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To investigate the nature of nonlinear waves appearing in an axially rotating pipe, we have
performed a series of time-depending, three-dimensional numerical simulations of the
incompressible Navier–Stokes equations in a rotating long pipe. As a difference with some previous
works on the subject, which look for several given types of traveling wave solutions in pipes of
infinite length, we leave the flow to evolve freely after a pressure difference is set between two
points, one on each end of the finite rotating pipe. We use a recently developed numerical method
that allows us to simulate numerically the three-dimensional flow produced in a pipe when Dirichlet
boundary condition for the pressure is given on part of the inlet and outlet sections of the pipe. This
technique is further improved here so that the pressure is only fixed at just one point on each one
of the open boundaries of the pipe. Thus, no restrictions on the flow properties are given in these
sections, allowing the free entrance and exit of possible waves through the pipe. We find that packets
of traveling spiral waves are formed for values of the Reynolds numbers based on both the axial and
the azimuthal velocities just above the critical ones given by the linear stability theory. These
traveling waves have the same characteristics predicted by the linear stability theory and produce no
significant mean flux defect. As the values of these parameters are increased above their critical
values, the spiral waves become more involved and their amplitude increase, giving rise to a
significant axial mean flow defect. For sufficiently high Reynolds numbers, we detect the apparition
of spiral waves traveling also upstream, in agreement with the stability analysis for absolute
instabilities. At the end, these traveling waves appearing above the onset for absolute instabilities
transform into a standing spiral wave superimposed to the rotating Hagen–Poiseuille flow. ©2005
American Institute of Physics. [DOI: 10.1063/1.1828124]

I. INTRODUCTION

The linear stability of rotating Hagen–Poiseuille flow
(RHPF) is a well studied problem. Contrary to nonrotating
Hagen–Poiseuille flow, which is well known to be linearly
stable for all Reynolds number, it was first shown by Pedley1

that RHPF becomes linearly unstable for finite Reynolds
numbers if the rotation of the pipe about its axis is high
enough. The stability properties of this flow in terms of the
axial flow Reynolds number and the Reynolds number based
on the angular velocity of rotation(ReQ and Reu, two param-
eters that will be defined below) were fully characterized by
Mackrodt2 and by Cotton and Salwen,3 among others. More
recently, the onset of absolute instabilities in RHPF has been
also characterized.4 These stability analyses predict the for-
mation of traveling nonaxisymmetric(spiral) waves, whose
nonlinear structure and stability have been further
considered.5,6

The objective of this work is to perform a series of nu-
merical simulations(numerical experiments) in a long, but of
course finite, rotating pipe which may shed some new light
on the formation, evolution, and structure of these nonlinear
traveling waves that are formed after instability of RHPF. In
particular, we are curious about the nature of the flow after
the onset of absolute instability. It has been postulated that

absolute instability may be the precursor of vortex break-
down in some swirling jets.7,8 This connection has not been
assessed numerically due, mainly, to the difficulties in the
numerical simulation of general three-dimensional(3D) and
incompressible open jets and wakes. However, these difficul-
ties can be circumvented in a three-dimensional flow con-
fined in a pipe, even if one considers open inlet and outlet
boundaries that do not constrain the movement of traveling
waves through them. To that end we use here a recently
developed numerical technique for incompressible flows9 in
which a pressure difference between the inlet and outlet sec-
tions of the pipe is set at the start and then the flow is left to
evolve freely in time. This configuration is easily realized in
the laboratory(for instance, a pipe discharging from a large
container to the atmosphere). Numerically, the pressure is
specified directly only at closed curves on the inflow and
outflow surfaces, so that the desired pressure difference is
enforced in the pipe without constraining the flow on the
open boundaries. We have developed further that technique
here (see the Appendix for a summary), so that one only
needs to fix the pressure at just one point on each open
boundary. In these open boundaries, the velocity field and the
pressure are left to evolve freely in time according to the
Navier–Stokes equation and the incompressibility constraint,
except for the pressure at the two points where the pressure
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is given, so that one may account for the inflow and outflow
of any traveling wave. With this tool, we have performed a
series of numerical experiments for several representative
cases of ReQ and Reu, which have been selected according to
the known results on the linear stability of RHPF.

