
T Notice that, once the time derivatives are eliminated in Df,o by means of the Euler-level of

the conservation equations (A26-28), this term contributes to the homogeneous equation as a
consequence of the momentum and energy transfer between species, M and E;.
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= [f1001.81%]=0, j=1,2,3. Clearly, k;=ky=0, while k,=ATVInT, + A,v, where the coefficients
AT and Ay satisfy the constraints

[A1(Eer + ATE1(Ey), F1081) = O, (2.4.14)
[D1(81)8; + Ay81(&y). f1081] = 0, (2.4.15)

and are related to the transport coefficients kT, and Ay, given below.
The functions A((&;), B;(&;), Dy(&;) and a(g;) cannot be obtained analytically for a

general potential of molecular interaction (only for Maxwell molecules, that is, molecules
repelling each other with a fifth-power law, can these functions be obtained in a closed form).
Following Bernstein (1969b), we compute these functions from variational principles (based on
the symmetry and nonpositivity of the operators K; and N), in such a way that the transport
coefficients are optimally determined.”

Substituting f)=f;o(1+¢) into the definitions of Py, Q;, M| and E; (Appendix A), we
obtain the following near-equilibrium (Kn;<<1) closure of the conservation equations (A26-28)

for the light gas:

Py = KT,/ - 20,0V, (2.4.16)
Q, = AVT; + nkT k7,(U; - Up) , (2.4.17)
M =M = -m;n)norp (U; - Uy) - nkT kpy VInT, (2.4.18)
E =E=-n2o (T, -To), (2.4.19)
where
N=n;+n, (2.4.20)
and
7o Llitfaly : b (2.4.21)

are the number density and temperature of the mixture. For a given class of trial functions
XB(&1). XA(&;) and X (&;), the optimum transport coefficients u;, A, k11 and A, may be

expressed in terms of the functions xg'(¢;), XA (1) and X, (&) that maximize the

functionals

Ag(xB) = [ xB&151 = Ki(xB&151) + N(f1o XBE1&1) - 2¥p |, (2.4.22)

" See appendix B for the basic ideas on these variational principles.
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AA(XA) = [ xAE1 - Ki(XAB1) + N(fio XAE1) - 2¥a ], (2.4.23)
AoaXa) = [Xa81 ' Ki( Xa&1) + Nfi1g Xad1) - 2Wo |, (2.4.24)

respectively, as (see Sec.llID of Ref.ll and Appendix B)

i% = Ag(xg) (2.4.25)
1

%= AAGLAT) - [ %o &1 Wal [XATE1 - Wall Ag(Xa) (2.4.26)
Ty = - ';—],‘,E—}(Q% " a8 YallAa(e) (2.4.27)
25 (et (24.28)

The contracted inner products are defined as

[f-.g] = | d3u f(u)-g(u) , (2.4.29)
and similarly [F :,G]. Notice that the coefficient A, of Ref.ll corresponds to -Apn, defined
above (this change is to unify with the notation of the next chapter where all the transport
coefficients depend on the number densities only through the molar fractions). A common
choice for the trial functions XA, xg and y, are Sonine polynomial expansions. The transport
coefficients obtained at the first and second order of these expansions for arbitrary molecular

interactions with a central force law are given in Appendix C. Obviously, if the complete Sonine
expansions are used, the maxima of the functionals (2.4.22-24) are exactly the functions B,

Al and (11.
The transport coefficient o is given by [Ref.ll, Eqs.(E1) and (B5)]

3kn,
Te n2 '

of = (2.4.30)

where

- 3(1’1) . (2.4.31)"
16 n,MQ}, (T))

Te

Notice that, in first approximation in Kn;, M and v, the function ¢, is not needed for the
evaluation of oy .

" See Appendix C for the definition of the Q-integrals.
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2.5 Equations for the heavy gas when Kn;<<1

2.5.1 Fokker-Planck Collision operator

When the near-equilibrium light gas distribution functions of the preceding section,
f1=f10(1+¢;) [Eqs.(2.4.5) and (2.4.7)], is substituted into Egs.(2.3.10-12), and the quantities b

and IT [Egs.(2.3.11-12)] are expanded in powers of v, the following expression for the FP
collision operator results to first order in M, Kn; and v [Ref.ll,Eq.(92)]:

u-Uu

Te

2 KT,
1y + e VU f2}, (2.5.1)

M
F(fy)) = vy +
() =vu{l5
with M and 1 o given by Eqgs.(2.4.18) and (2.4.31), respectively. If use is made of the first
approximation in the Sonine polynomial expansion for A, [Appendix C, Eq.(C4)], the above
expression reduces to

kT
Flt) = e Yyl (- Wi+ 0ufy) (25.2)
where
nkT kT/7g
W=U;+ ————vinT,, 25.3
1 rnzn2 1 ( )

which coincides with the FP operator obtained by Fernandez de la Mora and Mercer(1982),
using the function f; given by the first order of the CE theory for a pure gas (without taking

into account the effect of the heavy gas on the light gas distribution function). Equation (2.5.2)
is not correct when a higher order expression for Ay, is used except in the limit ny/n;— 0, in
which Ap— [Ap]; (see Appendix C). W can be expressed in a more convenient form in terms of
the binary diffusion coefficient D,, and the thermal diffusion factor o = kt,/x;x, , where x;

is the molar fraction of component i. In the fimit M<<1, and in first approximation in the Sonine
polynomial expansion, D, can be related to 1 o through [Ref.l, Eq.(9.81,1)]

k T Xl‘[e
D = ,
[D12ly my
so that

W= Ul +an D12 VlnTl . (2.5.5)

(2.5.4)
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2.5.2 Near-equillbrlum hydrodynamic equations for the heavy gas

Similarly to the light gas, a near-equilibrium closure of the heavy gas moment equations
is possible when Kny<<1. Since p;-y1, (see Sec.2.1), we have
nury (2.5.6)
Kn2 - n2 . o
Hence, if the FP operator (2.5.1) is to be used (which was derived for Kn;<<1), a near-

equilibrium closure of Egs.(A26-28) for the heavy gas is valid provided that n,/n;=0(1). To be

more accurate we estimate next the order of magnitude of the different terms entering into

the heavy gas BE.
With respect to the free streaming operator Df,, the self-collision operator Jy,(f5,f5) is

of order Kn,~l = p,w~l/,, and the cross-collision term is of order (w1 g)~1. On the other hand,

pl Ty )

- -1 . 2kp.-l
o = T Kn, n, Kn,7t, (2.5.7)
(ot 1= Tl ScMKn; 1 -~ MKn; 1, (2.5.8)T

1

where Sc =y,/m;nD,, is the Schmidt number, and use has been made of Eq.(2.5.4). Hence, the

order of magnitude of the different terms in the heavy gas BE may be written as

Df, = F(f) + Jaa(fa.fo)
K M 2 (2.5.9)
n -, .
1 nl

from which an expansion in powers of Kn; can be made in the following two cases: (i) when Kn;
<< M <<1 and for any value of ny/ n, ; (i) when ny/ ny >> Kny, 1>> Kn; 2 O(M) (i.e., Kn; << 1
and n,/ n;= O(1), basically). In the first case, the standard CE theory for binary mixtures

applies, yielding only one temperature and one mean velocity for the mixture (Ref.l, Ch.8). The
second possibility, in which we are interested for greater generality in the Knudsen number

range of applicability, allows for independent temperatures and mean velocities of the two
gases. Infact, expanding f,,

T Notice that Sc is almost constant and O(1) for noble gases, see Srivastava and Rosner,
19879.
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b =to(1+03+--7), (2.5.10)
where, as before, ¢, is first order in Kn; , M and v, at the lowest order of the expansion in the
case (ii) we have

Jaa(faoifa0) = 0, (2.5.11)

whose unique solution is a Maxwellian distribution

M (32 |u - U2
ho=n2 (g, P & ma—m— ). (2.5.12)

with mean velocity and temperature independent from those of the light gas. To first order, one
obtains the equation

Dfyg - Flfp ) = Ky(0,) (2.5.13)
where Ky(¢3) = Jpa(f0.f2092) + J22(fa092.F20) Is the linear integral operator -n,2 I5(s,) of Ref.l,
Eq.(4.4,3). Proceeding as in the CE theory for a pure gas (Ref.l, Ch.7),' itis found that ¢, is

exactly the same function as in a pure gas (see Ref.ll, Sec.V) :

0y = 82(§2)§2 éz:V"UZ + A2(§2)02 . VlnTz + kll + k|2' gz + k3§22 , (25.14)
)
E = W : (2.5.15)

where the functions A; and B satisfy the linear integral equations (7.31,2-3) of Ref.l. The

mathematical reason of this physically expected behavior of the heavy gas in the limit
ny/n;20(1) is the cancellation of the term F(fyy) in Eq.(2.5.13) with the relaxation terms

associated to M and E; coming from Dfyg. Therefore, in this limit 1>> Kn; > O(M), ny/ ny >>
Kn, and v<<1, the conservation equations (A26-28) for the heavy gas become closed with

P2 = nszz I- 2].12V°U2 , (2.5.1 6)
Q; =-1,VT;, (2.5.17)
in addition to
M, = m, [F(fy), 5] = - M, (2.5.18)
2
E, = my [F(f,), ‘;_— ]. (2.5.19)

" See footnote on page 2.
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From Eq.(A30), E; + E; = -M-(U; - U;). Hence, in a first order theory in M, Kn; and v, we
substitute E, by - E; =- E. The expressions for M and E are given by Eqs.(2.4.18-19), and the
transport coefficients p, and A, are those of a pure gas (see Ref.l, Sec.9.7, for the expressions
of p, and A, calculated by means of an expansion in Sonine polynomials of the functions B, and
Aj).

2.5.3 Fokker-Planck equation
When ny/n; ~ M <<1 and Kn; ~ M, the heavy gas BE cannot be solved by the CE method.
Therefore, the full Boltzmann equation, but with the simplified form of the cross-collision

operator given by Eq.(2.5.1), has to be used. Notice that, when M - 1, the standard CE theory
can be applied to both species, regardless of the value of ny/n;, provided that the mixture
Knudsen number Kn is small [Kn-op1/(p1+p2) can be small even if Kn, is O(1) or larger; for
instance, if no/ny<< Kn; <<1].

In the limit ny/n; << M ~Kn;, the self-collision term in the heavy gas BE can be

neglected, so that the heavy gas BE is simplified to an equation of the Fokker-Planck form:

3ty KT,

TR Viy=1a"1 vV { (U-W)fy+ Fb—vu f ). (2.5.20)

This equation had its origin in the theory of Brownian motion of particles inmersed in a host
fluid, and was originally derived from the Langevin equation and the theory of stochastic
processes (see, e.g., Chandrashekar,1943). The inclussion of the nonequilibrium effects of the
host gas, within the stochastic point of view, was made by Mazo (1969) and by Slinn and Shen
(1971). The driving force W/rg due to the light gas plays in Eq.(2.5.20) the same role as the

external acceleration in the theory of stochastic processes.

2.5.4 Fokker-Planck equation for arbitrary slip velocity

in deriving the FP collision operator (2.5.1) from Eq.(2.3.10), we assumed small slip
velocity (v<<1), retaining only first order terms of the expansions of b and IT in powers of v.
This assumption is in accordance with the light gas distribution function used to derive

Eq.(2.5.1), which was also first order in v. However, one can relax this assumption in the limit
ny/n; << M~Kn (in which the FP equation is valid) because the effect of the heavy gas on the

light gas distribution function is negligible (see Sec.2.5.1). Moreover, for ny/n;<<1, the

assumption v<<1 is more likely to be violated because the efficiency of the momentum transfer
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between species decreasses with ny/n; (see Sec.3.3). Therefore, it is convenient to consider
the FP equation with the full dependence on v.
The integrals b and IT [Egs.(2.3.11-12)] have been computed by Riesco-Chueca,

Fernandez-Feria and Fernandez de la Mora (1987) (referred as VIl from now on) without the
assumption of small slip velocity, and in the particular case in which f; is a Maxwellian

distribution (that is, at the lowest order in Kn;). In the notation of Riesco-Chueca et al.(1 986),

(u-Uy)vpg
b= —mmm————, 2.5.21
o ( )
II= Hl + n2 y (2.5.22a)
2kT[ vg(l- eses) + Viyie5es]
|- 1L VB 35 [11°8%35 , (2.5.22b)
TeM
2kT152 G Vnz(" 39588)
2= oM, A (2.5.22¢)

where e; is the unit vector in the direction of u - U,. Hence, the FP equation becomes

of,
Srtu V=t lvy{(u-U;)veh
KT,

+ ‘[ vB(I- eges) + vy e5e5 + 82 G V(- 3egeg) I, | - (2.5.23)

in the above expressions, Vg, vy, and vy, are complicated functions of

|u-U, |2

§2=
2kT1/m1 ’

(2.5.24)

which tend very rapidly to unity as -0, so that Eq.(2.5.23) coincides with Eq.(2.5.20) for
<<1.” Using the integrals Ig, Iy and I, defined in Ref. VIII [Egs.(31-33), but noticing that v

must be substituted by & in those equations], and for a Lennard-Jones potential of molecular
interaction characterized by the constants £12 and o7 (see Hirschfelder et al., 1954, Sec.8.4),

we have

" 82 = vZ+ O(M,vM12) (see Eq. 2.3.4); hence, to first order in M, 80 is equivalent to v—0.
Notice also that, at the lowest order in Kny, W=Uj.
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KT, (2KTy/my) 12

vg = v g . (2.5.25a)
Kp T, ¥2myre
Vi = —————— gy, (2.5.25b)
m 2kT1M22 11
KHT1'3/2m2‘te
Vm = 12lesth422 IHZ , (2.5.250)
where
. kT{M,
T ==, (2.5.250)
(2,2)
Q 12 (T1)
Gz ——, (2.5.25¢)
09
5Q ), (T

while the integrals le(i'i) are defined in Appendix C, Eq.(C9), and M, is given by Eq.(2.3.13).
The constants Kg and K are defined in Ref.VIll, Eq.(30). Analytic asymptotic expressions for
the integrals Ig, Iy and I, are given in the same reference for § <<1, § >>1, Tl*<<1 and
T, >>1. Notice that, in order to use the expressions of Ref.VIll, v must be substituted by .
Although & = v + O(M172) [see Eq.(2.3.4)], the above substitution contains errors of order M in
Ref.VIll (as in sec.4.4 below) because the integrals b and IT are used to compute the momentum
and energy transfer between species M and E; (b, M and 2E, are denoted, respectively, by B,
ppb and - ppE in Ref.VIll). In fact, we shall see in Sec.4.4 that, to obtain the moment equations

for the heavy gas correct to first order in M from the FP equation (2.5.23), § may be
substituted by v in the expressions for vg, vij; and vy, .

If the non-equilibrium effects (first order terms in Kn,) are included in the light gas
distribution function f;, the resulting FP equation will contain additional terms proportional to
veU; and vInT;. (It must be noticed that the FP equation (2.5.20) does not have a term
proportional to V°U, because this term is O(Kn,v), and it is neglected in a first order theory in
Kn; and v.) However, the inclussion of these new terms in the FP equation (2.5.23) is not very
important in most situations [in fact, the term proportional to VInT, in Eq.(2.5.20) is usually
negligible compared to the term U;, except when this one vanishes, see Eq.(2.5.5)].

2.6 Summary of the basic equations for DMM
A. General kinetic equations: Egs.(2.3.1) and (2.3.2) with the cross-collision integrals J;5

and J,; evaluated using the expansions (2.3.5) and (2.3.10) (LB and FP operators,

respectively).
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B. Limit Kn; << 1: Equations (A26-28) with the near-equilibrium closure (2.4.16-19) for the

light gas; the FP collision operator is simplified to the form (2.5.1). Further
simplifications of the heavy gas description are possible when, in addition to Kn; << 1, we

have:
B1. ny/n; >> Kny. The near-equilibrium two-fluid hydrodynamic equations (A26-28) with

(2.5.16-19) can be applied to the heavy gas (it behaves, in first approximation, as a pure
gas). Therefore, in this limit Kn; << 1 and ny/n; >> Kn;, we have a near-equilibrium two-
fluid hydrodynamic description of the mixture. A more general two-fluid near-equilibrium
description valid for arbitrary values of M will be derived in the next chapter.
B2. ny/n; << M. The FP equation (2.5.20) [or (2.5.23) if v is not small] applies for the
heavy gas. No hydrodynamic description for the heavy gas is possible, except in the
hypersonic limit discussed in Chapter 4 (which is also valid for ny/n; ~ M) .

C. Limit Kn;<< M. The classical CE theory is valid (Ref.|, Ch.8), so that the standard NSEs can

be used.
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Chapter 3
TWO-FLUID HYDRODYNAMIC EQUATIONS FOR ARBITRARY MASS RATIO

In the preceding chapter we discussed the different regimes occuring in binary mixtures
with M<<1. In particular, we showed that a near-equilibrium two-fluid hydrodynamic
description for both species was possible in the limit Kn;<<1, no/n;<<Kn; [ M £ O(Kn,)]. The
present chapter will extend these two-fluid hydrodynamic equations to any value of M. These
equations will be a generalization of the single-fluid equations obtained from the standard CE
theory for binary mixtures (Ref.l, Ch.8). Thus, in the limit M=O(1), the two-fluid equations
developed in the present chapter will coincide with the standard NSEs for binary mixtures when
both temperatures and both mean velocities are equated (but allowing for a mean velocity
difference in a diffusion-like equation). In the limit M—0 they will tend to the near-equilibrium

hydrodynamic equations developed in the preceding chapter. In accordance with the orders of
magnitude estimated in Sec.2.5, the two-fluid equations will be valid for any value of n,/n;

provided that Kn;<<M. If M is of the same order or smaller than Kn;<<1, the equations will be
restricted to ny/n;>>Kn;.

