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Nonlinear waves in the pressure driven flow in a finite rotating pipe
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To investigate the nature of nonlinear waves appearing in an axially rotating pipe, we have
performed a series of time-depending, three-dimensional numerical simulations of the
incompressible Navier—Stokes equations in a rotating long pipe. As a difference with some previous
works on the subject, which look for several given types of traveling wave solutions in pipes of
infinite length, we leave the flow to evolve freely after a pressure difference is set between two
points, one on each end of the finite rotating pipe. We use a recently developed numerical method
that allows us to simulate numerically the three-dimensional flow produced in a pipe when Dirichlet
boundary condition for the pressure is given on part of the inlet and outlet sections of the pipe. This
technique is further improved here so that the pressure is only fixed at just one point on each one
of the open boundaries of the pipe. Thus, no restrictions on the flow properties are given in these
sections, allowing the free entrance and exit of possible waves through the pipe. We find that packets
of traveling spiral waves are formed for values of the Reynolds numbers based on both the axial and
the azimuthal velocities just above the critical ones given by the linear stability theory. These
traveling waves have the same characteristics predicted by the linear stability theory and produce no
significant mean flux defect. As the values of these parameters are increased above their critical
values, the spiral waves become more involved and their amplitude increase, giving rise to a
significant axial mean flow defect. For sufficiently high Reynolds numbers, we detect the apparition
of spiral waves traveling also upstream, in agreement with the stability analysis for absolute
instabilities. At the end, these traveling waves appearing above the onset for absolute instabilities
transform into a standing spiral wave superimposed to the rotating Hagen—Poiseuille fR¥5©
American Institute of Physic§DOI: 10.1063/1.1828124

I. INTRODUCTION absolute instability may be the precursor of vortex break-
down in some swirling jeté’.8 This connection has not been
The linear stability of rotating Hagen—Poiseuille flow assessed numerically due, mainly, to the difficulties in the
(RHPH is a well studied problem. Contrary to nonrotating numerical simulation of general three-dimensio¢gi) and
Hagen—Poiseuille flow, which is well known to be linearly incompressible open jets and wakes. However, these difficul-
stable for all Reynolds number, it was first shown by Peliley ties can be circumvented in a three-dimensional flow con-
that RHPF becomes linearly unstable for finite Reynoldsfined in a pipe, even if one considers open inlet and outlet
numbers if the rotation of the pipe about its axis is highboundaries that do not constrain the movement of traveling
enough. The stability properties of this flow in terms of thewaves through them. To that end we use here a recently
axial flow Reynolds number and the Reynolds number basedeveloped numerical technique for incompressible ffoins
on the angular velocity of rotatiofRe, and Re, two param-  which a pressure difference between the inlet and outlet sec-
eters that will be defined belgwvere fully characterized by tions of the pipe is set at the start and then the flow is left to
Mackrodf and by Cotton and Salwehamong others. More evolve freely in time. This configuration is easily realized in
recently, the onset of absolute instabilities in RHPF has beethe laboratory(for instance, a pipe discharging from a large
also characterizeti These stability analyses predict the for- container to the atmosphéreNumerically, the pressure is
mation of traveling nonaxisymmetrigpiral) waves, whose specified directly only at closed curves on the inflow and
nonlinear structure and stability have been furtheroutflow surfaces, so that the desired pressure difference is
considered:® enforced in the pipe without constraining the flow on the
The objective of this work is to perform a series of nu- open boundaries. We have developed further that technique
merical simulationgnumerical experimentsn a long, but of  here (see the Appendix for a summaryso that one only
course finite, rotating pipe which may shed some new lighheeds to fix the pressure at just one point on each open
on the formation, evolution, and structure of these nonlineaboundary. In these open boundaries, the velocity field and the
traveling waves that are formed after instability of RHPF. Inpressure are left to evolve freely in time according to the
particular, we are curious about the nature of the flow afteNavier—Stokes equation and the incompressibility constraint,
the onset of absolute instability. It has been postulated thagxcept for the pressure at the two points where the pressure
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Il. FORMULATION OF THE PROBLEM 13011