II. FORMULATION OF THE PROBLEM

We consider here the incompressible flow in a pipe of
radius R and lengthl 3R driven by a pressure difference
Dpc. The pipe rotates at an angular velocityV around its axis
of symmetry. The nondimensional Navier–Stokes equations
governing the flow can be written as

= ·v = 0, s1d

]v

]t
+ v · = v = − = p +

1

Re
¹2v, s2d

wherev and p are the dimensionless velocity and pressure,
respectively. The pressure also includes, as usual, any vol-
ume force that can be written in gradient form(such as grav-
ity). We use cylindrical-polar coordinatessr ,u ,xd with the
coordinatex along the axis of the pipe, and the velocity
componentsv;su,v ,wd. To nondimensionalize the geom-
etry and the flow magnitudes we use the pipe radiusR as the
length scale and a characteristic velocity based on the pres-
sure differenceVc=ÎDpc/r, wherer is the fluid density. Ac-
cordingly, the Reynolds number in(2) is

Re =
VcR

n
=ÎDpc

r

R

n
, s3d

with n being the kinematic viscosity.
We want to solve Eqs.(1) and (2) subjected to the

boundary conditions that the velocity on the pipe wall is
given by

u = w = 0, v =
VR

Vc
for r = 1, 0ø x ø l , s4d

and the pressurep is given at two points, one on the inflow
surface and the other one at the outflow surface,

p = 1 atx = 0, r = 0 s5ad

and

p = 0 atx = l, r = 0, s5bd

so that a dimensional pressure differenceDpc is set between
the pipe ends. The inlet and outlet pressure distributions,
pisr ,u ,td and posr ,u ,td, are obtained as part of the solution
using a slightly modified version of the numerical method
developed in Ref. 9, which is summarized in the Appendix.

FIG. 1. Values of ReQ and Reu for the different numerical simulations con-
sidered (crosses) on a stability diagram. The lines represent the neutral
curves for convective and absolute instabilities for different values of the
azimuthal wave numbern. The neutral curve for convective instabilitysn
=−1d was first obtained by Mackrodt(Ref. 2). All the curves are taken from
Ref. 4.

FIG. 2. (a) Reqstd for ReQ=75 and Reu=100. (b) Time evolution of the azimuthal velocityv at r =1/2, u=0, andx=100.
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As the initial condition we suppose the fluid is at rest and
there is a linear distribution ofp betweenx=0 andx=1.

To relate the Reynolds number(3) to the usual pipe Rey-
nolds number based on the mean axial flow rate, we compute
the instantaneous flow rateqstd at the outflow section,

Reqstd = Re
1

p
E

0

2p E
0

1

srwdx=ldu dr. s6d

For a Hagen–Poiseuille flow, limt→`Req→ReQ, which is re-
lated to Re through

Re =Î4l ReQ. s7d

For a long rotating pipe, we shall see that Req will tend to
ReQ, except if a strong nonlinear wave is developed inside
the flow that produces a significant axial mean flow defect.

The flow is characterized by, in addition to the nondi-
mensional pipe lengthl, two Reynolds numbers ReQ (or Re)
and a Reynolds number based on the angular rotation of the
pipe

Reu ;
VR2

n
. s8d

Alternatively, one might use a swirl parameterL;Reu /ReQ

instead of Reu. In terms of these nondimensional parameters,
the boundary condition(4) for v may be written as

v = Reu/Re atr = 1. s9d

FIG. 3. Contour lines of the radial ve-
locity u on the rx plane foru=0 and
for two different instants of time(as
indicated) in the case ReQ=75 and
Reu=100. Continuous(dashed) lines
correspond to positive(negative) val-
ues ofu. Five equidistant contour lines
of u in each one of the intervals
f−4.46310−11,0g and f0,1.67
310−11g are plotted in(a), and in the
intervals f−4.79310−13,0g and
f0,4.39310−13g in (b).