As in the preceding chapter, only the general ideas and all the main results will be given
here. For many details we shall refer to il.

3.1 Two-fluid Chapman-Enskog theory

Mathematically, the classical CE theory for binary gas mixtures is a single-fiuid theory
because its lowest order equations are of the form

Jll(fl’ fl) + le(fl’ f2) =0, (3.1.13.)
Ja1(fa, f1) + Jaa(fa, f) = 0, (3.1.1b)

whose unique solutions are two Maxwellian distributions with the same temperature T and mean
velocity U (coupled Maxwellians, Ref.l, Sec.4.3):

fip® = n; (m exp {- T }, =12 (3.1.2)

It was seen in the preceding chapter that the relative orders of magnitude of the collision terms
depend on M in such a way that the lowest order equations (3.1.1) are only valid for Kn;<< M.
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For M<<1 this is a strong limitation in the validity range of the classical CE theory. However,
we showed that, when Kn, > O(M), the lowest order distribution functions in an expansion in

powers of Kny and M are uncoupleld Maxwellians [Egs.(2.4.5) and (2.5.12)], enabling an
extension of the CE method from Kn;<<M to Kn;<<1. To make this extension uniformly valid in
M, we shall force uncoupled Maxwellians fjg as the lowest order solutions for Kn;<<1,

regardless of the value of M. If we are contented with a theory valid for small values of the
parameters

vim (3.1.3
1= (2kT/m;)1”2 -1.3)
and
T;-T
oj= IT , (3.1.4)

the substitution of f;yC by fj; at the lowest order will be in accordance with a first order theory
in these small parameters, since fi-fioC is first order in both, v; and 6;.” The substitution of
the expansion

fi=fg(1+¢j+--7)
into the BEs (2.3.1-2) will yield integral equations for the perturbation ¢;. An additional
difficulty of the resulting equations with respect to the standard CE theory comes from the fact
that the uncoupled Maxwellians are not solutions to the Egs.(3.1.1), so that new terms of the
form Jij(fiovfjo)v i # j, appear in the equations for ¢;. This difficulty was solved by Goldman
and Sirovich (1967) by confining their two-fluid theory to Maxwell molecules, for which the
new collision integrals can be computed analytically. However, one may solve this problem for
arbitrary molecular interaction by relying on the assumption of small v; and o;, and using the
same expansion

fi = figC(1 +6{C+---)
of the standard CE theory. Proceeding in this fashion, the existing computational tools of the

standard CE theory can still be used. But, in order to retain the two-fluid features in the
problem (errors of order Kn; rather than Kn;/M), two important innovations are made with

" The near-equilibrium hydrodynamic equations derived in Chapter 2 were valid to first order
in the parameter v, Eq.(2.3.4), but there was no restriction with respect to the temperature
difference. The parameters vj are of the same order as v, except in the limit M<<1,

n2/n1<O(M), in which va>>v. However, we already know that the near-equilibrium
hydrodynamic equations for the heavy gas are not valid in that limit.
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respect to the standard CE theory. First, the streaming operators in the left-hand sides of the
equations for ¢;C are evaluated with the uncoupled Maxwellians f;y, instead of the coupled

Maxwellians f;C, leading to the first order integral equations

Dfjo= Ki1( $1°) + Ky ;€ + 6,°) (3.1.5a)
Dy = Kpi( 91 + 9,°) + Ko 9,9) (3.1.5b)

where the Kjj's are the linearized Boltzmann collision operators (the operators K;;, Ky,, Ky;
and Kj, correspond, respectively, to the operators - ny2i;, -nynylio, -NyNyly; and -n,2l,, of
Ref.l, Sec.4.4). The second substantial difference is about the constraints on the function ;.
We shall require that the functions ¢; do not contribute to the number densities, mean velocities
and temperatures, n;,U; and T;, of each species, instead of using the constraints of the standard
CE theory for binary mixtures according to which the functions ¢;C have null nj, U and T. That
is to say, in terms of the inner product defined in Appendix A, Eq.(A5), we shall impose the
constraints

(1506l = 0, i=1,2, (3.1.6a)

[ufige] =0, i=1,2, (3.1.6b)

[u.figoj] = 0, i=1,2, (3.1.6¢)
which, since figt; = figC - fig + fig®®;C+..., may be written as

[1,fiC 0€] = 0, i=1,2, (3.1.7a)

[c.fig® 6] = nj(U; - U) , i=1.2, (3.1.7b)

[€2.fio€ 6i€] = 3nik(T; -T)/m;, i=1,2, (3.1.7¢)

wherec=u- U.

Proceeding as in the CE method for pure gases,” we eliminate time derivatives in the
left side terms Dfjy of Eqs.(3.1.5) by means of the conservation equations (A26-28) of

Appendix A with Pj = nikT;/ and Q=0 (two-fluid Euler-level). (Notice that the standard CE

theory for binary mixtures eliminates time derivatives from the Euler-level of the mixture
conservation equations.) In these conservation equations the transfer terms are now given by

M = [mc), Ko ;€ + $20)] = - [myey, Ky (9,C + ¢,°)], (3.1.8)
C 2
Ey=m; 5 Kya( 6,6+ 0,01, (3.1.9a)

" See footnote on page 2.
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022
E2= [m2 '?‘ ) K21( ¢IC + %C)] . (3.1 9b)

The resulting equation for ¢;© may be written as [Ref.lll,Eq.(27)],

fio
Kifoi%) + Kij(01%4+6,°) = gy [2micici:v Uy + ¢i-VInT; (mici2-5KTi)

in in m; C|2

+ 5i—c;-Mi+ —pTE (3kT 1), (i=1,2; =), (3.1.10)

which after substituting ¢, ¢i/(2kTi/m;)1/2 and fj5 by ¢, ¢(2kT/m;{)1/2 and f;© (this
substitution is compatible with our previous change from f;o€ to fig) becomes

f.~C
Kyp(®,9) + Ky ¢IC+¢20) = 5 12m; eC:vU +¢-VINT  (my 62 - 5kT)

m,c?
+ —T[c M+ E(gx -1, (3.1.11a)
ZOC
Kzz(d’zc) + K21 ¢1C+¢2c) =2k_T'[2m2CCIV°U2+C'V|nT2(m2C2 - 5kT)]
f20C m,c2
- nkT[cM+ E(SkT 01, (3.1.11b)

where E, has been approximated by -E;=-E, as in Sec.25.T
It is shown in Ref. lll that the functionals M and E are free parameters in the theory; that
is, if we consider M and E as constants in Eqs.(3.1.11), the constraints on ¢;C given by Egs.

(3.1.8) and (3.1.9) are satisfied automatically. These constants M and E are needed as
additional free parameters in order to satisfy the constraints (3.1.7) on ¢;C: we need ten scalar
parameters in the functions ¢;C to satisfy these constraints; as in the standard CE theory, six
of them come from linear combinations of the collision invariants, which are solutions of the
homogeneous equations associated with Eqgs.(3.1.11); the remaining four scalar parameters are
fumished by E and M.

To be more precise, making use of the vector notation

3 C
#-(00)

t This last approximation is needed in order that the compatibility relations associated to the
singular non-homogeneous Egs.(3.2.11) be satisfied.
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the solution to Eqs.(3.2.11) may be written as [Ref.|ll, Eq.(35)]

DcM+FE
KT
+ klgl + kzgz + k3'g3 + k4ﬂ4 ’ (3'1‘12)

o€ =Bjcoc:VU, + By co°c:VU, + Aj€-VINT; + Ayc-VinT, +

where kj, kj, k3 and k4 are constants, and the gj's are the collision invariants:

1 0 m;c m,c?
Q1=(0), Q= (1), Q3=(mzc) y Q3= myc2 ) - (3.1.13)

The vector functions B, A;, D and F satisfy the linear integral equations

K(Bj)eec = bjcec , i=1,2, (3.1.14a)
K(Aj)e =gjc , =12, (3.1.14b)
K(D)e =dc°c , (3.1.14c)
KE)e=¢ (3.1.144d)

where K is the matrix operator defined as

11+ Kiz Kiz
k= (K Koy Kay + Kaa ) (8.1.15)
and
f10¢ _Mm2( 0
bl _kT ( 0 ' bz = k (fzoc ) (3.1 .1 Ga)
m; c2 mye? 5./ 0
a =37 2)( ) 2 =3 2)(f20 ) (3.1.16b)
flOC/nl
E(fzoclnz , (3.1.16¢)
(m1C2 - fic_
| M (3.1.16d)
€= m202 fzoc : e
- BT ] n

The constants ky, k,, ky and k4 are fixed by ny, ny, Uand T, as in the classical CE theory, while
U;-Up and Ty - T, fix the constants M and E , respectively. In fact, substituting Eq.(3.1.12)
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into the constraints (3.1.7), we get k= k,=0. If, in addition, we make kj = k4 = 0, and select U

as the center-of-mass mean velocity of the mixture and T as the mixture temperature:

{p1 +p2) U=p1U; +pU,, (3.1.17)
(n1+n2)T=n1T1+n2T2, (3.1.18)

we have the additional constraints on ¢;¢

p1[di€, 01C ] =py [dyC. :°1, (3.1.19a)
ny [e, ;%1 =y [e5, ,°1, (3.1.19Db)

d e
where d= (d;) and gs(e;) On the other hand, the above choice fix M and E as

M = A;'VINT; + A,'VInT, + Ay(U; - Uy), (3.1.20)
E=KT,-Ty)/Eeg} . (3.1.21)
where
Ay = 3KT/ {Dc2 d}, (3.1.22a)
A =-2y {Aictd} /3. (3.1.22b)

In the above expressions, the curly brackets inner product is defined as

{th}=[f1.f2] + [hp.hsl (3.1.23)

f h
where f= (f;) h= (h;) . The coefficients A, and ;' in Eq.(3.1.20) are related to the transport

coefficients ktj and A given in the next section.

3.2 Two-fluid equations
Making use of the solution (3.1.12) for ¢C, it is shown in Ref.lll, Sec.lll that

P; = nj KTl - 2pj7 VeUy - 2pjp V:U,,  i=1,2, (3.2.1)
Qj=-4; VT -2 VT + nk TkTj (U; - Uy) , i=1.2, (3.2.2)

p1p2 Ap (Ug - Uy)
M=-nkT (kp, VInT, + kT, VInT,) - ——= l:nzl = (3.2.3)
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E=-n2ey(T;-T,) , (3.2.4)

from which the moment equations (A26-28) become closed. As in the preceding chapter, the
transport coefficients may be evaluated from variational principles,t noticing that the
operator K is symmetric and non-positive with respect to the inner product (3.1.23) (see Ref.l,
Sec.4.4). It results (Ref.lll, Sec.IV)

Agi(Lgi
bij = KT B—'faB-Q ,ie12, (3.2.62)
r *
w=KT A%EB)- , (3.2.6b)
R12 = Moy = (0 - uyg - uoo)2 (3.2.6¢)
k . . iy
%i= 3 (AAICAT) - {Cp” ¢, &i}2/Ap(TpH) ), i=1,2, (3.2.6d)
K )
Ma=dg1=- 3 ({LAz2¢? a;}
+{Lp’c2 a;} {Cp’c2 ¥ App’) ). (3.2.6€)
3KT
= - (3.2.6f)
o p1n2 Ap(Cp)
kri=-{Lp c2,a}/nApIp) . i=1.2 (3.2.60)
k
-, 3.2.6h
U R2AR(CE) (8.2.8M)

where Ig;", ['g", Cai, [p” and L¢" are the functions that make maxima the respective

functionals
AilCgl={lg ccc:, K(Cp)cc-2bjeec), i=1,2, (3.2.7a)
AplLg]={Ig cc:, K(Cp) ec - 2(b; + by ) c°c}, (3.2.7b)
ApilCal={Cac-, K(La) c-23;c}, i= 1,2, (3.2.7¢)
AplCpl={Cpec -, K(Cp) ¢ - 2de}, (3.2.7d)
.and
AflCe]l = {Te, K(Cg) - 2 g} (3.2.7¢)

In Ref.lll, Sec.lV, and in the Appendix of Ref.V, we give explicit expressions for the above

t Bemstein (1969b). See Appendix B for the general ideas.
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transport coefficients when Sonine polynomials expansions are used as the trial functions g,
La. Ip and Lf, retaining only the first order of these expansions. For completeness, these
expressions are repeated in Appendix D. There we show that these transport coefficients
coincide with those of the near-equilibrium hydrodynamic equations of Secs. 2.4 and 2.5.2 in
the limit M<<1 and n,/ n;=20(1). The transport coefficients given in Appendix D are valid for
arbitrary potentials of molecular interaction with spherical symmetry. When the Maxwell
molecules model is used (that is, molecules repelling each other with a fifth order potential
law), it is shown that these transport coefficients coincide with those calculated by Goldman
and Sirovich (1967).

3.3 Comparison with the classical CE theory for binary mixtures
In Ret.lll, Sec.lll, we show that the quantities u, A, kT and D, defined by

H=pp) +Hp2 + 2012, (3.3.1a)

A= )\.11 + 7\22 +2 112 s (331b)

kT=kT; + kT2 . (3.3.1¢)
_ kT

Dlz:m , (3.3.1d)

correspond to the transport coefficients of the standard CE theory for binary mixtures (Ref.!,
Ch.8). Therefore, the conservation equations (A26-28) with Eqgs.(3.2.1-4) reduce to the
standard NSEs for binary mixtures if one makes U; =U, =Uin Egs.(3.2.1)and Ty =T, =T in
Eqgs.(3.2.1-4). This equivalence between both theories is associated to the fact that the
functions -(A; + A, ), -(B; + B, ) and -nD are equal to the functions A, B and D of Ref.|, while
there is no equivalent to our function E in the standard CE theory for binary mixtures (since
there is only one temperature in that theory). However, except for the function D, the above
equivalence makes no sense when T, # T, and U; # U, . In addition, the role played by our
function D is substantially different from that played in the standard CE theory: in the standard
CE theory, the function D is associated to the driving force d,, which fixes the diffusion flux in
the species conservation equations; in the present theory, the function D is associated to the
momentum transfer M between species that couples two different momentum equations.

In order to see under what conditions T; = T, and U;= U, , so that the two-fluid equations

reduce to the standard NSEs for binary mixtures, we shall estimate the order of magnitude of
the quantities
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.U-.VU.
Si= lpﬁ;\—ﬂl—'l , (3.3.2a)
and
3
| 5 kniUj-vTj|
e g (3.3.2)

If sy or s, are much smaller than one, in first approximation we have U,= U, since the

transfer of momentum between species is the dominant term in the respective momentum
equation. Similarly, if t; or t, are much smaller than unity, in first approximation T, = T, .

From Egs.(3.2.3-4), (2.4.31) and the expressions for the transport coefficients given in
Appendix D, it results

where we have made |U;-V| ~o. For M~1 and Kn;<<1, we have U;= Uy and T; = T, , since wrg~Kn,,

independently of the value of n,/n;. Then, as expected, the two fluid theory reduces to the
standard NSEs when the molecular weights of both components are comparable. When M << 1
and Kn;~-M, we have ate~Kn,/M (see Sec.2.1), and the order of magnitude of s; and t; depend on
whether ny,-n, or ny/n;~M. In the first case, 5,<<1, s;~1, {;~1, t,~1, so that T # T,, while U;=
U,. In the second case, both T; # T, and U;#U,. Hence, for M<<1, the effect of the two
velocities on the two-fluid equations is important when n,<< n;. In the case n,~n; one can
therefore use a mixture momentum equation plus a diffusion-like equation for U;- U,, as in the
standard NSEs. However, different energy equations must be used for each species separately.
On the other hand, when ny<< n; (and M<<1), both momentum and energy equations ought to be
used for each species separately.
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Chapter 4.
HYPERSONIC LIMIT FOR THE HEAVY GAS

4.1 Hypersonic closure of the moment equations
This chapter deals with the heavy gas hypersonic limit Ma;>>1. In particular, except in

the last section, we shall freat the case n,/nj <<M and v<<1, in which the heavy gas is governed
by the FP equation (2.5.20). In addition, we shall assume that the light gas Mach number Ma, is
of order one, so that Ma,=O(M-1/2), We shall perform an expansion of the FP equation in
powers of MI/Z and obtain closed sets of hydrodynamic equations for the heavy gas.
Physically, the expansion is based on the smallness of the heavy gas thermal speed compared to
its own mean velocity. Thus, of the two basic DMM features stated at the beginning of this
work, the hypersonic expansion is the mathematical formalization of the almost deterministic
behavior of the heavy gas molecules, while the derivation of the FP collision operator (from
which the hypersonic expansion is made) is a consequence of the small recoil velocity of the
heavy gas upon collision with its light partner.