We consider here the incompressible flow in a pipe of | \ 3 7 Ny o 7
radius R and lengthl X R driven by a pressure difference | ™ TTT 77T e e mno o oo
Ap.. The pipe rotates at an angular velodityaround its axis
of symmetry. The nondimensional Navier—Stokes equations 5o b oo SIABR
governing the flow can be written as

1 1
50 100 150 200 250 300 350 400 450 500

V.v=0, (1) Re,

FIG. 1. Values of Rg and Rg for the different numerical simulations con-
N 1 sidered(crosses on a stability diagram. The lines represent the neutral
—+v-Vv=-=Vp+ —VZV’ (2) curves for convective and absolute instabilities for different values of the
ot Re azimuthal wave numben. The neutral curve for convective instabilitp

=-1) was first obtained by MackrodRef. 2. All the curves are taken from

wherev and p are the dimensionless velocity and pressure Ref- 4.

respectively. The pressure also includes, as usual, any vol-

ume force that can be written in gradient fofeuch as grav-

ity). We use cylindrical-polar coordinates, §,x) with the OR

coordinatex along the axis of the pipe, and the velocity u=w=0, v=—Tf"forr=1, O0sx=<lI, (4)
componentsv=(u,v,w). To nondimensionalize the geom- c

etry and the flow magnitudes we use the pipe ra&@s the  and the pressurp is given at two points, one on the inflow
length scale and a characteristic velocity based on the presurface and the other one at the outflow surface,

sure difference/.=VAp./p, wherep is the fluid density. Ac-

cordingly, the Reynolds number () is p=1latx=0, r=0 (53)
and
R
RevaRz,/ﬁ‘»_, (3) p=0atx=I, r=0, (5b)
v p v
so that a dimensional pressure differerdqe, is set between
with » being the kinematic viscosity. the pipe ends. The inlet and outlet pressure distributions,

We want to solve Eqs(1) and (2) subjected to the p;(r,6,t) andp,(r,6,t), are obtained as part of the solution
boundary conditions that the velocity on the pipe wall isusing a slightly modified version of the numerical method
given by developed in Ref. 9, which is summarized in the Appendix.
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FIG. 2. (8) Re(t) for Reg=75 and Rg=100. (b) Time evolution of the azimuthal velocity atr=1/2, =0, andx=100.
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t=250 (a)

FIG. 3. Contour lines of the radial ve-
0 m locity u on therx plane for9=0 and
! ! 1 1 1 1 1 for two different instants of timdgas
0 20 40 60 80 100 120 140 160 180 200 indicated in the case P@=75 and
Re,=100. Continuous(dashed lines
correspond to positivénegative val-
ues ofu. Five equidistant contour lines
1 of u in each one of the intervals
(b) [-4.46x107%,0] and [0,1.67
t=600 X 107! are plotted in(a), and in the
intervals  [-4.79x107'%,0] and
[0,4.39x 107%] in (b).
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As the initial condition we suppose the fluid is at rest and  The flow is characterized by, in addition to the nondi-
there is a linear distribution g betweenx=0 andx=1. mensional pipe length two Reynolds numbers Reor Re)

To relate the Reynolds numbg) to the usual pipe Rey- and a Reynolds number based on the angular rotation of the
nolds number based on the mean axial flow rate, we computeipe
the instantaneous flow ratgt) at the outflow section,

1 27 1 5
Rey(t) = Re—J f (rw),-dédr. (6) Re, = QR (8)
mJo Jo 0 v
For a Hagen—Poiseuille flow, lim..Re;— Re,, which is re-
lated to Re through Alternatively, one might use a swirl parameter= Re,/Re,

Re =4I Rey. ) instead of Rg In terms of these nondimensional parameters,
the boundary conditiod) for v may be written as
For a long rotating pipe, we shall see that,Reéll tend to