FIG. 4. (a) Time evolution of the azi-
muthal velocityv at r =1/2, u=0, and
x=100 for ReQ=100 and Reu=100.(b)
Reqstd for the same case.
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III. RESULTS

In this section we present the results from several nu-
merical simulations for different values of ReQ and Reu. As
shown in Fig. 1, these values have been selected to cover the
main transitions predicted by the linear stability analysis of
RHPF. In all the cases we have used a pipe of lengthl
=200. All the numerical simulations started with the fluid at
rest and the pipe rotating at the angular velocity correspond-
ing to Reu. As time goes on, the flow acquires the corre-
sponding solid body rotation rather quickly, and the nominal
axial flow rate ReQ is reached typically after several hundred
of nondimensional time units(see below). The different nu-
merical parameters used in the simulations are given in the
Appendix. We have chosen to start the simulations with the
fluid at rest because we believe that it is the most relevant
initial condition from a physical point of view and because it
is simpler to implement numerically. Any other initial condi-
tion for the velocity field would require the computation of a
nontrivial initial pressure distribution different from the axi-
ally linear one[an initial pressure distribution is needed to
start the computations owing to the alternate direction im-
plicit (ADI ) technique we use to solve the Poisson equation
for the pressure; see the Appendix].

A. ReQ=75, Reu=100

As seen in Fig. 1, this case corresponds to a linearly
stable flow. Figure 2 shows that the nominal Reynolds num-
ber ReQ=75 is reached att,250, while the solid body rota-
tion at the center of the pipe is reached more quickly, at
about half of that time. The numerical simulations show that,
in effect, the asymptotic Hagen–Poiseuille flow with super-
imposed solid body rotation is stable. Actually, the simula-

tions show that very small perturbations, with amplitude in
terms of the radial velocityuuu,10−11, are generated near the
inlet due to numerical noise, but these infinitesimal waves
decay as they propagate along the pipe, exiting it with an
amplitude of order 10−13 (see Fig. 3).

B. ReQ=100, Reu=100

This case, which corresponds to Re.282.64, lies just
above the critical conditions for convective instability(see
Fig. 1). The time evolution of Req and the azimuthal velocity
v at the center of the pipe are plotted in Fig. 4. It is observed
that the nominal flow rate ReQ=100 is reached att,250,
while the solid body rotation is reached att,125. This ini-
tial transient behavior remains approximately valid for all the
cases considered. The radial velocityu at r =1/2 andseveral
axial locations foru=0 andu=p are plotted in Fig. 5. As in
the above case, we have selected the radial velocity to detect
the perturbations becauseu=0 for the unperturbed flow. This
figure shows that a nonaxisymmetric perturbation is formed
near the pipe inlet at about the time Req reaches its
asymptotic value. The amplitude of this wave grows more

FIG. 5. Time evolution of the radial
velocity u at r =1/2, u=0 (solid lines)
andu=p (dashed lines), and five axial
location (two diameters after the pipe
inlet, 1 /4 of the pipe length, half the
pipe length, 3/4 of the pipe length,
and 2 diameters before the exit) for
ReQ=100 and Reu=100.

FIG. 6. Detail of the time evolution of the radial velocity at the last axial
location plotted in Fig. 5.
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than two orders of magnitude as it travels along the pipe,
leaving the flow unperturbed behind(see also Figs. 7 and 8
below). This is what is expected in a convective instability.
From this figure, the group velocity of this traveling wave
packet iscg.0.255. A detailed view of this wave packet in
the last axial location plotted in Fig. 5 is shown in Fig. 6,
from where one may compute the periodT and the frequency
of the wavesv=2p /T.0.245.