Before undertaking the hypersonic expansion of the FP equation at a kinetic level, it is
convenient to say a few words about the more traditional hypersonic closure as applied to the
hydrodynamic equations. The equations for the successive moments of the FP equation (2.5.20)

(that is, the moments with respect to the functions 1, u, uu, etc., see Appendix A) may be
written as

% +V-(nUy) =0, (4.1.1a)
d(nzUy) ) na(W-Uy)

ot + V. (n2U2U2 + my ) = . ) (4.1.1 b)
P, 2nok
3 Vv (2Qy + Uy Py) + P2~VU2+(P2-VU2).r = T (T -Ty) (4.1.1c)

and so on, where the superscript T denotes the transposed tensor. In the hypersonic limit, the
mean speed of the heavy gas U, is larger than its thermal speed c, by a factor of order M-1/2

(with the assumptions Ma;=0(1) and v<<1 stated above). Therefore, the pressure tensor term
in Eq.(4.1.1b) and the heat flux term in Eq.(4.1.1¢) can be neglected relative to the terms
n,U,U, and U, P,, respectively, with errors of the order of (at most) M172 for P,, and of order
M for n, and the component of U, in the direction of the flow, closing the system of moment

equations (hypersonic closure of the moment equations). It is clear that the hypersonic closure
can be made in many different ways and at different levels of approximation. The lowest
possible order (zeroth order) is equivalent to Newton's equation of motion written in Eulerian
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form, and results from dropping P, in Eq.(4.1.1b) and ignoring Eq.(4.1.1c). To first order, one

would neglect the heat flux term in Eq.(4.1.1¢) or, more generally, to order N-2, the (N+1)th
moment would be dropped in the equation for the Nth moment of f,.

In the next section we shall perform a systematic hypersonic expansion (in powers of
M1722) of the FP equation. The set of lowest order hydrodynamic equations corresponding to this
expansion will be a hypersonic closure of the moment equations. In particular, we shall
consider two hypersonic expansions differing from each other in the order of the momentum
equation used as the basis of the expansion: in one of them (which we shall term hypersonic
expansion A), the lowest order momentum equation will be Eq.(4.1.1b) without the pressure
tensor term, while in the second expansion (hypersonic expansion B), the pressure tensor term

will be retained in the lowest order momentum equation. If we choose a reference frame in
which one of the components of U, is always hypersonic, the errors in the lowest order

hydrodynamic quantities of the hypersonic expansion A are O(M) for np and the hypersonic
component of U,, while they are O(M!/2) for P, and the remaining components of U, (provided
that these components of U, are of order of the thermal speed of the heavy gas ¢3). In the
hypersonic expansion B, these errors are O(M372) for n, and the hypersonic component of U,,
O(M) for the remaining components of U, and O(M!72) for P,. A more rigorous estimate of the

errors at the lowest order of the hypersonic expansions will be made in the next section. In
Sec.4.3 we shall see that the lowest order normal solution of the FP equation in both hypersonic
expansions is an anisotropic Gaussian distribution. As a consequence, the error for P, at the
lowest order will be O(M), instead of O(M!72) as we have just deduced (notice that a Gaussian
distribution does not contribute to the heat flux). Hence, the accuracy of the lowest order of
the hypersonic expansion is greatly enhanced in problems where the normal solution applies.
More generaly, we shall see that the errors at the lowest order of P, are O(M), provided that
the heat flux vanishes initially, independently of whether the distribution function is Gaussian.

It must be noticed that the lowest order of the hypersonic expansion B is not equivalent to
the first order of the hypersonic expansion A because, for instance, the lowest order errors in
P, are of the same order in both expansions. The differences between the two expansions and
the relative advantages of each one of them will be discussed in the next sections.

Hypersonic closures of the moment equations were considered by Hamel and Willis (1966)
and by Edwards and Cheng (1966) in the one-dimensional spherical and cylindrical expansion of
a pure gas into a vacuum. If the Knudsen number at the source is very small, the flow becomes
hypersonic before rarefaction effects set in, and these authors truncated the moment equations
in this region by neglecting the heat flux term. The problem was extended to binary mixtures
by Cooper and Bienkowski (1967) and by Miller and Andres (1969) who neglected the heat flux
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terms for both species. In the sense explained above in which the hypersonic closure is only
applied to the heavy species in a DMM and, therefore, it can be used even for subsonic
conditions of the light gas, the hypersonic truncation of the momentum equation (4.1.1b) has
been used implicitly in the literature on aerosol dynamics (e.g., Friedlander, 1977). Fernandez
de la Mora et al.(1986) have used the hypersonic closure to describe the impingement of seeded
free jets against surfaces. It has also been used in the shock wave problem (see Chapter 6).

4.2 Hypersonic expansion of the Fokker-Planck equation. Moment equations

Since the hypersonic expansion of the FP equation is based on the smallness of the heavy
gas thermal velocity ¢, compared to the mean velocity U,, it is convenient to write the FP

equation (2.5.20) with ¢, as the independent variable (instead of the molecular velocity u).
However, to define the thermal velocity, we shall not use the exact value of the heavy gas
mean velocity , but a value U, given by some level of the hypersonic closure of the equations
(4.1.1),

020 = U'Uzo. (4.2.1)
Depending on how U, is defined, we shall consider two different hypersonic expansions. In a
first case (hypersonic expansion A or HEA), U,y is the Newtonian deterministic velocity

satisfying the equation

dUyg W-Uy,
T + U20-VU20 = o , (422a)
while in the hypersonic expansion B (HEB), U, satisfies
8U20 \'%& P20 W'Uzo
ot +U20'VU20 + Myng = _Te , (422b)

Nyo and Pyg being the number density and pressure tensor resulting from Egs.(4.1.1a,b,c) with
Q,=0.

It would seem superfluous to consider the hypersonic expansion B since, strictly
speaking, the lowest order momentum equation is (4.2.2a). However, it has very significant
advantages over the HEA regarding its range of validity (see next section). Moreover, the
lowest order of the HEB is more accurate for nz and U,, avoiding the necesity of going to

further orders in some problems (this is particularly important for the non-hypersonic
components of U,g). On the other hand, in addition to being simpler, the main advantage of the
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hypersonic expansion A over its counterpart B is the decoupling of the lowest order continuity
and momentum equations from the pressure tensor equation. We shall use the HEA in the shock
wave problem considered in chapters 6 and 7 because this decoupling will permit an algebraic
solution in phase space for U,.

Let us nondimensionalize the FP equation (2.5.20) taking into account that the heavy gas
mean velocity is of the same order as the light thermal speed, whereas the heavy gas thermal
velocity is much smaller. In order to avoid unnecessary complications in the notation, we shall
use the same scripts for the dimensionless variables:

%(%)1/2 Sx, % Y (4.2.3a)
%(%)3’2_) . czo(%To)“2 5 0 (4.2.3b)
Uy (ZT:—TIO)“2 - Uy, % - Ty (4.2.3¢)
w(zr:—;o)m_; w, T;f—) - 1 (4.2.3d)
2n:;<2T0 - Py, n% - Ny, (4.2.3e)

where Ty, ng and 1 are constants. Using ¢, as independent variable and (4.2.2), the FP

equation (2.5.20) becomes

8f2 Ca0 3f2 Tl
ot * U2oVia-(CopVUyp+ 27 )¥ch - = - zgvczfz
= - M2 Coo'Vhy | (4.2.4a)

for the hypersonic expansion A, and

3f T
2 20 2 1
ot * U2oVla-(Coo WUy + 77 )Vl - 5 - 2t Vi,
V'PZO
= - M1/2 [C20'Vf2 + "nzo 'chzl, (424b)

for the HEB, where V. stands for the gradient in c5g space. From the assumptions made so far,

the left-hand sides of Eqs.(4.2.4) are of order unity (or larger), while the right-hand sides are
O(M12), provided that the combination of spatial gradients of the distribution function appearing
there are O(1). Therefore, away from regions where M1/2vf, (and the corresponding right-
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hand side in the HEB) are O(1) (or larger), we can expand f,,

fy = 150 + MI2,(1) 4 ME, @D 4 ... (4.2.5)
in such a way that the resulting sets of moment equations at each order of the expansion
become closed once the previous orders have been solved; for the unclosed nature of the
system of moment equations is a consequence of the first term on the right-hand sides of

Eqs.(4.2.4). Notice that the expansion (4.2.5) is not limited with respect to the temporal
derivatives of the distribution function f,.

It is convenient to use the Fourier transform of f,,
F(t,x,K) = Id3020 fz(t,x,C20) exp{-iK-czO}. (4.2.6)
Equations (4.2.4) then transform to

% + Uzo'VF+VKF'(VU20' K+ %) +Fv. U20

K#T,
2t

+ F = -iMI2v.vF (4.2.73a)

%

+ U20‘VF+VKF-(VU20- K+ %) + Fv- U20

KT, V-Pyg
—F - -iMI2{y. .
t o T = M {v.vKF + ” KF}, . (4.2.7b)
which after the expansion
F=FO4+M2FD + MFD 4 ..., (4.2.8)

become

(0)
S(F(O)) = BFT' + U20'VF(0) + VKF(O)(VUZO' K+ TK—é)

0 KT, o
+ FOv. Uy + Z FO - o, (4.2.9a)

at the lowest order of both expansions A and B (however, U, is different in each expansion),

and
&(F0) = -iv.vyFa-D | (4.2.9b)

V'P20

£(FO)) = -i[v.vgFa-D + - KF(-D], (4.2.9¢)

for j>1 and the hypersonic expansions A and B, respectively. We define the moments of f2(J') as
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no® = [d3cy 1,0 = FO) (K-0) , (4.2.10a)
JO = [dBcr0 D €99 = iVKFD (K=0) |, (4.2.10b)
ny(©0) oM sjd3020 fz(j) C20C20 = -2VKVKFG) (K=0) , (4.2.10c)
g =Jd3co0 0 cx0 c20e20 = -IVKVKVKFD (K=0) |, (4.2.10d)

and so forth. Then, the successive moment equations can easily be obtained from Egs.(4.2.9)
by just taking derivatives with respect to K and letting K=0. For j=0, and from
Egs.(4.2.2a), (4.2.9a), at the lowest order of the HEA we obtain

3 w-U
__';tzo + UyyVUyg = Tef’-o , (4.2.11a)
an,©
fgzt +V(nyDU,0) = 0, (4.2.11b)
260 T,1-60)
S+ U0 © 4 6 ©.9Uy5 + (0 ©.vU0)T = 21T  (a.2.11¢)
© ©)
aqlmn U aqlmn ©) 3Uec‘ 3 O
at T 205 * Gmnax; % 9mn
®aUpgy  (03Ungy (0 3Upg) .
*Amiox; t NinTax; * Gimnox, 0 (4.2.11d)

and so on. Notice that, by definition of Uy, J(® = 0. The lowest order moment equations in

the HEB are the same as for the HEA, except for the lowest order momentum equation (4.2.11a)
which now is [Eq.(4.2.2b)]

W'U20

=2 Uy VU + 20D +0Ovinn,O)- (4.2.11e)

2
at

where we have identified nyg=n,@, Pyy=6 0 n,(0)/2. For the subsequent orders j>1, from
Eq.(4.2.9b) (HEA) we have

anz(j) . .
TE v-(n, MUy + JU-D ) = 0, (4.2.12a)

: Repeated subscripts are summed.
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34 : 1 :
Bt + J(J)'(VU20 + ;) + V'(J(J)U2o )
1 .
=- 3 V(np@U-D) (4.2.12b)
nz(j) .
260 o _ n @1 1/ 60
T + U20'V9(J) + G(J)'VU2O + (9(1)-VU20)T - 2 T
- 2 veglh (4.2.12c)
M o)
ao o | | .
_mn Imn Mhlg 3 G (i) 0200 ()3U 200
ot + Ui axi © Ymnoax;, *w Ymn * YUmi ax in  9x
(-1
+ qimn_maxi - g (SImJnO) +8|nJm0) +8an|0)) = 9%, , (4.2.12d)

and so forth, where jj is the Kronecker's delta and ) =-vkvKVKVKFU)(K=0). In the HEB,

the right-hand sides of the moment equations (4.2.12b-d) must be replaced, respectively, by

%{nzd—l)(v-e(o) +0©-vinn,0) - v-(n,(W9G-D)} , (4.2.12¢)
(v-0(0 +6(0-vinn,(M)yG-1 "
o - vqt-b } (4.2.12f)
gD

iinm 3 e(j_l) aeli(O)nz(O)

%t 2%m  ax (4.2.129)

At each order j, the system of equations (4.2.12) is closed once the previous orders have been

solved.
The actual values of the moments of f, (see Appendix A) can be obtained from the

moments defined in Egs.(4.2.10) by realizing that €;=C5q + (Ug-U,). We obtain:

=m0 + M2n; 1) My, @ + .., (4.2.13a)
T u20+ff—2(.1(1> M2 4 ) (4.2.13b)
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ny©)
T = ?(6(0) + MI29M + MOD 4 )

- M ~1{Uz-Up0)(Uz-U2p) , (4.2.13c)
Qaijk =15 (i@ + M2q5® + Mgy® + ...)
- M372(Up; - Ugoi)(Ugj - Uagj)(Uak - Uaok)
m\:W [T2ij(U2k - U2ok) + T2ik(Ugj - U2gj) + Tajk(Uai - Uzoi) ], (4.2.13d)

where the heat flux tensor Q,jjx has been made dimensionless with nykTo(2kTg/m,)1/2. At
zeroth order we have ny=n,©, U,=Uy;, T,=6(0) and @,=¢O/n, ),

Equations (4.2.11) are solved with the initial conditions n,(0(t=0)=n,(t=0),
Uyg(t=0)=Uy(t=0), 6 (0)(t=0)=T,(t=0), q(O)(t=0)=n(t=0)@,(t=0), while Eqs.(4.2.12) for j>1
must be solved with the initial conditions n,(t=0)=J®(t=0)=6 ()(t=0)=qd(t=0) = 0.
According to these initial conditions, and from Egs.(4.2.12) and (4.2.13), the order of
magnitude of the errors in the lowest order hydrodynamic quantities of the HEA are

n=m® +0oM), (4.2.142)
Uz =Uyp + O(M), (4.2.14b)"
T = 600+ 0MIZ) (4.2.14c¢)

since, from Eq.(4.2.12a), n,(1)=0 because J(@=0. On the other hand, for the HEB, we have

ny=np © 4 O(M372) (4.2.15a)
Uy = Uy + O(M372) (4.2.15b)
T, = 6004+ OM172) | (4.2.15¢)

since from Eq.(4.2.12b) with the right-hand side given by Eq.(4.2.12e), J(1)=0, so that n,(2)=0.

Notice that, if initially the heat flux tensor vanishes, from Eq.(4.2.11d) ¢(9=0. Whence, from
Eq.(4.2.12¢)8(1) =0 [notice that ny () =0], so that the errors at the lowest order in T, are
O(M). In addition, J(2)=0 from Eq.(4.2.12b) and n,(®)=0 from Eq.(4.2.12a). (This is valid for
both the HEA and the HEB.) Thus, in the HEB, np = n (9 + O(M2) and U, = Uyg + O(M2). In the
HEA, the errors for ny and U at the lowest order remain unchanged because J{(1+0 and

n2(2)¢0 .

" Notice that, according to the nondimensionalization (4.2.3), the non-hypersonic
components of U, are not O(1), but smaller [typically, O(M172)].
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4.3 Normal solution

In the preceding section we expanded the FP equations (4.2.4) in powers of M1/2,
However, instead of solving the resulting equations (4.2.9) for the Fourier transform of the
distribution function, we were content with obtaining the moment equations for the successive
orders in the expansion. In the present section, an important particular solution to Egs.(4.2.9)

(termed the normal solution) is given, whose lowest order is an anisotropic Gaussian
distribution.

in fact, the function

-KK:60)
F©® = ny @ exp(———

), (4.3.1)
with n© (x,t) and 6(® (x,t) governed by Egs.(4.2.11b) and (4.2.11¢), is a particular solution
to Eq.(4.2.9a). Since the inverse Fourier transform of (4.3.1) is

n© C20iC20j

0 = -
fG()‘,ts/z(dete(O))uz exp Q) b (4.3.2)

at the lowest order we have a Gaussian distribution with number density n,(0), mean velocity
U, and temperature tensor 6 (9 satisfying the hydrodynamic equations corresponding to a
hypersonic closure of the moment equations. Notice that the solution (4.3.2) is valid for both
the HEA and the HEB; the difference resides in the lowest order equation for U,.

We show in the Appendix of Ref.IV that, if at t=0 (or at x=x(0) for stationary problems)
F(9 is of the form given by Eq.(4.3.1), the general solution to Eq.(4.2.9a) is everywhere given
by Egs.(4.3.1) and (4.2.11). If in addition one were able to show that any solution of
Eq.(4.2.9a) would tend to Eq.(4.3.1) as t— =, FG could properly be called the normal solution
of Eq.(4.2.9a). However, we have not succeeded yet in obtaining the general solution of Eq.
(4.2.9a), except for some particular cases (see Appendix of Ref.IV), most of them satisfying
the condition FOFGO as t— . (We found in that reference that, for instance, this condition is
not satisfied in one-dimensional linear flows W=ax when a<-1/4.) In any case, we shall term
Fa(®, and the solution at the subsequent orders derived from it, the normal solution of the
hypersonic expansion.

Making use of Eq.(4.3.1), the first order of the HEB [Eq. (4.2.9¢c) for j=1] may be
written as



44

S{FD} = -5 K- 60 - V60 : KK FGO . (4.3.3)

The general solution of this equation is the sum of the general solution of the homogeneous

equation (4.2.9a) (which, therefore, can be included into the lowest order solution), plus a
particular solution cubic in K

Fy - L9ma 2RI q'm":l’;(ﬂ)’(’“K” FQO | (4.3.5)
where the proportionality constant q(1(t,x) obviously coincides with q(!) as defined by
(4.2.10d) and satisfies the equation (4.2.12d) with the right-hand side substituted by
Eq.(4.2.12g).