Re,, except if a strong nonlinear wave is developed inside

the flow that produces a significant axial mean flow defect. v=Re/Re atr =1. 9
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FIG. 4. (a) Time evolution of the azi-
muthal velocityv atr=1/2, =0, and
x=100 for Rg,=100 and Rg=100.(b)
Reg(t) for the same case.
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Il. RESULTS tions show that very small perturbations, with amplitude in
In thi i fth its | pulerms of the radial velocitju| ~ 10711, are generated near the
n this section we present the resulls from Several Ny et que to numerical noise, but these infinitesimal waves

merical simulations for different values of gand Rg. As | : S
ecay as they propagate along the e, exiting it with an
shown in Fig. 1, these values have been selected to cover t%?hpli{ude of g’rgerﬂn% (see Figg 3 PP xiing 1t wi

main transitions predicted by the linear stability analysis of
RHPF. In all the cases we he}ve used a pi.pe of Ieri_gth B. Re =100, Re,=100

=200. All the numerical simulations started with the fluid at

rest and the pipe rotating at the angular velocity correspond-  This case, which corresponds to R&82.64, lies just

ing to Re,. As time goes on, the flow acquires the corre-above the critical conditions for convective instabililsee
sponding solid body rotation rather quickly, and the nominalFig. 1). The time evolution of Reand the azimuthal velocity
axial flow rate Rg is reached typically after several hundred v at the center of the pipe are plotted in Fig. 4. Itis observed
of nondimensional time unitgsee below The different nu-  that the nominal flow rate Rg=100 is reached at~250,
merical parameters used in the simulations are given in th&hile the solid body rotation is reachedtat 125. This ini-
Appendix. We have chosen to start the simulations with thdial transient behavior remains approximately valid for all the
fluid at rest because we believe that it is the most relevarases considered. The radial veloaitgtr=1/2 andseveral
initial condition from a physical point of view and because it @xial locations for¢=0 and 6= are plotted in Fig. 5. As in

is simpler to implement numerically. Any other initial condi- the above case, we have selected the radial velocity to detect
tion for the velocity field would require the computation of a the perturbations because 0 for the unperturbed flow. This
nontrivial initial pressure distribution different from the axi- figure shows that a nonaxisymmetric perturbation is formed
ally linear one[an initial pressure distribution is needed to Near the pipe inlet at about the time Reeaches its
start the computations owing to the alternate direction im-asymptotic value. The amplitude of this wave grows more
plicit (ADI) technique we use to solve the Poisson equation

for the pressure; see the Appenidix
;

A. Rep=75, Rey=100 05

196

As seen in Fig. 1, this case corresponds to a linearly & o

stable flow. Figure 2 shows that the nominal Reynolds num- _,5
ber Rey=75 is reached dt~ 250, while the solid body rota- . , ; , ,
tion at the center of the pipe is reached more quickly, at 600 700 800 800 1000 1100 1200
about half of that time. The numerical simulations show that, t

?n effect, the_ asymptotic Hag.en—POiseUi”e flow with SUPEr-F|G. 6. Detail of the time evolution of the radial velocity at the last axial
imposed solid body rotation is stable. Actually, the simula-location plotted in Fig. 5.
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FIG. 7. Contour lines of the radial velocityon therx plane for§=0 and for different timegas indicateglin the case Rg=100 and Rg=100. Continuous
(dashedgllines correspond to positiv@egative values ofu. Five positive and five negative equidistant contour lines afe plotted in the following intervals:
[-1.25x 10°8,6.95%x 10717 for t=200,[-1.24x 10°%,1.40x 10°9] for t=300,[-3.39x 10°%,3.31x 10°%] for t=400,[-2.50x 10°8,2.25x 10°8] for t=600,
and[-6.36x 10°8,1.09x 107"] for t=800.