The wavelength of these waves may be computed from
the contour lines on therx plane of the radial velocity, shown
in Fig. 7 at several instants of time foru=0. One observes
that the perturbation originates near the pipe inletsx,50d at
the vicinity of the axis of symmetry. Then the wave packet
travels downstream, increasing their amplitude by more than
two orders of magnitude when it exits the pipe(it is seen
that, with the present numerical technique, there is no restric-
tion on the form of the flow exiting the pipe). From this
figure, the wavelength isl.13.5, which corresponds to an
axial wave numbera=2p /l.0.465. Finally, to find out the

azimuthal wave numbern one may use the contour lines ofu
in the ux plane, shown in Fig. 8 at several instants of time
and r =1/2. Taking into account that the phase of the wave
for a given t is constant in that plane whennu+ax is con-
stant, and using the value ofa computed above, one finds
that n.−1. [That unu=1 is clear from the fact thatuÞ0 in
Fig. 7 at the axis of symmetryr =0 (Ref. 10)]. This is further
corroborated in Fig. 9, which depicts the contour lines ofu at
the pipe exit. This figure shows thatunu=1 and that the per-
turbations are concentrated at the axis of symmetry. All the
above values of the traveling waves properties found numeri-
cally agree with the ones obtained from the stability analysis
corresponding to the most unstable mode in the rotating
Hagen–Poiseuille flow for ReQ=100 and Reu=100, which
are4 n=−1,a.0.432,v.0.251, andcg.0.258.(It has been
taken into account that the characteristic time used in the
cited stability analysis is Re/ReQ.2.828 times the charac-
teristic time used in this work.)

FIG. 7. Contour lines of the radial velocityu on therx plane foru=0 and for different times(as indicated) in the case ReQ=100 and Reu=100. Continuous
(dashed) lines correspond to positive(negative) values ofu. Five positive and five negative equidistant contour lines ofu are plotted in the following intervals:
f−1.25310−8,6.95310−10g for t=200, f−1.24310−9,1.40310−9g for t=300, f−3.39310−9,3.31310−9g for t=400, f−2.50310−8,2.25310−8g for t=600,
and f−6.36310−8,1.09310−7g for t=800.

FIG. 8. Contour lines of the radial velocityu on theux plane for r =1/2 and for different instants of time(as indicated) in the case ReQ=100 and Reu
=100. Continuous(dashed) lines correspond to positive(negative) values ofu. Five positive and five negative equidistant isocontours ofu are plotted in the
following intervals:f0,1.70310−10g for t=200,f−7.36310−10,7.30310−10g for t=300,f−1.81310−9,1.81310−9g for t=400,f−1.29310−8,1.28310−8g for
t=600, andf−7.40310−8,7.40310−7g for t=800.

014104-5 Nonlinear waves in the pressure driven flow Phys. Fluids 17, 014104 (2005)

Downloaded 10 Dec 2004 to 150.214.40.20. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



C. ReQ=200, Reu=100

This case is well inside the convective instability region
of the rotating Hagen–Poiseuille flow(see Fig. 1), and cor-
responds to Re=400. The unstable perturbations do not re-
main small along the pipe as in the above case, but their
amplitudes grow to become important fractions of the unper-
turbed mean flow. As a consequence, a significant axial mean
flow defect is produced when the instability is developed in
the flow. This is shown in Fig. 10, where one observes that
once the nominal flow rate ReQ=200 is approximately
reached at aboutt=300, the flow rate decreases due to the
fact that a significant part of the energy put into the system as
a pressure difference iswastedin the finite amplitude waves
produced by the unstable perturbations. That the flow no

longer corresponds to a RHPF is clearly seen in Fig. 11.
The oscillatory behavior of Reqstd observed in Fig. 10 is

due to the passing of the successive finite amplitude wave
packets along the pipe(see Figs. 12–14), showing that the
instability is still convective, as predicted by the stability
analysis for these values of the Reynolds numbers.(In the
previous case the behavior is qualitatively the same, but the
oscillations are not observed in Fig. 4 because the amplitude
of the waves remains infinitesimal, and so does the mean
flow defect.) The first thing one may observe in Fig. 13 is
that the instability is produced near the axis of the pipe at
x,50, at aboutt.250, approximately when the nominal
Reynolds number ReQ=200 is reached(Fig. 10). According
to this figure, the amplitude of the perturbations grows more
than five orders of magnitude as the wave travels along the
pipe [from Os10−7d to Os10−2d]. Just when this first wave
packet is exiting the pipe att,600, the mean flow rate com-
puted on this section is lower(Fig. 10). After the formation

FIG. 10. Reqstd for ReQ=200 and Reu=100.