Similarly, the particular solution FO for the subsequent orders j>1 is made up of terms
containing the moments entering at that level of the approximation, whose moment equations
are those of the preceding section. Therefore, there is not much gain in pursuing this procedure
beyond j=1. Nevertheless, the above normal solutions for j=0 and j=1 yield additional
information not contained in the moment method of the preceding section. Thus, when the
normal solution applies, the procedure of solving the hierarchy of moment equations (4.2.12) is
enormously simplified because all the lowest order moments are known functions of the
hydrodynamic quantities n,(® and 69 [for instance, ¥0=-(3/4)ny,(D 0 &0)]. Also, since the
gradient of n,(9) does not appear in the right-hand side of Eq.(4.3.3), the hypersonic expansion
B with FOO-FG(0) fails inside density boundary layers with |Vn,|=O(M"1), instead of O(M~172) as
one might have expected from considering Eq.(4.2.7) alone. (The gradient of n,(®) does appear
in the equation for F(2).) In real velocity space, the right hand side of Eq.(4.3.3) reads [from
Eq.(4.2.4b)]:

fG(O){czo-[%Vln(detG(O)) +%22—Olveij(0)] + %%J)-Q%((iﬁ}.

The first consequence of the normal solution just mentioned also applies, obviously, to
the HEA. However, the extension in the validity range of the hypersonic expansion with
respect to the density gradients is a consequence of the inclussion of the pressure tensor term
in the lowest order momentum equation and, thus, it does not apply to the HEA.

Wherever the normal solution applies, the order of magnitude of the errors in the lowest
order hydrodynamic quantities are those given at the end of the preceding section with ¢(®=0.
in particular, the error in the lowest order temperature tensor is smaller by a factor M1/2 than
that given by Eqgs.(4.2.14) and (4.2.15).
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4.4 Extension of the hypersonic theory to nz/n; ~ M and v = O(1)

In addition to the hypersonic assumption, the theory considered in the preceding sections
is valid for Kn;<<1, ny/ny<<M and v<<1. Also, it cannot be applied in regions where the right-

hand sides of Egs.(4.2.4) are O(1) or larger (see, however, last section).
The two most restrictive conditions are ny/n;<<M and and v<<1, which are not met in
some situations of interest. To relax the first of them, ny/n;<<M, one has to include a self-

collision integral term on the right-hand side of the kinetic FP equation (2.5.20).” Restricting
our analysis to the lowest order hydrodynamic equations, the inclusion of this new term in the

FP equation will only affect the pressure tensor equation (4.1.1c), in whose right-hand side a
new self-collision transfer term, ZEZ' (see Appendix A), has to be added.

Ez' cannot be obtained without knowledge of the distribution function f,. However, if we

assume that the lowest order distribution function is Gaussian (as in the case in which the self-
collisions are neglected), the new term 2152' can be obtained in a closed form:

2k n,2
' 2
2E, = ——n(deth)l’Z [Aje1e) + Areres + Aseses ] (4.4.1a)

where {e,e;,e3} is the reference frame in which the temperature tensor T, is diagonal, and
the coefficients Aj are functions of T :

2 1

Ay = [dx [dy [1-3(1-y2)cos2x] Te52 Q@ D(Tg) ,
0 0
2t 1

Az = [dx [dy [1-3(1-y?)sin2x] Te52 Q,®V(Tg) |
0 0
2n 1

Ay = gdx gdy [1-3y2] Te52 Q@ D(Te)

1 [(13/2)cos2x (1-y)sin?x ~ y2 ]
Te = Tt * T T3 1
(See Appendix C for the Q-integrals.) In the case of an one-dimensional problem along the
direction e3 = (Uz-Uy)/ |U2-Uy|, Ty1= T2 =T, so that

1 _ [Lﬁ _Yﬁ]

Te b1y + T" !

" With this addition the theory is valid for any value of ny/n;; however, for n,/n;>>M, we can
use the near-equilibrium equations for the heavy gas.
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where T} = Tz3. Therefore, Eq.(4.4.1a) reduces to

2k n,2 ! 3 on
" (detTy)12 gdv [3y2 1] T3 Q' V(Te) /- 3 ezes ] . (4.4.1b)

2E,'
This expression was derived by Toennies and Winkelmann (1977); see also Riesco-Chueca et al.
(1986). In the last reference, the integral in Eq.(4.4.1b) was computed using the repulsive part

of a Lennard-Jones potential of molecular interaction, which approximates the full Lennard-
Jones potential for T >>€2/k (€2 is the depth of the Lennard-Jones well). We shall use this

expression in Chapter 8.

The second limitation v<<1 can be overcome by using the FP equation (2.5.23), instead of
its version linearized in v (2.5.20). Again, we will restrict our considerations to the lowest
order hydrodynamic equations (4.2.11), and compute the new terms on interspecies transfer of

momentum and energy (see Ref.VIll). But before taking moments of Eq.(2.5.23), we expand the
integrals b and IT [Egs.(2.5.21-22)] in powers of ¢, (which is order M2 relatively to U,):

b(uy) = (1 +cy VU2 + €; €, :VU2VU2 +...)b(U,) (4.4.2a)
H(UZ) =(1+ Cy: Vuz + Cy Cy VuavVusz + ...)H(Uz) , (4.4.2b)

where b(U,) and I1(U,) are given by Egs.(2.5.21-22) and (2.5.25) with u and & substituted by
U, and v, respectively, and eg = e3 = (U,-U;)/]U,-U,|. Using the above expansions, the task of

taking moments of the right side of the FP equation becomes much easier. From Appendix A,
we have

M2 = m2 [u,F(f2)], (4.4.3a)
2Ey = my [uu,F(fy)] - (MaU2 + UaMp), (4.4.3b)
where F(f,) is the FP collision opet tor,
1
F(f2) = vu- [bfy +5 Vur {TIfa}]. (4.4.4)

Then, using Egs.(2.5.21-22) and the expansions (4.4.2), to first order in M we get

My =-manab (4.4.5)
1
26y =my g { = [Ty (M) = To) + (M- Ty - T2))T] + 1Ty
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+ F [T UpUpb + (T ue)T] ), (4.4.6)

where b, 1) and IT, are given by Egs.(2.5.21-22) and (2.5.25) with u and 5 substituted by U,
and v, and e = e3 = (U,-U;)/]U,-U,|. Therefore, when v is not small, the right-hand side of
the moment equations (4.1.1b) and (4.1.1¢) must be substituted by M,/m, and 2E, given by

Eqs.(4.45) and (4.46), respectively [Riesco-Chueca et al.,1986, Eq.(1-2)]. At the lowest
order of the hypersonic expansion B [Egs.(4.2.11b,c,e)], we have

oy ,

"azt + V(1 OUy) = 0 | (4.4.72)
d \%
% +U20-VU20 + %‘ [V9 V) +0 (0)-Vlnn2(0)] = % (W'Uzo) , (44.7b)
060

T + U20-V9 (©) +0 (0)-VU20 + (9 (0)°VU20)T
= IT'(T11-6O) + [IT;'«(T1-0O)T + I,

2v
+ Te—ﬁ{e ©-(Uyg- Up)(Upg- Up) + [0 @O-(Uyg - Ui} (Ugg- UDIT} | (4.4.7¢)

where

IT,'=[vB(l- eze3) + vmiesesle , (4.4.7d)

I = 2T V2G vip(/ - 3 eses ) fe . (4.4.7¢)
Obviously, the above equations reduce to (4.2.11b,e,c) in the limit v 0. [Notice that W=U,
since the FP equation (2.5.23) was obtained at the lowest order in Kny.] When ny/n; is O(M) or

larger, the self-collision term given above must be included in the right-hand side of
Eq.(4.4.7¢c).

" Notice that these equations are dimensionless; see Egs.(4.2.3).
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Chapter 5
ABSORPTION AND DISPERSION OF SOUND IN DMM

5.1 Introduction

The two-fluid theory of Chapter 3 will be applied in this chapter to the problem of sound
propagation. The results on absorption and dispersion of sound will be compared to the
experimental values of Fuentes Losa (1972) and Bowler (1984).

The problem of sound propagation is, perhaps, the best example to test the Knudsen (or
frequency) range of validity of a CE theory; for the frequency is the only parameter varied in
the problem at a given concentration. We shall see that the two-fluid results on sound
absorption agree reasonably well with the experimental data of Bowler for He-Xe mixtures in
all the frequency range measured by this author, which, for most He-concentrations, is far
larger than Kn;<<M = 0.03, corresponding to the validity range of the standard CE theory for
binary mixtures. At low frequencies, the absorption of sound predicted by the two-fluid CE
theory coincides with that of the classical CE theory, and agrees remarkably well with the
experiments. However, the predictions of the standard CE theory become poor as the
frequency increases, confirming the estimate made in Chapter 2 on the Knudsen number range
of validity of both the two-fluid and the classical CE theories for binary mixtures.

Some of the two-fluid theories cited in Sec.2.2 have been applied to the acoustic problem.
For instance, Goldman (1968) used the two-fluid theory for Maxwell molecules developed by
Goldman and Sirovich (1967) to predict the absorption of sound in He-Ar mixtures. These
results were subsequently compared by Prangsma et al.(1970) with experimental data. The
two-fluid theory of Goebel et al.{1976) (based on Grad's thirteen moments approximation) was
applied by Huck and Johnson (1980,1981) to the acoustic problem, and compared by Bowler
(1980) and by Bowler and Johnson (1985,1986) with experimental data on He-Xe mixtures.
These authors predicted two modes of sound propagation for moderately high frequencies but
such that wtg=0(1) and, thus, within the range of validity of the two-fluid theory. Similar
features were predicted by Fernandez de la Mora and Puri (1986) by means of a simpler Euler-
level two-fluid theory, obtaining excellent agreement with experimental data on the dispersion
of sound in He-Xe mixtures for Xe molar fraction less than 0.4.

5.2 Dispersion relation

In the acoustic limit, we linearize the two-fluid hydrodynamic equations (A26-30) with
(3.2.1-4) around the equilibrium densities n,q, nyg, velocities U = Uyg = 0, and temperature
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To- The perturbed hydrodynamic quantities are assumed to be plane waves propagating in the

positive x-direction; that is

T =To+ T expfi(ot - Kx)} ,

(5.2.1)

where Y represents any of the variables n;, U; (x-component of the velocity U;) and T; (i=1,2);

o is the frequency and K is the wave number. The resulting linearized equations may be written

as

where

with

and where

- X2 X2
M+ B B
X1 X1
B T+ 3
3'xp + 3x1
2kT2 g_(kTZ i 1)
3xg 3'Y Xy
|
4MB S11 4MB S12
T 3xy T38x
4MB S2 4MB S22
B = 3x7 T T 3%y
0 0
0 0
L

0 0 T
0 0
E E
1+ B B
EX1 Exy
Bx2 )
; kT1 kT2 |
T xi
kT1 ; kT2
X2 Y X
28 L11 28 le
T 3x; 3x1
28 Ly, 2B Lys
T 3%y 3x2

(5.2.2)

(5.2.33a)

(5.2.3b)

(5.2.3¢)

(5.2.4)

(5.2.5a)

(5.2.5b)
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where

i = T (5.2.5¢)
Lij = Ty (5.2.5d)

= 3xMkap - (5.2.5¢)

All the transport coefficients (Appendix D) are calculated at the unperturbed temperature T,
and molar fractions x;. B is the dimensionless frequency

. Xy s 5.2.6
Yo T - (5.2.62)
where
3
S=atgX] , Aap= (l—kﬁ’), (5.2.6b)

and t¢ is given by Eq.(2.4.31). [ay = my/(m;+m,) = 1 when the first approximation of the
Sonine polynomial expansion is used for Ay, see Appendix D.] The eigenvalue ¢ of Eq.(5.2.2) is

L= 5—. (5.2.7)

The condition for the existence of nontrivial solutions of Eq.(5.2.2),

detfA+¢ B] =0, (5.2.8)
yields four complex eigenvalues § as functions of 8 and, thus, four dispersion relations c=c(w),
corresponding to four different modes. For real frequencies o, the imaginary part of the
dispersion relation is related to the absorption coefficient a as

a = Im(-K) = Im(-z—) ), (5.2.9)
while the real part is related to the speed of sound propagation ¢; as

1 Re(c)). (5.2.10)

Cr

5.3 Low frequency limit : absorption and dispersion coefficients

In this section we consider the limit s<<1. If the first approximation in the Sonine
polynomials expansion is used for p [Ref.l, Eq.(9.7,1)], s can be written in terms of the

Knudsen number of the light gas Kn, as



51

Knyxy
M bO k) (5.3.1)
where

(2.2
10 Q" ]"(To)

PNEY)
3Q 12 (To)

bo

(5.3.2)

Therefore, s<<1 corresponds to the limit Kn;<< M, where the classical CE theory for binary
mixtures applies.

First we look for the propagating mode at low frequencies, also called acoustic mode; that
is, we look for the solution to Eq.(5.2.2) that at low frequencies behaves as
X=Xo+BX1+B2Xa+...

(5.3.33)
§=C+BL+B2L+... . (5.3.3b)
Writing the matrices A and B as

A = % + A, (5.3.43)

B =Bg+pB;, (5.3.4b)
at the lowest order we have
Ay Xp =0, (5.3.53)
whose solution is
0
Xo = ;3 (5.3.5b)
A

with Yy and Z; arbitrary constants. To first order, we have the equation
Ay Xy =- (A1 +5Bo) Xo ,

(5.3.6)
whose compatibility condition xOT- (A1+8oBg)- xp=0, (where xOT is the solution of xoT-A0=0
and the superscript T denotes the transposed tensor), yields

3(MX1 + X2)

5

(5.3.7)
and

Z =§Y0 . (5.3.8)

Equation (5.3.7) corresponds, obviously, to the equilibrium sound speed of the mixture
(Laplace's expression for low frequencies):
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2 5kToM 5 po
%= 3m;(Mx, +x2) ~ 3pp (5.3.9)

where pg and pq are the equilibrium pressure and density of the mixture. Selecting Yo=1 and
the remaining Y;;=0, i>1, so that the first component of the eigenvector X is unity, from

Eq.(5.3.6) we have

0
AYy
X = Z (5.3.10a)
Z
where
2
AY]=M-1 - gguT , (5.3.10b)
. . , kry+kro
and oy is the thermal diffusion ratio, a = -
1X2

At the second order we have
-Ag X3 = (A1+8Bo) X1 + (%B1+¢Bo)Xo, (5.3.11)
and the compatibility condition yields

2(XT€0 2
§1 4MS  4(Mxp + x)L x1x2(M-1- 3 ) 5342
L~ 5 * 25 * Mx] + Xg ' (5.3.12)
4Mx; + X)L 2
Zy=———— + S AYxo(1-x1a7) . (5.3.13)
15 3
where §=8+2S,+S;,, L =L;+2L,+Lyy. Then, from Eq.(5.3.11),
0
Y
X, = AOZ , (5.3.14a)
AZy
with
5Z; 4 2
-AYy Xp = 3 ¢+ g)a M (S11+S12) + (1 + x007) GoZ; + §C1x2aT, (5.3.14b)
4 2aY 1kt
AZHE =2, - W Lo (lyy +L12) + 3] (5.3.14c¢)

Finally, £, is obtained from the compatibility relation of the third order equation,
-Ap* X3 = (A + 8B o) X2 +(§B1+51Bo) X1+ (Bo +61B1 )Xo (5.3.15)
yielding
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2 _ 4 aM
3 |

T3 T EAYI Xy + (S22 +S12) AY + S %]

x1X24Y1aY2 &y 2L 24
o wit 3 kd +£] . (5.3.16)

The real and imaginary parts of the expansions (5.3.3b) can be related to the speed of
sound ¢, and the absorption coefficient o through

C
f = Re(—c%)m = 1-dps? +..., (5.3.17)
Ze .. Im(E%)m =0y + ..., (5.3.18)
where
S|
dl = _27305 y (5.3.19)
1 & &1
d = 5[5 - (%)2]. (5.3.20)

Equation (5.3.18) with (5.3.19) and (5.3.12) is Kohler's (1941) expression for the absorption
of sound at low frequencies, which he derived from the standard NSEs for binary mixtures,
corroborating the equivalence between the two-fluid CE theory and the classical CE theory for
binary mixtures when Kn;<<M.

The other three eigenvalues of Eq.(5.2.2) correspond to non-propagating modes at low
frequencies (they tend to infinity as the frequency goes to zero). Two of them behave at low
frequencies as

xo‘ 1 )
X = Bt Xi" + pX2' +..., (5.3.21a)
o' , ,
C=TF * o+ B&+ .. (5.3.21b)
At the lowest and first orders one obtains
(Ap+%'Bo) X0 =0, (5.3.22a)
(Ao+%'Bo) X' + (A1 +81'Bo+'B1)Xo = 0. (5.3.22b)

From these equations, proceeding as before, &' is given by the roots of the equation

o'(Go’ - 1)L - x1 XzazT Lo’ % (%' -1) = 0. (5.3.23)
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These two modes are identifiable with the so-called thermal and diffusion modes. In fact,
neglecting the thermal diffusion in Eq.(5.3.23), one obtains {y'=1 and {y' = % which, in

physical variables, yield the low frequency dispersion relations

. Bk
K2=-io o (n1o + nyg) (5.3.243)
and
i
K2=-—, 3.
D (5.3.24b)

where A = Ay +Ay, + 2 is the mixture thermal conductivity and D, is the diffusion

coefficient [see Egs.(3.3.1b) and (3.3.1d)].
Finally, the behavior of the fourth mode at low frequencies is

Xo' X"
X = 22 Rt e (5.3.25a)
Wt
R i s (5.3.25b)
where {5 " turns out to be
3ELx
L' s ———— (5.3.26)

= -
2(L11la2- Lyy)

Therefore, this mode is associated to the transfer of energy between species (parameter E),
and it does not appear in the classical CE theory for binary mixtures (which yields only three
modes).