than two orders of magnitude as it travels along the pipeazimuthal wave numbar one may use the contour lines wf
leaving the flow unperturbed behiridee also Figs. 7 and 8 in the 6x plane, shown in Fig. 8 at several instants of time
below). This is what is expected in a convective instability. andr=1/2. Taking into account that the phase of the wave
From this figure, the group velocity of this traveling wave for a givent is constant in that plane whem+ax is con-
the last axial location plotted in Fig. 5 is shown in Fig. 6, thatn~-1. [That|n|=1 is clear from the fact thai+ 0 in
from where one may compute the peridand the frequency Fig. 7 at the axis of symmetny=0 (Ref. 10]. This is further

of the wavesw=2m/T=0.245. corroborated in Fig. 9, which depicts the contour lines at

The wavelength of these waves may be computed from . : o _

. ; . the pipe exit. This figure shows thiti=1 and that the per-
the contour lines on thix plane of the radial velocity, shown turbations are concentrated at the axis of svmmetry. All the
in Fig. 7 at several instants of time f&=0. One observes urbatl ) X 4 Y- .

above values of the traveling waves properties found numeri-

that the perturbation originates near the pipe ifet 50) at ] : - :
the vicinity of the axis of symmetry. Then the wave packetca"y agree with the ones obtained from the stability analysis

travels downstream, increasing their amplitude by more thaforresponding to the most unstable mode in the rotating
two orders of magnitude when it exits the pifieis seen Hagen—Poiseuille flow for Rg=100 and Rg=100, which
that, with the present numerical technique, there is no restricd’€ n=-1,a=0.432,w=0.251, and,~0.258.(It has been
tion on the form of the flow exiting the pipeFrom this taken into account that the characteristic time used in the
figure, the wavelength ix =13.5, which corresponds to an cited stability analysis is Re/Re=2.828 times the charac-
axial wave number=27/\=0.465. Finally, to find out the teristic time used in this work.
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X

FIG. 8. Contour lines of the radial velocity on the 6x plane forr=1/2 and for diferent instants of timgas indicateglin the case Rg=100 and Rg

=100. Continuougdashedl lines correspond to positiuenegative values ofu. Five positive and five negative equidistant isocontours afe plotted in the
following intervals:[0,1.70x 10719 for t=200,[-7.36x 1071°,7.30x 10719 for t=300,[-1.81x 107°,1.81x 10°°] for t=400,[-1.29x 10°8,1.28x 1078] for

t=600, and-7.40x 10°8,7.40x 10°"] for t=800.
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FIG. 10. Rg(t) for Re;=200 and Rg=100.
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FIG. 9. Contour lines of the radial velocityon the#r plane at the pipe exit
(x=200 andt=4800 for Rg=100 and Rg=100. Continuougdashedllines

correspond to positivénegative values ofu.

longer corresponds to a RHPF is clearly seen in Fig. 11.
The oscillatory behavior of Ré) observed in Fig. 10 is
due to the passing of the successive finite amplitude wave

packets along the pipesee Figs. 12—14 showing that the
instability is still convective, as predicted by the stability
This case is well inside the convective instability regionanalysis for these values of the Reynolds numbgrsthe
of the rotating Hagen—Poiseuille flogee Fig. 1, and cor-  previous case the behavior is qualitatively the same, but the
responds to Re=400. The unstable perturbations do not r@scillations are not observed in Fig. 4 because the amplitude
main small along the pipe as in the above case, but theiof the waves remains infinitesimal, and so does the mean
amplitudes grow to become important fractions of the unperflow defect) The first thing one may observe in Fig. 13 is
turbed mean flow. As a consequence, a significant axial meahat the instability is produced near the axis of the pipe at
flow defect is produced when the instability is developed inx~50, at aboutt=250, approximately when the nominal
the flow. This is shown in Fig. 10, where one observes thaReynolds number Rg=200 is reachedFig. 10. According
once the nominal flow rate Re200 is approximately to this figure, the amplitude of the perturbations grows more
reached at about=300, the flow rate decreases due to thethan five orders of magnitude as the wave travels along the
fact that a significant part of the energy put into the system apipe [from O(10™7) to O(107?)]. Just when this first wave
a pressure difference i8astedin the finite amplitude waves packet is exiting the pipe at- 600, the mean flow rate com-
produced by the unstable perturbations. That the flow nguted on this section is low&Fig. 10). After the formation