FIG. 9. Contour lines of the radial velocityu on theur plane at the pipe exit
sx=200d andt=4800 for ReQ=100 and Reu=100. Continuous(dashed) lines
correspond to positive(negative) values ofu.

FIG. 11. Radial profiles of the axial velocity(a) and the azimuthal velocity(b) for ReQ=200 and Reu=100 at the pipe exitsx=200d, for u=0 (continuous lines)
andu=p (dash and dot lines). Also shown(circles) are the parabolic Hagen–Poiseuille axial velocity(a) and the linear azimuthal velocity for a solid body
rotation (b).
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of this first wave packet, successive wavetrains of finite am-
plitude are originated at approximately the same axial loca-
tion and travel along the pipe, producing the oscillatory pat-
tern in the mean flow rate. Thus, att=1200, one sees in Fig.
14 that a second wave packet has developed before the first
one has exited the pipe. For later times, this figure shows an
almost continuous wavetrain. Although the characteristics of
these spiral wavetrains are not completely uniform in the
axial direction as the different waves evolve along the pipe
(see also Fig. 15, where a 3D view of the waves is given for
the last time of the computations), they share in common that
the azimuthal wave number is alwaysn=−1, as indicated by
the fact that the radial velocity in Figs. 13 and 14 does not

vanish at the axisr =0. This is further corroborated in Fig.
16, which depicts the contour lines ofu at the pipe exit for
the last computation time. Thatn=−1 agrees with the stabil-
ity analysis, for though Fig. 1 shows that modes withn
=−1,−2, and −3 are unstable for the present values of ReQ

and Reu, n=−1 is the first mode to become unstable for
Reu=100 as Req increases, and remains the most unstable
one for ReQ=200.4

D. ReQ=200, Reu=300

We now increase the angular velocity of the rotating pipe
to Reu=300 maintaining the same pressure difference of the

FIG. 12. As in Fig. 5 but for ReQ
=200 and Reu=100.

FIG. 13. Contour lines of the radial velocityu at u=0 on therx plane(a) and for r =1/2 on theux-plane(b) for different times(as indicated) in the case
ReQ=200 and Reu=100. Continuous(dashed) lines correspond to positive(negative) values ofu. Nine positive and nine negative equidistant contour lines of
u are plotted in the following intervals:(a) f−9310−7,6.1310−7g for t=250, f−4.4310−4,3.5310−4g for t=400, andg−0.05,0.05g for t=600; (b) f−5.0
310−7,4.7310−7g for t=250, f−2.4310−4,2.4310−4g for t=400, andf−0.039,0.026g for t=600.
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above casesRe=400d, and thus the nominal flow rate ReQ

=200. As seen in Fig. 1, this case is just inside the region of
absolute instability, a fact that, as we shall see, introduces a
qualitative change in the behavior of the flow. As in the
previous case, the formation of waves of finite amplitude
after the instability of the RHPF produces a significant mean
flow defect. However, as a difference with the previous case,
we see in Fig. 17 that a steady state is reached after decreas-
ing the mean flow rate from the nominal value, instead of the
oscillatory behavior observed in Fig. 10.

What happens is that the spiral waves formed after the
instability of RHPF not only travel downstream as in the
previous cases, but at some instant they begin to travel also
upstream, modifying the whole flow pattern until a new non-
axisymmetric flow, with a standing wave superimposed to
the original RHPF and with constant mean flow rate, is
reached. This set of events can be observed in the Figs.
18–20. A convective instability is first formed atx,40, and
at about the same timest,250d the nominal Reynolds num-
ber ReQ=200 is reached(Fig. 18). The amplitude of the
wave thus formed, which has an azimuthal wave numbern
=−1 (note thatuÞ0 at the axis), grows very rapidly as it
travels downstream. Eventually, this wave also evolves up-
stream, becoming more complex and intense all along the
pipe (Fig. 18 at t=600). At t.800, waves with a different