5.4 Results and comparison with experiments
We compare in this section the solution of Eq.(5.2.2) with experimental values of the
absorption coefficient o(w) and the dispersion of sound ¢;(w) in He-Xe mixtures. The numerical

solution of Eq.{5.2.2) has been obtained using the subroutine EIGZC of the IMSL library. All the
results are computed with M=4/131.2, T;=300K. The transport coefficients used are the first
approximation in the Sonine polynomials expansion given in Appendix D with a Lennard-Jones

intermolecular potential [see Hirshfelder et al.(1954), Sec.8.3; we have taken from this
reference the values of the parameters o; and ¢; while the values of o, and gy, are from

Hogervorst (1971)].



55

A characteristic feature of the solution of Eq.(5.2.2) is the presence of a mode

degeneracy at a critical frequency and gas composition, first observed by Huck and Johnson
(1980). For the present case, we found that the critical value of the frequency is O =

2.2/tgx ¢, where the critical light gas molar fraction x, is between 0.450 and 0.455. At
these critical values of w and x,, the acoustic mode [the mode that at low frequencies is given
by Eq.(5.3.3)], and one of the other modes which are non-propagating at low frequencies,
become degenerate, interchanging their roles for w>w, (see Fig.2). In particular, we found that
the interfering mode is the one that at low frequencies becomes the diffusion mode
[Eq.(5.3.24b)]. Bowler and Johnson (1985), using Grad's thirteen moments approximation for
Maxwell molecules, obtained the thermal mode as the interfering one. However, using a more
realistic intermolecular potential (Bowler and Johnson, 1986), but still Grad's method, they
also obtained the diffusion mode. The diffusion mode is also the interfering one at the Euler-
level of the two-fluid theory, which only contains the acoustic and the diffusion modes,
becoming degenerate at a critical frequency (see Fernandez de la Mora and Puri, 1986).

Figures 1a-g contain the comparison of our results for the absorption coefficient with the
experimental data of Bowler (1984) at several light gas (He) molar fractions. In the same
figures we have also included the absorption coefficient obtained from the standard CE theory
for binary mixtures. These last results are obtained from the linearized form of the standard
NSEs,

(A' +¢B')X' =0, (5.4.1a)
where the eigenvalue { is defined by Eq.(5.2.7), while

[ Mx; + x; 0 0
, 2 2 (1-M)xax;
A= -3 3 [Mx1 X +kr] 1 , (5.4.1b)
X2
L 0 "3 0
[ 4 (1-M)xa2x, .
- MES T Mxp + X2 1
2
B'= 0 0 . EBL , (5.4.1¢)
M X2 M(1-M)xy, M kr
1- [1- 1 - +
Mxy+X2 Mx1+x29 Mx+x2 Mxi+xz =~ X
- P
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u
X = (8 ) . (5.4.1d)
b4

u=Ulc, 8= (U;'-Uz)c, z = TTy; U' and T' being the perturbed mean velocity and
temperature of the mixture. (Notice that the equation det(A' + ¢ B ')=0 only yields three
dispersions relations or modes.) Using the same procedure as in Section 5.3, it is easy to
obtain from Eq.(5.4.1) Kohler's expression for the absorption of sound at low frequencies
which, as said in Sec.5.3, coincides with the expression (5.3.12) obtained from the two-fluid
theory when Kn;<<M. In this low frequency limit, one observes in Figs. 1a-g an excellent
agreement between the experimental values of Bowler on absorption and both the two-fluid and
the classical CE theories. However, as the frequency increases, the absorption coefficient
predicted by the classical CE theory becomes poor, while that predicted by the two-fluid theory
remains in reasonable agreement with the experiments. It must be noticed that the condition
Kn~M corresponds, roughly, to f/p~160 x; (MH,/Atm). Hence, in terms of the frequency f/p
used in Figs.1a-g, the validity range of the standard CE increases with the light gas molar
fraction, as one can see in the figures. On the other hand, all the experimental data of Figs.1a-
g are, roughly, within the limit Kn,<<1 where the two-fluid CE theory is valid.

Figure 2 shows a comparison of our results for the dispersion of sound [Eq.(5.2.10)] with
experimental values of Fuentes Losa (1972) and Bowler (1984). The speed of sound ¢y is made

dimensionless relative to the light gas sound velocity,

_A =0

instead of with respect to the equilibrium speed of sound of the mixture used in Eq.(5.3.17).
The results from the standard CE theory (NSEs) have not been included in this figure because
there is a substantial disagreement with the experiments, even for small frequencies. The
reason for this disagreement is twofold. First because, for DMM, the principal source of sound
dispersion is the relaxation between species, which is not properly taken into account in the
classical NSEs. Secondly because the dispersion of sound is a second order effect in the
frequency or Knudsen number [see EQ.(5.3.17)], and cannot be predicted correctly by a theory
which is a first order approximation in the Knudsen number, as the NSEs. The present two-
fluid CE theory is also a first order theory in the Knudsen number (Navier-Stokes level).
However, since the relaxation among species is the main source of sound dispersion in He-Xe
mixtures, the results of this theory agree reasonably well with the experimental data given in
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Fig.2. In fact, it has been shown (Fernandez de la Mora and Puri, 1986) that the dispersion of
sound resulting from the Euler-level of the two-fluid theory (which is a zeroth order theory in

the frequency and, therefore, its only contribution to the dispersion comes from the relaxation
terms) agrees also very well with the experimental data on He-Xe mixtures for x;>0.6, as one

can see in the same Fig.2, where the Euler-level results have also been included. For x;<0.6,

the corrections to the Euler-level made by the Navier-Stokes level of the two-fluid theory
considered in this chapter are sufficient to fit the experimental data. A rigorous prediction of
the dispersion of sound would need the next level (Burnett) of the two-fluid CE theory.
However, Fig.2 shows that the corrections introduced by this new level of the CE theory would

be very small. As a corroboration, Riesco-Chueca and Fernandez de la Mora (1987) have
shown that the dispersion coefficient dy [Eq.(5.3.20), which corresponds to the slope of the

dispersion curves of Fig.2 at s=0] coincides, in the limit M—0, with the exact coefficient do
calculated from a variational formulation of the BEs, so that the dispersion of sound predicted
by the two-fluid theory is quite accurate for He-Xe mixtures (M=0.0304). As M increasses,
the relaxation between species is no longer the main source of sound dispersion, and the
coefficient d predicted by the two-fluid theory becomes poor, until, for M=1, it coincides with

that predicted by the standard CE theory for binary mixtures (as expected).



Figures 1a-1g. Experimental data of Bowler (1984) on sound absorption in He-
Xe mixtures compared with the results (accoustic mode) from the standard CE
theory [Eq.(5.4.1a); sCE curves] and those of the present two-fluid CE theory
[Eq.(5.2.2); tfCE curves]. The curve tf-diff on Fig 1d corresponds to the diffusion
mode of the two-fluid theory. The vertical axis represents the dimensionless
absorption parameter ace/o [EqQ.(5.3.18)).
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Figure 2. Dimensionless sound speed cj/cy versus dimensionless frequency s in
He-Xe mixtures for some values of He molar fraction. : accoustic mode; - -
- - : ac¢oustic mode at the Euler-level; - - - - - : diffusion mode. « :experimental
data of Fuentes Losa (1972); * + =:experimental data of Bowler (1984; from top to
botom, x; = 0.2, 0.3, 0.4, 0.45, 0.5, 0.6, 0.7 and 0.8).
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Chapter 6
SHOCK WAVE STRUCTURE IN DISPARATE-MASS MIXTURES WHEN n, /n,<O(M)

6.1 Introduction
We consider in this chapter an example in which p,/p; <O(1), so that the near-equilibrium

equations for the heavy gas of Chapter 3 cannot be used, even when the light gas is in near-
equilibrium conditions (Kn;<<1). Nevertheless, the shock wave problem is the perfect example
for the application of the heavy gas hypersonic approximation of Chapter 4, since the light gas
Mach number is O(1). Moreover, far upstream of the shock wave both species are in
equilibrium, so that the normal solution for the heavy gas distribution function of Section 4.3
applies throughout the shock, with the consequent reduction in the magnitude of the errors at
the lowest order hypersonic approximation. In order to decouple the lowest order momentum
equation from the pressure tensor equation, we shall use the hypersonic expansion A. This
decoupling is interesting because it will permit an algebraic solution in phase space for U,.

For the light gas we shall use the near-equilibrium closure of the moment equations
considered in Chapter 2 (Sec.2.4), valid for Kn;<<1 and v<<1. Although the condition Kn;<<1
fails for large Mach numbers, the region where this condition is not valid is very narrow
compared to the overall thickness of the shock. We shall see that, when the light gas Mach
number is larger than unity, the shock comprises two regions: a very thin inner layer where
the light gas behaves, in first approximation, as in a shock wave of a pure gas and the heavy
gas is frozen, and a much broader relaxation region whose thickness is on the order of M-!
times larger than the thickness of the inner layer. The condition Kn;<<1 fails, for large light
gas Mach numbers, inside the inner region, as it fails in a shock wave of a pure gas. However,
that condition is normally satisfied in the much broader outer relaxation region.

Using the classical CE theory for binary mixtures, the shock wave structure was studied
by Dyakov (1954) and by Sherman (1960). In the particular case of a He-Ar mixture (M =0.1)
and ny/ny=0.02 (which is within the parameter range considered in this chapter), Sherman
predicted an overshoot of the heavy species velocity (see Fig.7). Using the same NSEs,
Sherman did not find this overshoot when the molar fractions of the heavy and light species
were comparable. Moreover, the overshoot was not observed in He-Ar experiments made by
Center (1967) at the same conditions where the anomaly was predicted. Therefore, it became
clear that, even for weak shocks, the standard CE theory for binary mixtures fails for DMM
when the heavy gas is dilute. According to the discussion made in Chapter 2, this failure comes
from two sources: first because the classical CE theory is limited to Kn,;<<M, a condition not

very likely to be met in a shock problem; secondly because, even if we use a two-fluid theory
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valid for Kn;<<1, the near-equilibrium closure of the heavy gas hydrodynamic equations is not
valid when n,/n, is very small [n,/n;<O(Kn,)].

Goldman and Sirovich (1969b) applied their two-fluid theory for Maxwell molecules
(1967,1969a) to the shock wave problem, not finding Sherman's anomaly for the case of weak
shocks. Harris and Bienkowski (1971) used the moment equations of the BEs for Maxwell
molecules, giving a complete description of the shock wave structure in binary gas mixtures
for a broad range of the parameters M and n,/n; [not restricted to M<<1 and n,/n;<O(M)]. To
close the system of moment equations in the limit considered in this chapter, they used an
abbreviated Grad (1949) thirteen-moment approximation for the heat flux. Harris and
Bienkowski also made an expansion of the governing equations in powers of M, obtaining, at the

lowest order, a phase space solution very similar to our outer solution (see Ref. VI, fig.6).
However, these authors did not consider the limit in which the inner shock is very weak (Ma;-

1<<1), for which the outer solution is not valid (see sec.3.3).

The similar problem of a shock wave in a dusty gas has been treated by a number of
authors. A review of these works can be found in Ref.VI, Sec.1.

6.2 Governing equations

The one-dimensional conservation equations for the species mass, momentum and energy
of the mixture, can be integrated to give

prUy=p" U, (6.2.1)
ppUz=ep,;" U™, (6.2.2)
py Ui +py Up2 + Pixx + Paxx =p,(1+e)(U)2 , (6.2.3)

1 1
Py Ui U 2 +61) +py Uy(s Uy2? +89) +U; Pixx + UpPaxx + Qux + Qox

o U+ (U rer+ee)] (6.2.4)
where
€= p_zj , (6.2.5)
P1
€i= (y,_k:)’?l , (6.2.6)

and the superscript minus stands for the conditions upstream of the shock. 4 is the specific

heat ratio of species i (equal to 5/3 for monoatomic gases).
We are going to consider a first order theory in the mass ratio M. Since ny/n;<O(M), the
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terms in Poyy, €, and Q,y in Eqs.(6.2.3.3-4) can be neglected with errors O(M), provided that
T1/T, remains O(1) inside the shock. Notice that this approximation has nothing to do with the

hypersonic approximation. On the other hand, the near equilibrium approximation for the light
gas yields [to first order in Kn,, see Eqs.(2.4.16-17)]

Prc = ok Ty - 2y S 6.2.7

1xx—ml 17 3B gy (6.2.7a)
dm,;

Qix = M O (6.2.7b)

where the thermal diffusion effect has been neglected in (6.2.7b), and the transport
coefficients u; and A are given by Eqgs.(C1) and (C2) of Appendix C (first order of a Sonine

polynomials expansion). Since n,/n;<O(M), within an error O(M), these transport coefficients
are those of a pure light gas.
For the heavy gas we shall use the hypersonic expansion A. In a first order theory in the

parameter M (see Eqs.4.2.14), we shall only retain the lowest order equations (4.2.11a,c),
with W=U, in Eq.(4.2.11a) (we neglect the thermal diffusion effect):

dUsp Uj - Ugo

Uy ax - o , (6.2.8a)
W) 0
®) (0) duzg TL6y
Uzo ax * 20 I ax = 2 - , (6.2.8b)
© (0)
dB_L Ty-0 1
U20d—x = 2 T , (6.2.8¢)

©_© (O 0 (0 . . . . .
where 0 1 =8 ©1 =9yy =0, At the upper limit of the number density ratio considered in

this chapter, i.e. ny/n;=0(M), a self-collision term must be added to the right-hand side of

Eqs.(6.2.8b-c) (see Sec.4.4). Also, the nonlinear effects in the slip velocity, which were
considered in the same Sec.4.4, may be of some importance in this problem. These two
effects have been included in the problem by Riesco-Chueca et a/.(1986) finding that, although
the results for gyande, are modified appreciably, U, remains practically unchanged. In fact,

the self-collisions do not affect the momentum equation (6.2.8a), which is decoupled from
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In what follows of this chapter, we shall only consider Eqgs.(6.2.1-4) and (6.2.8a),

forgetting for the moment the heavy gas temperature tensor (it will be considered in the next

chapter in a simplified version of the shock wave problem). Using the dimensionless variables

Ui
=7

Uxo
=T

T
8=

3p, U
4py

ds = dx ,

Eq. (6.2.1-4) and (6.2.8a) can be written as [Ref.VI, Eqgs.(11)]

yMa,
3

—— g = (-1 +eE-2n+ NE-1)
2Pri{y-1)Ma,

b —2—s - -1l
Yy - 1)Ma,
Fe%%= n-§,

where the light gas Mach and Prandtl numbers are

U-
Ma; = -
! (ﬁ)uz
m
paky
Pri = = .
L= ami(ye1)

The mixture or equilibrium Mach number Ma is related to Ma, through

21 +c¢ 2
Ma2=Malmz Ma) (1 +¢).

The dimensionless parameter Feg is the large quantity

1 )
331=71'1+5(§'1)+ 2(;{'1):
&

(6.2.9a)
(6.2.9b)

(6.2.9¢)

(6.2.9d)

(6.2.10a)

(6.2.10b)

(6.2.10¢)

(6.2.11)

(6.2.12)

(6.2.13)
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Fe= 4—Scl_M' , (6.3.14)

where Scy =py/p;Dj, is @ Schmidt number. Since Pr; and Sc; vary very weakly with

temperature [Srivastava and Rosner, (1979)], both are considered as constants given by their
upstream values. Animportant feature of the above equations (6.2.10) is their independence of

the particular details of the intermolecular interaction. The solution in s-space depends on the
microscopic features of the system only through the group Scy, absorbed into the mass ratio
parameter Fg (Pr1=2/3 for a monmoatomic gas). The real x-space shock structure does depend
on the interaction potential of the pure light gas, but only through its viscosity coefficient p;

[Eq.(6.2.9d)].

6.3 Results and comparison with experiments

The solution to Egs.(6.2.10) is given with some detail in Ref.VI, Sec.3. In this section we
only outline its principal features and compare it with recent experiments made by Herczynski,
Tarczynski and Walenta (1986).

In phase space (¢,,8) , Eqs.(6.2.10) may be written as

(n-g)8

TF9‘1%=11-1+5(§-1)+ 2(%-1) , (6.3.1a)
yMa,
(ﬂ'i)e —1 3 d_e
% e &

2
2Pry(y-1) Ma,

- el NE N ———F e+ (-n-1 . (63.1b)
¥y - 1)Ma;

We are interested in the particular solution of these equations which starts at the singular point
E1=m1=01=1, (6.3.2)
and finishes at the second singular point given by

(1 +e)Ma21(7-1 )+ 2

By=mp = 5 (6.3.33)
(1+e)(y+1)Ma,
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2(41)[Ma; (1+e)-1]Ma’ (1+6)+1]

B2= 1+ (6.3.3b)

(y1)2(1 +s)Ma?
The separation between these two fixed points gives the jump across the shock (Rankine-
Hugoniot relations). Because this particular solution starts and finishes with neither the
largest nor the smallest eigenvalues corresponding to the local behavior around the respective
singular points (see Ref.Vi,Sec.3.2), the numerical integration of Egs.(6.3.1) is unstable.
However, we exploit the large parameter Fg to find a solution to these equations with errors

O(M): at the lowest order we neglect the left-hand side of Egs.(6.3.1), obtaining an algebraic
solution (hyperbolae) in phase space:

’ { 1-M32l [(1-Ma21 )2
=1+~ {5 - * 5 - ve (&)
(y+1) Ma: :
1/2
s (e et 2 -2e @ 1)] ) (6.3.42)
6=n-yMajnn-1+e (1)) (6.3.4b)

Figure 3.Phase space outer solution [Egs.(6.3.4)] for a He-Xe mixture with e=0.5
and different values of the upstream light gas Mach number Ma;.
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Since the derivatives have been neglected in the differential equations, the above may be called
the outer solution, and it may have to be complemented with a boundary layer in the upstream

region (located in the vicinity of &=1, as we shall see presently). The solution (6.3.4) is
represented in Fig.3 for a He-Xe mixture with e=0.5 and different values of Ma;. We

observe that, for 1>Ma;>(1+e)"1/2 (or (1+€)!/2>Ma>1), this solution is uniformly valid
throughout the shock, corresponding to a fully dispersed wave. For Ma,>1, the algebraic outer
solution (6.4.4) is only valid for £<1 [we show in Ref.VI that, for £>1, Eq.(6.3.4) is closely
related to Sherman's overshooting solution], and a discontinuity appears at £&=1. This
discontinuity corresponds, in first approximation, to the light-gas shock wave as a pure gas.
Therefore, to first order in M and for Ma,;>1, the solution in phase space is given by a very thin
region (boundary layer) of thickness O(M) where the light gas behaves as in a shock wave of a
pure gas with the heavy gas frozen, and an outer or relaxation region governed by the algebraic
equations (6.3.4).