C. Rep=200, Rey,=100

0.5 T T T T T T T T 0.3 T T T T T T T T T
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FIG. 11. Radial profiles of the axial velocitg) and the azimuthal velocitgh) for Re,=200 and Rg=100 at the pipe exitx=200), for =0 (continuous linep

and == (dash and dot lingsAlso shown(circles are the parabolic Hagen—Poiseuille axial velog¢dy and the linear azimuthal velocity for a solid body

rotation (b).
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of this first wave packet, successive wavetrains of finite amvanish at the axis=0. This is further corroborated in Fig.
plitude are originated at approximately the same axial locai6, which depicts the contour lines ofat the pipe exit for
tion and travel along the pipe, producing the oscillatory patthe last computation time. That=-1 agrees with the stabil-
tern in the mean flow rate. Thus, 1200, one sees in Fig. ity analysis, for though Fig. 1 shows that modes with
14 that a second wave packet has developed before the first.1 _ and -3 are unstable for the present values of Re
one has exited the pipe. For later times, this figure shows agnq Re, n=-1 is the first mode to become unstable for

almost continuous wavetrain. Although the charz_ictens_tlcs Of?e9:100 as Rgincreases, and remains the most unstable
these spiral wavetrains are not completely uniform in theone for R@:ZOO“

axial direction as the different waves evolve along the pipe '

(see alsq Fig. 15, where a SD view of the waves is given forD_ Reo=200, Re,=300

the last time of the computatiopghey share in common that

the azimuthal wave number is alwags -1, as indicated by We now increase the angular velocity of the rotating pipe

the fact that the radial velocity in Figs. 13 and 14 does noto Re,=300 maintaining the same pressure difference of the

(a) (b)

1 6F
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ol
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FIG. 13. Contour lines of the radial velocityat =0 on therx plane(a) and forr=1/2 on theéx-plane(b) for different times(as indicateglin the case
Rey=200 and Rg=100. Continuougdashedllines correspond to positiu@egative values ofu. Nine positive and nine negative equidistant contour lines of
u are plotted in the following intervalga) [-9X 1077,6.1x 10°7] for t=250, [-4.4X 10™4,3.5X 107“] for t=400, and]-0.05,0.05 for t=600; (b) [-5.0
X107,4.7x10°7] for t=250,[-2.4x 1074,2.4X 1074] for t=400, and—0.039,0.02¢ for t=600.
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FIG. 14. As in Fig. 13, but for different timegs indicategl The range of values ofi plotted are the following(a) [-0.057,0.057 for t=1200,
[-0.052,0.049for t=1400, and -0.05,0.05 for t=1600;(b) [-0.038,0.034 for t=1200,[-0.036,0.032 for t=1400, and -0.036,0.03} for t=1600.