azimuthal wave numbern=−2 (note thatu=0 at the axis) are
also formed at this new axial location nearer the pipe inlet
and propagate downstream replacing the former wavetrain
with n=−1 (Fig. 19). At t,1600, a new wavetrain with
againn=−1 is formed near the pipe inlet, mixing with the
former one withn=−2 (Fig. 20). This wave also propagates
further upstream, till a standing(steady state) wave with a
complex pattern, superposition of modes withn=−1 andn
=−2 (see also Fig. 21), is set all along the pipe. Thus, for this
Reynolds number, the absolute instability marks the onset of
the formation of a complex standing wave. Figure 20 shows
that the wavelength of this standing wave isl.26 (axial
wave numbera.0.24).

E. ReQ=200, Reu=400

We now increase further the angular velocity of rotation
to Reu=400 for the same pressure difference. The evolution
of the flow is qualitatively similar to that of the previous case
(Fig. 22). A convective instability withn=−1 is first formed
at x,40 for t,250. The amplitude of this wave increase as
it propagates downstream. It also propagates upstream(ab-
solute instability). Then, a second perturbation withn=−2
grows as it pervades the pipe. But, as a difference with the
previous case, this wave withn=−2 is the one that becomes
the final standing wave(note in Fig. 22 that the steady state
in this case is reached faster than in Fig. 17). The final steady
state is shown in Figs. 23 and 24. The axial wavelength of
the wave withn=−2 is l.19 sa.0.33d.

IV. SUMMARY AND CONCLUSIONS

We have performed in this work a series of three-
dimensional numerical simulations of the incompressible
flow driven by a pressure difference in a rotating pipe of
length 200 times its radius. We have used a recently devel-
oped numerical technique that allows us to simulate the in-
compressible flow when the pressure is fixed at just two
points, one on each end of the pipe, so that the flow evolves
freely in time, allowing the formation and evolution of pos-
sible nonlinear waves, including the open end sections. For a

FIG. 14. As in Fig. 13, but for different times(as indicated). The range of values ofu plotted are the following:(a) f−0.057,0.057g for t=1200,
f−0.052,0.049g for t=1400, andf−0.05,0.05g for t=1600;(b) f−0.038,0.034g for t=1200,f−0.036,0.032g for t=1400, andf−0.036,0.031g for t=1600.

FIG. 15. 3D view of the isosurfacew=0.35 for t=4800 in the case ReQ

=200 and Reu=100.
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given rotation ratesReu=100d, we have first considered two
axial Reynolds numbers close to the neutral curve for linear
stability of the RHPF, one on each side of the curve(ReQ

=75 and ReQ=100). For the stable case we observe that all
the infinitesimal waves formed from the numerical noise are
rapidly damped as they travel downstream, while in the un-
stable case we show that the amplitude of some waves grow
as they travel downstream the pipe. In particular, we observe
that these unstable wave packets are spiral waves with an
azimuthal wave numbern=−1, and their properties(axial
wavelength, frequency, and group velocity) coincide with the
values given by the linear stability analysis. Thus we show
that the numerical technique correctly simulates the onset of
convective instabilities.

Although for ReQ=100 the amplitude of the wave pack-
ets grows downstream, as predicted by the linear stability
analysis, their intensities remain infinitesimal all along the
pipe because this case is very close to the neutral stability
curve (see Fig. 1). Consequently, no appreciable mean flow
defect is detected. As ReQ increases for fixed Reu=100, the
final amplitude of the unstable spiral perturbations grows
more and more. For the next case reported heresReQ=200d,
the amplitude is already so large that a significant mean flow
defect is detected: after the nominal flow rate ReQ=200 is
reached, the instability of the RHPF produces spiral nonlin-
ear waves that consume part of the energy due to the pres-
sure difference put into the flow and the mean flow rate
decreases. But these nonlinear waves still correspond to con-
vective instabilities, so that the mean flow rate oscillates in
time as a consequence of the passing of the successive
wavetrains through the pipe.