As the light gas Mach number Ma; approaches unity, [Ma;2-1|<<1, the thickness of the
boundary layer increases and the above approximation is no longer valid. Therefore, we are
faced with the task of integrating the numerically unstable system of differential equations
(6.3.1). Nevertheless, we take advantage of the weak variation of the light gas entropy at the
head of the shock to find a first integral of Eqgs.(6.3.1) valid throughout the shock with errors
of order M (Ref,V|,Sec.3.3):
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Figure 4. Numerical results for the phase space structure of the shock wave
compared to the outer solution for Ma;=0.95 and Ma;=1.15 (He-Xe, £=0.5). The

numerical results have been obtained with Egs. (6.3.5) and (6.3.1a).
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Altn-1) + e (&-1) + 1 2(% -1)] (6.3.53)
yYMa,
+ 2Pryly-1) May {-(n1)2 + ¢ (G 1)(E20+1) ¢ —2—[o + (y-Tin-1]} =0 ,

(y-1)yMa,
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where
2
) eMa,
A=yWa, (1-a2) - 1 + 1o = ¥1, (6.3.5b)

A2 being the starting eigenvalue [see Ref.Vl, Eq.(17)]. This algebraic equation, in addition to
either Eq.(6.3.1a) or (6.3.1b), gives the solution in phase space for |Ma;2-1|<<1, whose

integration is now numerically stable (See Fig.4).
Figure 5 compares our phase-space solution with He-Xe shock-tube experiments made at
the Polish Academy of Sciences by Herczynski et al.(1986). We select two experiments

corresponding to the smallest heavy-gas molar fraction (3% Xe or e=1.015): one for a weak
shock (Ma;=1.09) in which the solution given by Egs.(6.3.5) and (6.3.1a) may be applied, and

another one for a strong shock (Ma;=3.09), for which the phase space solution is given by the

outer solution (6.3.4). It must be noticed that these phase space solutions are independent of
the details of the molecular interaction. Also, the algebraic phase space solution of Fig.5b is
not affected by the assumption v <<1 used for the momentum transfer between species.

Figure 5. Phase space comparison with shock-tube experiments on He-Xe
mixtures of Herczynski et al.(1986). In Fig.5a, Ma;=1.09, e=1.015 (Ma=1.54, 3%
molar fraction of Xe), and the theoretical curve is calculated using Eqs. (6.3.5) and
(6.3.1a). Figure 5b corresponds to Ma;=3.09, £=1.015 (Ma=4.38, 3% molar
fraction of Xe), and compares the experiments with the outer solution (6.3.4). The
experimental data are taken from a preprint of the paper by Herczynski et
al.(1986), where the figures are larger than in the published paper.
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To obtain the real x-space solutions we may use either of the equations (6.2.10a-c) and
Eq.(6.2.9d). In Fig.6 we have compared our x-space results with the experiments of Herzynski

et al. (1986) for the same cases of Fig.5. As it was said before, the microscopic features
enter into the solution only through the light gas viscosity p;, for which we have used the

expression C1 of Appendix C [Riesco-Chueca et al.(1986) used experimental values for ,]. The

variables plotted in Fig.6 are the dimensionless densities

- PL"P1_ _ (-m)ma
pit-p;” (12
© PPy (19
Y (R
An important feature of these real space solutions is the double humped structure of the light
gas density profile (see Fig.6b), occuring for high values of Ma;: one hump corresponds to the

light gas internal shock, while the other one is in the relaxation layer. This double humped
structure is associated with the existence of an intermediate inflexion point in the light gas

density profile. In Ref.VI, Sec.3.1, we give an approximate criterion for the existence of this
particular extructure, finding that it may exist for Ma,; 2>2vy/(y-1).
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Figure 6. Real space comparison with shock-tube experiments on He-Xe mixtures
of Herczynski et al.(1986). Figures 6a and 6b correspond to the same cases of
figures 5a and 5b, respectively. z=x/A, where 1 is the experimental value of the
mean free path of the mixture in front of the shock (A=1.24mm in Fig.6a and A=.47
mm in Fig.6b). The theoretical curves in both figures have been obtained from Egs.
(6.2.9d), (6.2.10a), (6.2.10c) and (6.3.5). For p; we have used the first
approximation of the Sonine polynomials expansion [Eq.(C1) in the limit ny/ni<<1].
The horizontal line in Fig.6b corresponds to the density jump in a shock wave of

pure He, which coincides with the end of the first hump in the light gas density
profile.

0 10 20 2z 30 40

The agreement between theory and experiments is excellent for the case Ma;=1.09 in

both phase and real space (Figs.5a and 6a), where use has been made of Eq.(6.3.5). For
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Ma;=3.09 (Figs.5b and 6b) the agreement is not good in the inner boundary layer because we
have used either the outer solution (Fig.5b), which is not correct in the vicinity of £=1 for
Maj>1, or Eq.(6.3.5) (Fig.6b), which is not valid in the inner layer when |Ma;2-1| is not small.

A more precise procedure of integrating the real space equations (6.2.10a-c) for large values
of Ma; is given in Riesco-Chueca et al.(1986).

Finally, in Fig.7 we have plotted the x-space solution for n and & in the case in which

Sherman (1960, using the classical CE theory for binary mixtures) found an overshoot in the
heavy gas velocity profile : a He-Ar mixture with Ma;=1.8676 and e = 0.204.

-30 -20 -10 0 10 20 30

Figure 7. Real space solution for a He-Ar mixture with Ma=1.8676 and £=0.204.
Sherman's solution for this case is also plotted. z=p,~ U~(1+e)x/u~, where p~ is

the viscosity of the mixture in front of the shock (T-=300K). Use has been made of
Egs. (6.2.9d), (6.2.10c), (6.3.1a) and (6.3.5), with 11 given by EqQ.(C1) in the limit
m/ni<<l.
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Chapter 7
FOKKER-PLANCK DESCRIPTION OF THE SHOCK WAVE PROBLEM

7.1 Solution of the FP equation for the shock wave problem

In the limit ny/n;<<M, the shock wave problem may be treated without the heavy gas
hypersonic approximation of the preceding chapter by using the kinetic FP equation. In such a
formulation, the light gas is still governed by near-equilibrium hydrodynamic equations
[Eqgs.(6.3.10a-b)], while the heavy gas distribution function is governed by the FP equation
(2.5.20) [or Eq.(2.5.23) if v is not very small; in this chapter we shall assume v<<1].

To make Eq.(2.5.20) solvable, we shall restrict our analysis to the case in which the
thickness of the light gas internal shock is negligible, so that the light gas shock wave may be
considered as a discontinuity occuring at x=0. Moreover, we shall assume that ny/n, is so
small that the light gas properties remain constant behind its discontinuity. Thus, Eq.(2.5.20)
may be written as

i e Ko
TeUx g, =Vullu-Uediy + T vyl x<0,  (7..1a)
dfry* +
‘Ce+uXaLX =V [(u- Utey)fa* + % vufatl, x>0, (7.1.1b)

where ey is the unit vector in the x-direction. The light gas mean velocities and temperatures

U-, U+, T-and T* (which are constants) are related to each other through the Rankine-Hugoniot
conditions for the light gas:

Maq2(y-1) +2
v Mary a2 (7.1.23)
u- (v+1)May
T+ 2 (1) (May2 -1)(yMa2+1)
— 1+ (e 1)y 2 (7.1.2b)

where Ma, is, as in the preceding chapter, the light gas Mach number computed at upstream
conditions [Eq.(6.2.11)]. The constants g™ and tg* are given by Eq.(2.4.31) evaluated at n;-,
T-and n;*, Tt respectively.

Equations (7.1.1) have to be solved with the boundary conditions
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M (312 mylu-Urey|?
fr" = N L oo, q.
2 =Ny (2 nkT') exp{ KT as x— (7.1.3a)
n mplu-Ute,|2
frt = nat L — ’ 1.
2t =mt (=) prown BEE S (7.1.3b)
f27(x=0) = f2*(x=0), (7.1.4)

that is, as x— -e= and x— +, f3~ and f* are Maxwellian distributions with number densities,
mean velocities, and temperatures n,", U", T and n,*, U*, T+, respectively. The number

densities are related to the mean velocities through the continuity equation ny"U- = np+U+,

We shall give in the present section an almost exact solution of Egs.(7.1.1) and (7.1.3-4),
with errors of order exp{-1/M}, or smaller.”  This solution will be compared with the
results from the hypersonic expansion A in the next section. There we shall see that the
errors of the lowest order hypersonic approximation are O(M) for both U, and T,, as we
predicted in Sec.4.3. Notice that the normal solution of Sec.4.3 applies at the lowest order in
this problem; in fact, we shall see that the distribution function obtained from the FP equation
differs by a quantity O(M) from the Gaussian distribution given by the lowest order of the
hypersonic expansion A. The next order in the HEA will also be considered in Sec.7.2

The solution of Egs.(7.1.1) and (7.1.3-4) is obtained in Ref.Vll, Sec.2, where we show
that Egs.(7.1.1) can be separated, so that both f,” and f,* may be written in terms of an
eigenexpansion. As discussed in that reference, there are two important features that
distinguish this eigenfunction solution from similar one-dimensional FP solutions [for instance,
the one-dimensional problem with an absorbing boundary, studied by Burschka and Titulaer,
(1981)]. First, the eigenexpansion is complete; that is to say, the so-called diffusion or
normal solutiont is contained in the eigenexpansion. Secondly, due to the nature of the
boundary condition at x=0, the coefficients in the eigenexpansion can be obtained via
orthogonality properties.

With errors O(exp{-1/M}), the solution to Egs.(7.1.1), (7.1.3-4) can be written as
(Ref.VIl, Sec.2):

m )3/2
2rkT"

fm=ny exp{- 6(t-Vg)2 - om2}, (7.1.5.a)

" For a He-Xe mixture (M=0.03) the errors are O(10-14).
T See, e.g., Stein and Bernstein (1976) and Fish and Kruskal (1980).
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f2*= % 3 anm Gnm(®) Lm(n?) exp{- n2 -y omy} . (7.1.5b)
n=0 m=0
where
m
£= Uy (5) " (7.1.6a)
= (1.2 N12 (212
n = (uy? + U112 (5) (7.1.6b)
x M 12
= ;; (W) (7.1.6¢)
Y
Gnm(® = exp{-(&V - T} Ha( £V -yom) (7.1.7)
i
-, My 3 2 8 3. e1.n2
anm 2n nl (V+Ynm) = nz (m) exp{ (Vo‘V)’Ynm + Ynm 4 } (T)n +m
1 0 112
x{- 3[0(-1)I"V2 Hyy 1 (spm) + [ 3 som+V +vam] Halsnm)}. (7.1.8a)

S = . 7.1.8b
Ynm =-V+VV2Z + 4m + 2n, (7.1.9)
M 172

V=U(53) (7.1.10)
M 172

Vo=U (5 (7.1.11)

T+
0= 37, (7.1.12)
nm=01,2,...,

while Hp and Ly, are the Hermite and Laguerre polynomials of orders n and m, respectively.'

Using Eq.(7.1.5b) and the moments defined in Appendix A, we obtain the following
expressions for the dimensionless moments of f+ (x>0):

r‘z (-]
Ng= = = ¥ dnol-1no)" exP( -moy) (7.1.13)
Ny n=0
m ap  VoM!?
U= U5 " = (7.1.14)

Toxx

2 1
Ty = 75 n, {doo(V2+ 7)

" See, e.g., Abramowitz and Stegun (1965), Ch.22.
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oo 1 n V02
+ d N ex - - -—1, 7.1.15)
n=1[ no (-¥no)™ exp( 1Y) ( 3 Ynoz) ] m (
Toyy Tazz 1
Tor= 75 ="7+ = 'n;{dm'dm exp( -11Y)
+ 21[dno ¥no)™ exp( “1noY) - dn1 ()" exp( -y} 1} (7.1.186)
n=
Qoxxx 8 3 s 2n
Qy = = dpo(V2+ )V dnan (- N = ex
2]l UPoxx VOTZl] { oo(V< + 2) n§1[ no (-Yno) Yno3 p( ’YnoY)] }
3 9V02
5 TonE (7.1.17)
Quxyy  oxzz 0
Q, = = = \'4
LT UPyy WPz 2VgTy {doo
2dn; 1
Y, ) - =
5 ) exe wll-3. (7.1.18)
where
anm (_M2_\-312
dnm o (—2nkT+) , (7.1.19)

and use has been made of the same scripts for both dimensional and dimensionless number
density and mean velocity (notice that all the variables are dimensional right after the identity
symbol, while on the right-hand side of the above equations all the quantities are
dimensionless).

7.2 Comparison with the hypersonic theory
For the present shock wave problem, the hydrodynamic equations at the lowest and first
orders of the hypersonic expansion A can be written as (see Secs.4.2 and 6.2)T

V)

n, U20 = VO M2 , (7.2.1a)
duyy MRy
el Tl I (7.2.1b)

T The equations are, obviously, for x>0. For j21 we use the moments defined in Egs.(4.2.10),
which are dimensionless according to Egs.(4.2.3). Notice that we have used T+, n;"and tg* as
the constants T, Ny and 1y, respectively, in Egs.(4.2.3); also, W=M12V and x=M12y,



6/

(ey'eL)

(ogtg )

(qere2)

(egz2)

(P22 L)

(02'2°2)

(qe'z'2)

(eze2)

(81°2°2)

(P22

(d1r'ee)

$

I
(0’06

‘18=Tg= lg:

0° = @° wIN°A=%N

10=X

suoilipuoo Alepunog syl yiim pPaAjos aq isnul (g-1°2°Z) suolienbg

_Xp 0 Ozn(o) LI, X
=z
P @° @ 0P
0z Cu 0%
. pozn, © z“ 5 = Ixp
z o |
(n bp © @C Nl o>
LR 7
(I)r‘ (4]

‘(¢) @ pue (Z)Zu Joj suonenba ay pasu osje am ‘uonewixoidde
18PIO 1SBMO| BU} O) UOOBLI0D JBPIO 11l BY) B18|dwi0d 0) ~ZZX¥b=AAXp = Tl XXXy =l 5 5m

olgl

( II
0) (» ()

"

_rn_y ¥
NziNe Th
(M

u)__E_n 2@+
P I

mf (14

u)ngzg 03n+(L_ n )Ozn
mre Aty "
Oxpozn_ xp]Oan_(L_ %N (OI?)n
T a® G Pk ol
‘o0=Tg-= l, - T

@ T T o

‘ Th = I
0= 0"
‘ 020 _ Xp
T T
e -
o "t o>
. 0eny z- XP
n I op
AW (@) ©



woly S}nNsal ayl uaamlaq souasayip ayl ‘paoipald sy *(gL-cL°1°2)sb3a Aq uaaib sinsal 44

10BX3 JSow|e ay} Papn|oul OS|e 8ABY OMA "G L="eN yim (1"0=|N) sinixiw Jy-8H & pue (£0°0=N)
a.nixiw ax-aH ® 1o} (9'g'Z) pue (g'g'Z) sennuenb sy} ||-g sa:mnbiy ul panod aaey ap

T9 0ZA C

u
(19°2°2) 1L -9 © -1z
o 1~ W
(m
I z
8 0ncu
(89°2'2) o U2 O R ONEY )
e 1, ~ W
(n
é)uw+zu
(P9°2°2) CTow+ Te2© gy
@ © Z4
©
o\ 1 oo
(0g9°2°2) ‘ Wy . gy + g O _1g
[ oM * o e T
(0)]
tu
(99°2°2) ‘ mr% +0tn=1n
(e9°2'2) ‘ é)u N+ (g)u =
SuIBlqo auo ‘W Ul JapJo ISy 0) dn ‘seaiaym
(05°2'2) ‘o=Tp =y
(Ps'22) ‘ (‘g)(,:Tz_L
(06°2°2) ‘ (('l)e="zl
(9s'2'2) © 0N =1n
(eg'es) ‘ (g)u =

9ABY 9M 18PIO0 1SBMO| B}

1e ‘(e}°2'v)'sba pue (g1-¢1'1'2)'sb3 u) pauyap 4 o sjuswow ssajuoisuaip sy} Buisn

(ov'2°L) c0=Te=lg= 7y
° " o

ay'zL 0=Tb=lp=

@vzs) O @~ h

08



81

the lowest order of the hypersonic expansion A [Eqgs.(7.2.5)] and the FP equation [Eqs.(7.1.13-
18)] for ny U, and T, remain O(M) or less. The next order results (7.2.6) for ny, U, and T,

practically coincide with the FP results, except for Ty just after its maximum, in the He-Ar

mixture (Fig.9). The reason of the excellent agreement between the hypersonic approximation
and the exact FP results even downstream of the shock where the Mach number of the heavy
gas is not very large (for a He-Ar mixture with Ma;=1.5, the downstream value of the heavy
gas Mach number is 3.38, while for a He-Xe mixture is 6.13), is the approach to equilibrium of
the mixture as y—eo, so that the Gaussian distribution corresponding to the lowest order
hypersonic approximation becomes exact as y—es. Hence, the lowest order of the hypersonic
expansion works very well throughout the shock. The subsequent corrections are more
accurate in the head than in the tail of the shock (as it is observed in Figs.8-10).

In Fig.12, we have compared the FP distribution function (7.1.5b) [after making it
dimensionless with n, (m,/2rkT+)3/2] with the Gaussian distribution

n© EVOMI22 2
fos ——— exp{ —o— - G} (7.2.7)
o, [© 6 0
0 n :] I I 1

corresponding to the lowest order of the hypersonic expansion A. The comparison is made at
the most unfavorable conditions where, roughly, the parallel temperature T2" reaches a

maximum (see Fig.9). The magnitude of this maximum, T2"max, computed from EQ.(7.1.15), and
for different DMM, is plotted in Fig.13 as a function of Ma, . It is observed that the curves for
Ty max approach the one predicted by the lowest order hypersonic approximation (which,

obviously, does not depend on M) as M—0.



Figures 8-11. Comparison of the FP results for ng, Ty, To), Qp and Qg

[Egs.(7.1.13-17)] with the corresponding results at the lowest order [Egs.(7.2.5)]
and first order in M [Eqs.(7.2.6)] of the hypersonic expansion A. The comparison is
made for He-Ar (M=0.1) and He-Xe (M=0.0304) mixtures with Ma;=1.5. In figure

9, we have plotted Ty0 and T, 6 instead of Ty and T, so that these quantities
are equal to one at y=0, and they go to @ as y—. Notice that y=M-172x,
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Figure 12. Comparison of the n=0 section of the distribution function f» obtained
from the FP equation [Eq.(7.1.5b)] with the n=0 section of the Gaussian distribution
(7.2.7) corresponding to the lowest order of the hypersonic expansion A. The

comparison is made for He-Ar (M=0.1) and He-Xe (M=0.0304) mixtures at y=3 and
y=6, respectively, with Ma;=1.5.
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Figure 13. Maximum value of the parallel temperature (T2ymax) as a function of
the light gas Mach number for different DMM. T2ymax is computed from Eq.

(7.1.15). The lowest order hypersonic results from Eq.(7.2.1¢) (HEA), which does
not depend on M, are also included.
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Chapter 8
ONE-DIMENSIONAL FLOW THROUGH A CONVERGING NOZZLE

8.1 Introductory remarks

As the last example of this dissertation we consider the one-dimensional (or rather
quasi-one-dimensional) flow through a converging nozzle. Although this problem will be treated
in an idealized form (one-dimensional flow and without viscous effects), in contrast with the
previous examples, it models a more complex situation which has intrinsic technological
interest. In fact, as we saw in Sec.1.2, it is a relatively important problem in the field of
DMM, since many of its applications are based on the acceleration of heavy molecules through a
nozzle. Thus, the equations given below may be used to predict the terminal mean velocity and
energy of the heavy molecules after being accelerated through a converging nozzle of arbitrary
shape. However, since the main purpose of this chapter is (like that of the preceding ones) to
test the theories given in chapters 2-4, we shall use these equations to calculate a parameter
which is easily measured experimentally: the discharge coefficient.

For the light gas we shall use the Euler-level of the CE theory; that is to say, we shall
use the conservation equations (A26-28) with P;=nkT,/ and Q,=0 (ideal flow). The theory is
thus restricted to large light gas Reynolds numbers, where the non-ideal effects are confined to
a very narrow (compared to the section of the nozzle) boundary layer adjacent to the wall. On
the other hand, the theory will be valid for a wide range of concentrations of the heavy gas. To
this end, we shall not assume near-equilibrium conditions for the heavy gas, using a hypersonic
approximation (lowest order of the hypersonic expansion B; see next section for more details
on this point). The hypersonic equations are made valid for non-negligible heavy species
concentrations by including the self-collision terms considered in Sec.4.4. We shall also use the
expressions given in Sec. 4.4 for the transfer of momentum and energy between species, so
that the equations will not be limited to v<<1.

To test the theory, we have measured discharge coefficients (Cg) in CCls-He mixtures
exhausting through a conical-shaped converging nozzle. For a binary gas mixture, the
discharge coefficient is defined as the ratio between the actual mass flow, and the maximum
mass flow predicted by the one-dimensional Euler-level of the classical CE theory for binary
mixtures (that is, assuming that both species are in equilibrium). In mixtures whose
constituents have similar molecular weights (for which the classical CE theory applies), the
discharge coefficient measures the relative importance of the non-ideal effects in the problem,
tending to unity as the Reynolds number goes to infinity (provided that the pressure ratio is
above a certain value, see Sec.8.3). However, for DMM, we shall use the discharge coefficient
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as a measure of the non-equilibrium among species. To this end, the experimental values of Cd
are corrected taking into account the viscosity effects, in such a way that Cy>1 implies the

existence of distinct species temperatures and mean velocities at the throat of the nozzle. We
shall see that the corrected experimental values of Cq for CCl,-He mixtures agree reasonably

well with the theory.
The enhancement of the discharge coefficient for DMM was experimentally observed by
Bley et al.(1979) in UF4-H, mixtures. Nanbu (1979) studied the velocity slip and temperature

difference in DMM nozzle flows using the isentropic equations for the mixture plus additional
equations for U;-U, and T;-T, taken from the two-fluid thirteen moment theory of Goebel et
al.(1976). Mitra et al.(1984) used the complete two-fluid equations of Goebel et al. for quasi-
one-dimensional inviscid flows to describe the problem. These authors considered the unsteady
equations and integrated them in time until the steady state was reached. In undertaking such a
considerable numerical task, no advantage was taken of the three first integrals of the steady
state problem [see Egs.(8.2.1), (8.2.2) and (8.2.4) below].

8.2 Governing equations

Neglecting the stress tensor and heat flux of the light gas, the quasi-one-dimensional
conservation equations for the species mass, momentum and energy of the mixture may be
written as

p1U1A = constant=m;', (8.2.1)

poUgA=em;' (8.2.2)

c:’—x[(ul +eUg)my' + (nKTy + npkToy )A] - @ (KT + npkTo ) =0 , (8.2.3)
U;2 Uy2

h1+7 +s(h2+?') =constant=hjg+ ¢ hyg, (8.2.4)

where A=A(x) is the nozzle cross-sectional area, a=dA/dx, T, is the component of the heavy

gas temperature tensor parailel to the flow, and the enthalpy of species i is given by
hi- 2K g . (8.2.5)"

the subscript 0 corresponds to the stagnation conditions (zero velocity) and

-

1
T = -3-(T2||+ 2T2,).
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P20

P10
The main differences between the above Egs.(8.2.1-4) and the similar conservation equations
(6.2.1-4) used in the shock wave problem are the following: (i) due to the varying cross-
section of the flow (therefore its quasi-one-dimensionality), the mixture momentum
conservation equation cannot be integrated as Eq.(6.2.3); (ii) the partial pressure and the

enthalpy of the heavy component are not neglected in Egs.(8.2.3) and (8.2.4) because we are
not assuming n,/n; small.

£ =

(8.2.6)

The remaining equations for U, and T, may be written as (lowest order of the hypersonic

expansion B for arbitrary v and including self-collisions, see Sec.4.4)

my'e ddixz + Ad("ﬂfz") - APZ:;B (Uy-Uy), (8.2.7)
b G vomy G - BTy TR (e

%‘:’—B (U-Up)2 + % E'y . (8.2.8)
b - BBmmye TR e+ 22 By, (8.2.9)

where E'y =E'axx and E'2) =E'syy =E'27z . This hypersonic closure is not correct throughout
the nozzle because the initial velocity is zero (stagnation conditions). However, as a
consequence of the mass disparity between species, the sonic condition for the heavy gas is
reached far upstream of the nozzie throat, where both species may still be considered in
equilibrium. Therefore, the (numerical) integration of the above equations can be started after
the heavy gas sonic point assuming that the mixture is in equilibrium and isentropic. After that
point, the hypersonic closure of the heavy gas moment equations is approximately valid (it is

exact if equilibrium still prevails), and its accuracy increases as we approach the nozzle
throat.

Using the dimensionless variables

12 h Ty T2t

ni= Uj (kT() , 01 ﬂ 9 = To 0 = ?O- , (8.2.10a)

X ad
z=3 . o= A, (8.2.10b)

equations (8.2.1-4) and (8.2.7-9) can be written as



dng e MG3 nl o 1
A= = AG) [—— - 7 (1- —

az n1 Y 3 3M"

2
+ EGZ -A - 31]1 .Yl .nl [
l—2__G M&
A (t = 2“2 - m ]
de
A'EZI'I'="2G26"+ G3(1 - 'Lz‘) ,
3MII
do
mg =G,
L)

2
0y =1- W(nl +em,) +eMy(1-6) .

n0 4,06, (62-01)

In the above equations, the following functions and constants have been defined:

11/6 -173

2
2 M
al = el,yl ’
2
2 Q)
M|| 3M9|| !
AI
a-y(1-23)
N Ma
1
1
Av = 1’]2(1 - "_3' ) s
My
8 ¢ M Gl 2y Me
G =a (s + =) 3nmz 4
_ oM nr-n2
==, Fiam
2F; 0
G = = lvmere) + G- -Gmmd -F

12
120 [ 01
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(8.2.113a)

(8.2.11b)

(8.2.11¢)

(8.2.11d)

(8.2.11¢)

(8.2.12a)

(8.2.12b)

(8.2.13a)

(8.2.13b)

(8.2.14a)

(8.2.14b)

(8.2.14c¢)



90

11/6 -173
- e , 6 | (62-61)
2F; G Fa
Gy = -;[el-eJﬁ E(Tll'ﬂz)z] + 9 172 ! (8.2.14d)
120 i 0
(L,1)
16Q 12 (T1)
Fi =M—~——77—Fo , (8.2.15a)
A (1,1)
3Q 12 (TO)
22 22
AOQQ 1 (To)2"5 "(To)
Fo=e—o Fo . (8.2.15b)
A (L1)
25[Q 12 (TO)]2
(LY
Q
] m') d 12 (TO)
0 = A KT , (8.2.16)
Ag = throat cross-sectional area,
_ad
o= A
'Yz('Yl -1) 8.9.17
0= Y (v, 1) (8.2.17)

The self-collision term [which for one-dimensional problems is given by Eq.(4.4.1b)] has been
simplified by using the repulsive part of a Lennard-Jones potential of molecular interaction
[Riesco-Chueca et al.(1986)). Also, we have taken vB=vpj,=1 since, as shown by Riesco-

Chueca et al.(1986), these parameters are approximately equal to one even for v=O(1). For
the coefficient v, we shall use the expression ~

v = [1 +0.718 |nynp|18]14815 (8.2.18)
valid for T, >>1.

8.3. Numerical solution and comparison with experiments
Equations (8.2.11) have two singular points given by A=0: the light gas sonic point
Ma,=1, and M, =1, which is the sonic point of the heavy gas based on the parallel temperature.

As pointed out before, we shall start the numerical integration of Eqs.(8.2.11) after the
singular point M;=1 (which, for M<<1 and sufficiently high pressure ratio, see below, is

reached far before the nozzle throat), assuming equilibrium between species. That is, we shall
start the numerical integration at a point z;, located just after the condition M,=1 is satisfied,

with mj=np=m, 6;= 6= 6,=8,=6, and isentropic conditions for the mixture. From the original

" Riesco-Chueca et al. (1986), Eq.(6).
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Eqgs.(8.2.1-4) with U,=U,, T;=Ty=T,, and making use of the isentropic relation for the mixture,
one gets (e.g. Liepmann and Roshko, 1956, Ch.5)

A & 1 [i (1+ﬂMaz)](Y“)’2“““,

Ao = TeMe Ma bt 2 (8.3.1)
1 _
o=(1+ 5-Ma2)™", (8.3.2)
1+Me Ma2
T\ = 1+E Y'1 i) (8-3-3)
1 + “—Ma2

2

where Ma and y are the Mach number and specific heat ratio of the mixture. Cq is de discharge
coefficient, defined as

L1+
Cd - mr:](.i: , (8.3.4)

m'is being the maximum isentropic mass flow, attained when the mixture is sonic at the throat:

.. m M 1+ n,2 2
m'ig = AgUp" = Ag —( M)l (_)(‘#l)l (1)

i M) G : (8.3.5)

where p,y and T, are the stagnation pressure and temperature of the mixture. In terms of the
light gas Knudsen number

(K702 [(1+9(1+M)]2 | 2 iy
iy = 0 (& , (8.3.6)
N2y, (To)

we have
Cq = FgKn'; .

For a given gas mixture and nozzle geometry, there are three parameters in the problem:
the density ratio ¢ (fixed by the gas composition at the stagnation chamber), the Knudsen
number Kn'; (fixed by the stagnation conditions and ¢), and the mass flow parameter Fg, which

can be related to the light gas Reynolds number through
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22)
8Q2"; (To)
Re; = —pd F (8.3.7)
~ w(To)h 59(1’21)(1'0) 0- 3.
1

If we fix the gas composition and the stagnation pressure (e and Kn'}), the mass flow through the
nozzle (Fo) becomes fixed in such a way that the pressure pg at the exit of the nozzle is met.

Thus, as it is well known from the theory of nozzle flows for a pure gas (or a mixture with
M-1), if we increase the pressure ratio p,

Po
= — , 3.
P= oo (8.3.8)
from 1 up to a critical value np' (which for an ideal mixture is (Y% )1/(7-1) , corresponding to

the sonic conditions of the mixture at the throat), the mass flow increases from zero to its
maximum value m'. For an ideal binary gas mixture, the maximum value of the mass flow
m' is given by Eq.(8.3.5), so that Cq is, at most, unity (when npznp*). However, for DMM,
as a consequence of the velocity slip and temperature difference among species, Cq may be
larger than one.

In the case of a DMM, the maximum value of the mass flow is reached when the light gas
sonic condition Ma;=1 is satisfied at some point of the nozzle. From the numerical results, we
conclude that this sonic point is not attained at the throat of the nozzle, but siightly afterwards.
Thus, when M<<1, we have a singular point far before the nozzle throat, and another one just
after it. As M increases these two singular points approach each other until they meet at the
throat when M=1, corresponding to sonic conditions of the mixture.

An upper limit for Cq in DMM is reached in the so-called frozen limit, in which the heavy

gas is completely decoupled from its light partner. In this limit, the maximum mass flow is

1+e
1+Me °

For the experiments we have used a conical-shaped nozzle, whose dimensions are

attained when the light gas is sonic at the throat, so that Cq =

depicted in Fig.14a (the nozzle length is much larger than the nozzle throat diameter), and a
CCls-He mixture (M=0.026). A sketch of the experimental system is given in Fig.14b. The
nozzle is located inside a vacuum chamber at a pressure pg. Helium from a tank flows through
the nozzle at a constant flow rate (constant Re,) fixed by a critical orifice O, located before the
nozzle. The flow rate V' (cm3/s) is measured by a soap bubble flowmeter at the exit of the
vacuum pump. After the orifice Oy, the light gas (He) passes through a cell containing CCls. To
determine the concentration of CCl4, we place a second critical orifice O, after the cell, and

measure the pressure just before this orifice, both when only the light gas (He) is passing
through the system (pm), and when the heavy vapor flows together with the light gas
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(Pm+Apm). Since the mass flow of the light gas remains constant (because of the orifice 0,). ¢
is related to INy=Apm/pm through

(1 +Hm)2-1

€= 1'M(1+Hm)2 = nm(nm+2) . (8.3.8)

Figure 14. Nozzle dimensions and sketch of the experimental system.

Fig.14a

He
X ( Flowmeter )

0, . dy=.159mm

d, =.403mm
N 2~
| 7N 5 (Y > Nozzle R Pump
X X 7z e e
CClg

Fig. 14b

The value of £ is maintained approximately constant by immersing the cell into an isothermal
bath.” After the orifice O,, the mixture passes through the nozzle, and then exhausts through

the vacuum pump. During the experiment we change the value of the pressure ratio Mp

" Since the flow rate of He is constant, e only depends on the cell temperature.
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[Eq.(8.3.8)] regulating the exhausting valve of the pump. Typical results of Cd versus Mp are
shown in Fig.15 for Re=33 (F¢=24) and = between 4.667 and 4.387 (x, between 0.108 and
0.102). Even for such a low value of Re, (for which the viscous effects are important, as one
can see in the figure), we have measured discharge coefficients larger than one.