These traveling waves solutions also coincide with the

FIG. 16. As in Fig. 9, but for ReQ=200. Fifteen equidistant contour lines of
u are plotted in the intervalsf−0.04,0g and [0,0.038].

FIG. 17. Reqstd for ReQ=200 and Reu=300.

FIG. 18. Contour lines of the radial velocityu at u=0 on therx-plane(a), and forr =1/2 on theux plane(b), for different times(as indicated) in the case
ReQ=200 and Reu=300. Continuous(dashed) lines correspond to positive(negative) values ofu. Nine positive and nine negative equidistant contour lines of
u are plotted in the following intervals:(a) f−2310−6,2310−6g for t=250, f−0.03,0.03g for t=400, andf−0.07,0.064g for t=600; (b) f−1.12310−6,1.15
310−6g for t=250, f−0.017,0.017g for t=400, andf−0.051,0.044g for t=600.
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ones found by Toplosky and Akylas for an infinite pipe.5

These authors looked for 2D, periodic spiral wave solutions
of the governing equations for the pressure driven flow in an
infinite rotating pipe and found that these solutions bifurcate
supercritically from RHPF at Mackrodt’s linear-neutral-
stability curve for convective instabilities(see Fig. 1), so that
they are equivalent to the traveling waves found here in a
long rotating pipe. According to Barnes and Kerswell,6 these
2D helical waves may become 3D helical waves by a sec-
ondary instability. The neutral curve for this secondary insta-
bility lies on the ReQ-Reu plane between Mackrodt’s neutral
curve for convective instabilities and the neutral curve for
the onset of absolute instabilities(see Fig. 2 in Ref. 6 and
compare it with Fig. 1 above). Actually, the case considered
in Sec. III B is within this secondary instability region,
though the case considered in Sec. III C is not. However,
since these 3D helical traveling waves are characterized by a
slow variation of the axial wavelength along the axis of the
pipe, they are very difficult to detect numerically in a finite
pipe.

The next numerical experiments are intended to investi-
gate the nature of the flow when the linear stability analysis
predicts an absolute instability. Thus, for a fixed pressure
difference, which corresponds to a nominal axial Reynolds
number ReQ=200, we increase the rotation rate of the pipe.
Just above the neutral curve for the onset of absolute insta-
bility sReu=300d, we observe a complicate temporal evolu-
tion of the flow. After the nominal axial flow rate is reached,
different spiraltraveling waves arise from convective insta-
bilities, thus propagating downstream. Eventually, some of
these wave packets begin to travel upstream also, until a final
steady state which consists on astandingspiral wave super-
imposed to the RHPF is set throughout the pipe. For a higher
rotation ratesReu=400d, the transition from a traveling wave
to a standing wave is more straightforward, and the final
standing spiral wave corresponds to an azimuthal wave num-
ber n=−2. In both cases, the mean flow defect is quite sig-
nificant (close to 20% in the last case), and remains constant
in time once the standing wave is developed. The transition

FIG. 19. As in Fig. 18, but for different times(as indicated). The range of values ofu plotted are the following:(a) f−0.066,0.065g for t=800,
f−0.061,0.055g for t=1000, andf−0.045,0.051g for t=1400;(b) f−0.054,0.054g for t=800, f−0.047,0.048g for t=1000, andf−0.047,0.051g for t=1400.

FIG. 20. As in Fig. 18, but for different times(as indicated). The range of values ofu plotted are the following:(a) f−0.044,0.041g for t=1600,
f−0.058,0.052g for t=1800, andf−0.063,0.057g for t=4800;(b) f−0.044,0.042g for t=1600,f−0.046,0.045g for t=1800, andf−0.048,0.042g for t=4800.
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from a traveling spiral wave to a standing spiral wave when
RHPF goes from convectively unstable to absolutely un-
stable is the main finding of this work.
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APPENDIX: NUMERICAL METHOD

In this appendix we summarize the numerical technique
used in this work,9 including the improvements incorporated
here, and give some numerical details of the simulations. The

accuracy of the numerical method for the present problem
has also been checked in Ref. 9. For instance, Fig. 9 of that
reference compares the temporal evolution of the azimuthal
velocity component obtained numerically for ReQ=100 and
Reu=30 (a stable case) with an analytical solution.