Figure 15 also contains the corresponding results from the numerical integration of

Eqs.(8.2.11) (we have use the subroutine DGEAR of the IMSL library). They are obtained with
To = 292K and using a Lennard-Jones potential with parameters ¢, and o, taken from

. 1
Hirshfelder et al. (1954), ¢, and o, from Svehla (1962), and 612=5(01+07), 512=‘\j£162. The
specific heat ratios used are: y, =5/3, y,= 15/13 and y = 1.49. t To model the nozzle shape

we have used the function

A_co 22
Ap ~ 7 ({arctan[n(zg+1)]}? (8.3.9)
where
, w2 {arctan[n(zg+1)]}?
T [+n(ze+ )22 T ") , (8.3.10)

and n is a very large number (we have taken n=10000; the results are independent of n for
n>1000, approximately). The space variable z varies from - to z=24=-1, where A/Aj has a

minimum equal to one [the value of z; is computed numerically from Eq.(8.3.10)]. The constant
d [Eq.(8.2.10b)] used is d=dp/2tane, where d, and ¢ are, respectively, the diameter and angle
of the nozzle (dp=1.57mm, 6=30°).

Finally, Fig.15 also shows the discharge coefficients of pure He measured at the same
Reynolds number. Using these pure gas values, we have computed the frictionless discharge
coefficient of the mixture, dividing the experimental values of Cq by the ratio among the
corresponding pure gas discharge coefficient and that predicted from the ideal theory of pure
gases (see, e.g., Liepmann and Roshko, 1956). Although this procedure of accounting for the
viscosity effects is not very rigorous, the corrected values of Cq agree reasonably well with
the results from the theory (the differences are within the experimental errors, which are
about 7%). For a more rigorous treatment one has to inciude the viscous effects near the wall
into the theory, especially for low Reynolds numbers where the enhancement of the discharge
coefficient due to the nonequilibrium between species is of the same order or smaller than the
decrement due to the viscous effects.

T That is to say, we have assumed that all the internal degrees of freedom of the heavy
molecules are in equilibrium. Using the opposite limit (i.e. y,=y= 5/3), we found that the

results only differ in about 2%.
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Figure 15. Experimental Cd vs. MNp for a CCls-He mixture with Re;=33 and ¢
between 4.667 and 4.387. Experimental values of Cq for pure He at the same
Reynolds number are also shown. The theoretical curve [Eqs.(8.2.11)] is computed
ate=4.58. The corrected values of Cq are obtained by dividing them by the ratio
between the experimental Cd of pure He at the same pressure ratio and the Cd
predicted by the isentropic theory for pure gases (also shown in the figure).
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Chapter 9
CONCLUSIONS

Starting from the kinetic BEs we have developed a number of general theoretical tools for
binary mixtures of gases with very different molecular weights, covering a broader parameter
range than that of the previous existing theories (except for the BEs themselves). These
previous theories are, basically, the standard CE theory for binary mixtures (Ref.l, Ch.8), and
a number of two-fluid theories most of which are reviewed in Section 2.2. As discussed in
Chapter 2, the first of them, the standard CE theory, is very restricted in its Knudsen number
range of applicability: Knj<<M, which excludes its use for many of the physically and
industrially relevant problems involving DMM. A two-fluid theory extends this range to
Kni<<1, with the limitation that the heavy gas equations are only valid for ny/n;>> Kny [if
M>0(Kn;)]. However, among the previous two-fluid theories, only one is, to our knowledge,
rigorously derived from the BEs (Goldman and Sirovich, 1967), and it is made for Maxwell
molecules.

From a systematic mass ratio expansion of the cross-collision integrals in the Boltzmann
equations, and after a further expansion of the light gas BE we have developed, first, near-
equilibrium hydrodynamic equations for the light gas valid for Kny<<1, independently of whether
the heavy gas is also in near-equilibrium conditions. The resulting distribution function for the
light gas was used to obtain an explicit expression for the FP collision operator in terms of the
hydrodynamic quantities and their gradients. For ny/n;>> Kny, near-equilibrium hydrodynamic
equations for the heavy gas were also possible, completing a two-fluid hydrodynamic picture of
the mixture. This two-fluid description was also generalized to arbitrary mass ratios.

When ny/n;<<M-Kny, the kinetic equation of the heavy gas was substantially reduced to an
equation of the FP type. In contrast to previous derivations of the FP equation from the BE of
the heavy gas, no assumption was made on the light gas distribution function, except for
Knj<<1, retaining terms up to the first order in Kny. This FP equation was also the basis of a
hydrodynamic description of the heavy gas in its hypersonic limit.

Cosidered together, the hydrodynamic and simplified kinetic equations of Chapters 2, 3
and 4 cover almost completely the range Knj<<1 for any heavy gas concentration, except for
the particular limit no/ni~ M (however, this limit is also covered when the heavy gas is
hypersonic, which occurs very frequently in practice). Therefore, the theories given in those
chapters constitute a general framework for a large class of industrially and physically
relevant problems.
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To validate these theories, we have applied them to some particular examples. Thus, the
two-fluid theory, whose transport coefficients have been calculated at the first order of a
Sonine polynomials expansion, has successfully passed a test against experimental data on
absorption and dispersion of sound in He-Xe (M=0.0304) mixtures (using a Lennard-Jones
potential of molecular interaction). This acoustic example has also corroborated our
predictions on the Knudsen number range of validity of both the two-fluid and the standard CE
theories. As another test, the combination of a hypersonic approximation for the heavy gas and
a near-equilibrium hydrodynamic closure for the light gas has been applied to the shock wave
problem and to the flow through a converging nozzle. The results have been compared with
experimental data in both cases, showing a good agreement. A simplified version of the shock
wave problem has also been solved using the kinetic FP equation, corroborating the predictions
on the errors of the lowest order of the hypersonic approximation by direct comparison of the
velocity distribution function.

More complicated problems such as those arising in actual applications of DMM can
obviously be treated with the equations given in Chapters 2-4. As is patent from Chapter 8,
the difficulties encountered in dealing with these real problems are more considerable than in
the simple problems studied in Chapters 5-7, which were used as tests of the theory.
Nevertheless, success has been reached in some technologically relevant problems like, for
instance, the determination of the impact energies of heavy molecules seeded in supersonic jets
impinging on surfaces at large background pressures, studied by Fernandez de la Mora et al.
(1986). These authors considered the far field flow near the axis in the isentropic region
where the heavy molecules are accelerated by the light gas, and the centerline deceleration of

the heavy molecules between the detached shock and the solid surface, predicting impact
energies which compared very favorably with experimental measurements made with W(CO)g

molecules seeded in Hj jets.

In conclusion, this thesis provides a fairly comprehensive and rigorous set of theoretical
tools capable of describing the evolution of gas mixtures with disparate masses. Their succes
in all the cases where they have been tested against experiments indicate that they are a highly
reliable way to predict real flow fields involving mixtures with widely different molecular
weights.
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Appendix A
MOMENT EQUATIONS

Let us define the moments of the the velocity distribution function f; as

pi=minj= mj[1,f], (A1)

pi Uj= mjlu.fi, (A2)

Pi= milejci.fil, (A3)

m‘

Q= 7 leicici.fil (Ad)
and so on, where the inner product [ , ] is defined as

[f.g] = J d3u f(u) g(u) , (A5)
and

ci=u-U. (AB)

Multiplying the Boltzmann equation for the component i,
Df; = Fr u-vii = Jii(fi f; ) + Jij(fi ,fJ') , i, (A7)

by the functions 1, u, uu, ..., and integrating over the velocity space, we get the following
equations for the moments

opj
=t + Vi) =0, (A8)
d(pj Uj)
—at tV kUil + P) =M, (A9)
d(piUi Ui + P T
3t + V- (piUi Ui U +2Q5 + UiRy) + (P;-v) Uj + {(P-V) Uj)
+ Uiv- P, +{U;Vv- B )T =2(E; + E}), (A10)
and so forth, where
M;=milu, Ji(fi f5) 1 = mileg, Jij(fi ) 1. i, (A11)
Ei= ?[uu, Jilti fi) 1, =i, (A12)
_m mj
Ei= S luu difif) 1= Fleici Jitfi ], (A13)

and the superscript T denotes the transposed tensor. Notice that, because the conservation of
species and momentum,

[, Jdiilfi 4 1 =11, Jjj(fi .fj) 1= 0, i, (A14)

(Ui, Jii(fi .f) 1 = 0, (A15)
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M, =-My= M. (A16)
Also,
M;U; + UiM;
E;=E;+ - (A17)
where
m; .
Ei= 5 [cjcp Jijlfi fj) ) i . (A18)

Using Egs.(A8),(A9) and (A17), Eq.(A10) can be rearranged as

P, T
3t +V(2Q+ UiPy) + (Pp9) Ui+ {(P-V) Ui} = 2(Ej+ E) . (A19)

The trace of the above equation yields the usual energy equation,

3, .9 3 i
2kniat + 2kniUi-VTi+V-Qi+F’j.VUi=Ei, (A20)
where
r- A A21
1= nik ' ( )
is the temperature tensor,
T
Ti= 3 (A22)
Qj=Qyl (A23)
Ei= Ejl, (A24)
and, by energy conservation,
Ei:l =0. (A25)

For easy reference, we rewrite together the conservation equations for species i:

an;

3 +Vu) =0 (A26)
aU;

mini 3+ min; Up-VU; +V-P=M; (A27)

3 aT; 3 .

2kni§t— + 2kniUi-VTi+V-Qi+P‘|.VUi=Ei, (A28)

M, =-My=M, (A29)
E;=-Ey- M(U; - Uy). (A30)
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Appendix B
VARIATIONAL PRINCIPLE FOR THE DETERMINATION OF THE TRANSPORT
COEFFICIENTS

We give in this appendix the general ideas of the variational principle used for the
determination of the transport coefficients of the light gas in the limit M<<1 (Sec.2.4 and
Appendix C), and those of the two-fluid theory of Chapter 3 (Appendix D). The variational
principle is due to Bernstein (1969b).

The first order CE correction to the distribution function (o7 in Sec.2.4 and the vector
function ¢ in Sec.3.2) may be written as the sum of a number of functions ¢ that satisfy linear
integral equations of the form

T(%i) = i (B1)
[i.e. Egs.(2.4.8-11) and (3.1.11); notice that " is a 2x2 matrix operator in Sec.3.1]. Based in
the fact that I is a symmetric and non-positive operator, the solution of the above integral
equation maximalizes the functional

Ay} = buT(x) - 2wi] .
The maximum (positive) value of this functional is

Amax= - [6iwil = - [6;,T(wi)],
and it is related to, at least, one of the transport coefficients appearing in the near-equilibrium
hydrodynamic equations. For instance, the contribution of ¢; to the pressure tensor of the light
gas in Sec.2.4 can be written as

Py - mkTy/=[mjcic) . fio01] = KT1[B1&181:. WgIVeU] = - 241 V°Uy,

so that

2 e wal s - (o
kT, =- lglgl"WB] =- [¢B-'WB]-

The right-hand side of the above expression is the maximum of the functional

AB{xg} =xp: Txg) - 2¥p] .
where T(xp) = Ki(xg) + N(fi0xp)-

One of the most remarkable properties of this variational principle is the folllowing: if
the difference between the trial function y and the exact solution ¢; of Eq.(B1) is of order e<<1,
the resulting value of the functional A{y} differs from the exact maximum value a quantity of
order €2; for if x=oj+c0,

A{x} = Amax + €%[9.T(9)).
Therefore, the transport coefficient evaluated with the trial function y differs from its exact
value a quantity of order €2
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Appendix C
TRANSPORT COEFFICIENTS FOR THE LIGHT GAS IN THE LIMIT M<<1

The transport coefficients for the light gas entering into Egs. (2.4.16-18) are given in
this appendix. They are evaluated from Egs.(2.4.25-28) by means of the variational principle
sketched in Appendix B, and using expansions in Sonine polynomials as trial functions (Ref.ll,
Appendix D).

The expressions of these transport coefficients at the first and second orders in these
expansions are the following:

2,2 —

75n1k2T,
Al = LD (C2)
64mn Q| [Eaﬁb]
5an T
[kril1 = . (C3)
2nT[E aj+b]
16 L1) 1
poli = 3 Q) = (4
n _
5n;kT; b+ 50
[l—l112 = (2,2) n _ ny _ _ nl (CS)
16mQ2 ), [(E aj+1)( b+ n c1)-( a+ ™ 51)2]
n ny
75n1k2T1 ng [C(Eb1+d)-a(n_201+e)]2
M2 - ——— 5 {ave - ——— - (C6)
64mny€2y; A (Eaﬂb)(?lw)'(n—zbﬁd)z
50T ny m
krile = oy {al Tcive)- o [ obisd)
ny ny
. N I e
+[a( —c +e)+ c2( —aj+b)- 2ac( —b;+d)] } (C7)
" " P Cae) Cloyre)-(Boya)?
m 1] m
16 (LD a2
[*p]2 = ?le 1- n ] ) (C8)
Eaﬁ-b

where
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Al ra| Tl
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§ L Loe -~
11 1 1
Q.NVG a.sd ﬁdd
4 ral Tl
o @%@, . Pz,
I ) . 11 o) L 1 o) LT
(€'7) (T2 (T2
4 4 71
a.ed + a_sd / - vy _ . QSG .2 _p
— =9 - =E
A o) Al ) 6¥ A\ o) ‘
&2 (€'2) (€D
A A\ 4
‘ :.:G c . :,cdm ) :.:Glmluﬁo
3 Y L
n 11 14
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(Notice that the expressions fo ¢; and a), must be corrected in the Appendix D of Ref.ll.) The

Q-integrals are defined as [see, i.e., Hirshfelder et al.(1954), Eq.(8.2-3)]

KT
2T™nm

()
Qom M=

o0 . i
| dx exp{-x4x2+3 Q)
0

Onim(y) =2n }tde (1-cosie) o,m(y.8) sine,
0

2 _ 2xKT
y_Mrm'

m
where nm is either 11, 12 or 22, and M; = m1/2, M2 = my/2, M3 =

my+my

mj.

The above expressions for the transport coefficients are valid for arbitrary interaction
potentials with spherical symmetry. All the Q-integrals are computed at the light gas
temperature T). Tabulated values of the Q-integrals for different interaction potentials can be

found in, for instance, Hirshfelder et al. (1954), Mason (1957), and Ferziger and Kaper

(1977).
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Appendix D
TRANSPORT COEFFICIENTS FOR THE TWO-FLUID THEORY OF CHAPTER 3

When the first approximation of Sonine polynomials expansions are used as the trial

functions in Eqs. (3.2.7), the resulting transport coefficients (3.2.6) may be written as (Ref.lli,
Sec.IV):

-1.2,2 M X1X2B1
b= Qy [x) (5 + A + ik

-1.2,2 M XiX2B1
k21 =Q, [X2(§+ M_1A1)+ ‘ﬁ

-1 2
izh =k2aath = Q; x1x2 (5 -A))

75X1k2T P1P6
b= gy (P20 &)
75%,K2T P,P;
A2l = Ps- )
B2l = G g, (P4 p5)
75xk2T PiP7
M2l = Dol =~ G s (P3+ pS) ,
5Mox1x9Pg
[kT].]l =- 2XOP5 '
2
5M1X2 Py
keali = - 5
16M2A
[otl; = 16 K X{xoM{MoA |
where
2 2
O N PR AL S
Q=5 <3 *wt gl M O X, BBMMY
kT __ KT __
ul= (2,2) ’ P»2= (2’2) )
8Q'}; 82 5
2.2)
QY
KT
Al=—a5y B1 = Ly
5Q 12 8MIM>Q2 12

2
Qo = BMpxoP; + (X1E + M2xaC)P, + M; MaxoGPs
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P1=M M} B(25 +D-M; G) .

P2_M1/2x0[—(M B2-AD) - A'l: :

X
P = (MiM)*? = —° (AG - BY)
P4 = M12xq [Iv|2 (M2 B2-AC) - AE]

E F
Ps = M12 [(Xl—z +Mz<:)(’%l +MiD) - (MiM2)*G2]
2M2

2
Pg= M1/2— B[ + MiMy(D - M{G)] ,

Xp _ExiM;
=M=
P7=M % B[ .

2
+ MiMy(C - M,G)]

(11 5A (1,2)
A=Q ", B=?'le ,

(1 2) 2 (1, 3) 2,2)

o

2
C=2A (BM: +5M) - SMoQ]

2 (12) 2 (13) (22)

2

o

22) 1 @2
n o+ F=5 Q4% .

E- 2

Q

14 r\>|-

1,2 13 22
5 59(12) (1,3) 2.2)

G= Q, -2Q7 ,

“I

xg = X1M| + xgM3 ,
and M; , i=1,2, is defined in Eq.(2.3.13). The Q-integrals are defined in Appendix C, Eq.(C10),
and are evaluated at the mixture temperature T. [In fact, they can be computed at any of the
temperatures Ty, T2 or T, since the difference in the hydrodynamic quantities would be
O(Kn1ay), and therefore negligible in a first order theory in both Kn; and ;]

The above transport coefficients are valid for arbitrary interaction potentials with
spherical symmetry. In the case of Maxwell molecules (molecules repelling each other with a

fifth-power potential law), these transport coefficients coincide with those calculated by
Goldman and Sirovich (1967) (notice that for such molecular model, kti=kt3=0). Tabulated

values of the Q-integrals for different molecular models can be found in the references cited in
Appendix C.
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[n the limits M<<1 (M;-M, My—1) and ny/ny>>M, the transport coefficients of the light
gas and Ap given above coincide with the values given in Appendix C at the first order of the

Sonine polynomials expansion. The transport coefficients for the heavy gas coincide with those

of a pure gas in that limit. On the other hand, [w11]1+[r22]l1+2[112]1, [A11)1+[A22)1+ [ 12]1s

min n{my+mo)
[krili+kr2]1, 75 (Aol and 3k2-r_xlx2' [oti, are equalto [u];, [Aly, [ktl1, [D12]h, and [Dy2);

of Ref.l, Ch.9, respectively.