To solve Eqs.(1) and (2) we use a projection method
(see, e.g., Ref. 11, for a recent account): at each time step
tn= tn−1+Dt, an intermediate velocity fieldv* that does not
satisfy the divergence constraint(1) is first obtained from(2)
with vanishing pressure gradient; then, the pressure is ob-
tained from a Poisson equation that comes from the incom-
pressibility constraint,

¹2p =
1

Dt
= ·v * . sA1d

The particularity of the method given in Ref. 9 is that a
technique is developed to solve Eq.(A1) with Dirichlet
boundary conditions for the pressure on part of the inlet and
outlet sections of the pipe, which warrants the incompress-

FIG. 21. Contour lines of the radial velocityu on theur-plane at the pipe
exit sx=200d and t=4800 for ReQ=200 and Reu=300. Continuous(dashed)
lines correspond to positive(negative) values ofu (15 positive and 15 nega-
tive equidistant values ofu are plotted in the intervalf−0.047,0.044g).

FIG. 22. Reqstd for ReQ=200 and Reu=400.

FIG. 23. 3D view of the isosurfaceu=0.02 for t=4800 in the case ReQ

=200 and Reu=400.

FIG. 24. Contour lines of the radial velocityu on theur plane at the pipe
exit sx=200d and t=4800 for ReQ=200 and Reu=400. Continuous(dashed)
lines correspond to positive(negative) values ofu (15 positive and 15 nega-
tive equidistant values ofu are plotted in the intervalf−0.036,0.034g).
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ibility constraint, and leaves the flow to evolve freely in time
on these surfaces. To that end, one solves

=t · =tp =
1

Dt
=t ·vt

* sA2d

on the inlet and outlet surfaces, atx=0 andx= l, respectively,
where=t is the part of the= operator with derivatives on the
surface normal to the axis andvt

* =su* , v* d. This equation is
solved in Ref. 9 withp=1 on the curver =1 for x=0 and
p=0 on the curver =1 for x= l. Here we propose to give
more liberty to the inflow and the outflow conditions by
fixing p just at one pointsr =0d on each one of these sur-
faces. In fact, we solve(A2) with the Neumann boundary
condition]p/]r =u* / Dt at the wall contourr =1. The result-
ing undetermined problem is solved using a successive over-
relaxation scheme.12 At each time step we use the previous
time solution as seed and a relaxation parameter value of

1.275. Then, the solution at the inletsx=0d is fixed by ad-
justing p=1 at r =0 and the solution at the outletsx= ld by
adjustingp=0 at r =0.

In order to simplify the treatment of the singularity of
the (cylindrical) equations at the axis, we actually solve nu-
merically Eqs.(1) and (2) with the dependent variablerv
instead ofv. We use a nonuniform spatial grid ofsnr =39d
3 snu=10d3 snx=431d nodes andDt=2310−3. Some details
of the nonuniform grid are plotted in Fig. 25. Second order
accuracy in time is reached by using a predictor-corrector
scheme at each time step. Second order accuracy is also used
for the derivatives in the radialsrd and axialsxd directions,
while for the angular coordinateu we use an eighth order
accuracy scheme. To circumvent the memory limitations of
our computer facilities, a second order ADI technique is used
to solve the discretized Poisson equation for the pressure
(A1) at each time step. This requires an initial guess for the
pressure distribution att=0, which for an initial fluid at rest
is simply a linear function ofx between 1 and 0. A typical
simulation occupies 140 Mbytes of random access memory,
and takes about 180 h of CPU in a Compaq HPC160 proces-
sor.
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FIG. 25. Detail of the nonuniform grid used in the computations on therx
plane(a) and on theru-plane(b).
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