above caséRe=400, and thus the nominal flow rate Re azimuthal wave number=-2 (note thatu=0 at the axisare
=200. As seen in Fig. 1, this case is just inside the region oélso formed at this new axial location nearer the pipe inlet
absolute instability, a fact that, as we shall see, introduces and propagate downstream replacing the former wavetrain
qualitative change in the behavior of the flow. As in thewith n=-1 (Fig. 19. At t~1600, a new wavetrain with
previous case, the formation of waves of finite amplitudeagainn=-1 is formed near the pipe inlet, mixing with the
after the instability of the RHPF produces a significant mearformer one withn=-2 (Fig. 20. This wave also propagates
flow defect. However, as a difference with the previous casefurther upstream, till a standin@teady statewave with a
we see in Fig. 17 that a steady state is reached after decreammplex pattern, superposition of modes with—1 andn
ing the mean flow rate from the nominal value, instead of the=—2 (see also Fig. 21is set all along the pipe. Thus, for this
oscillatory behavior observed in Fig. 10. Reynolds number, the absolute instability marks the onset of
What happens is that the spiral waves formed after theéhe formation of a complex standing wave. Figure 20 shows
instability of RHPF not only travel downstream as in thethat the wavelength of this standing wave\is=26 (axial
previous cases, but at some instant they begin to travel alssave numberx=0.24).
upstream, modifying the whole flow pattern until a new non-
axisymmetric flow, with a standing wave superimposed toE. Re,=200, Re,=400
the original RHPF and with constant mean flow rate, is
reached. This set of events can be observed in the Fig
18-20. A convective instability is first formed at-40, and
at about the same timg~ 250 the nominal Reynolds num-
ber Rg=200 is reachedFig. 18. The amplitude of the
wave thus formed, which has an azimuthal wave nunmber
=-1 (note thatu# 0 at the axi§ grows very rapidly as it
travels downstream. Eventually, this wave also evolves up
stream, becoming more complex and intense all along th
pipe (Fig. 18 att=600). At t=800, waves with a different

We now increase further the angular velocity of rotation
to Re,=400 for the same pressure difference. The evolution
of the flow is qualitatively similar to that of the previous case
(Fig. 22). A convective instability withn=-1 is first formed
atx~40 fort~250. The amplitude of this wave increase as
it propagates downstream. It also propagates upst(@ém
solute instability. Then, a second perturbation withe—2
grows as it pervades the pipe. But, as a difference with the

revious case, this wave with=-2 is the one that becomes
the final standing wavénote in Fig. 22 that the steady state
in this case is reached faster than in Fig). The final steady
state is shown in Figs. 23 and 24. The axial wavelength of
the wave withn=-2 isA =19 («=0.33.

IV. SUMMARY AND CONCLUSIONS

We have performed in this work a series of three-
dimensional numerical simulations of the incompressible
flow driven by a pressure difference in a rotating pipe of
length 200 times its radius. We have used a recently devel-
oped numerical technique that allows us to simulate the in-
compressible flow when the pressure is fixed at just two

0 points, one on each end of the pipe, so that the flow evolves
FIG. 15. 3D view of the isosurfacer=0.35 for t=4800 in the case Re fr_eely in time, allowing .the fo_rmation and eV0|Uti0n of pos-
=200 and Rg=100. sible nonlinear waves, including the open end sections. For a
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Nonlinear waves in the pressure driven flow
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FIG. 17. Rg(t) for Re5=200 and Rg=300.

4 I I
-1 0.2 04 06

FIG. 16. As in Fig. 9, but for Rg=200. Fifteen equidistant contour lines of

u are plotted in the intervals-0.04,d and[0,0.03§. Although for RQD: 100 the amplitude of the wave pack-

ets grows downstream, as predicted by the linear stability
analysis, their intensities remain infinitesimal all along the
pipe because this case is very close to the neutral stability
given rotation ratéRe,=100), we have first considered two curve (see Fig. 1. Consequently, no appreciable mean flow
axial Reynolds numbers close to the neutral curve for lineadefect is detected. As Rencreases for fixed Re 100, the
stability of the RHPF, one on each side of the cu(Re, final amplitude of the unstable spiral perturbations grows
=75 and Rg=100. For the stable case we observe that allmore and more. For the next case reported lReg =200,

the infinitesimal waves formed from the numerical noise arghe amplitude is already so large that a significant mean flow
rapidly damped as they travel downstream, while in the undefect is detected: after the nominal flow rateoR200 is
stable case we show that the amplitude of some waves groweached, the instability of the RHPF produces spiral nonlin-
as they travel downstream the pipe. In particular, we observear waves that consume part of the energy due to the pres-
that these unstable wave packets are spiral waves with aure difference put into the flow and the mean flow rate
azimuthal wave numben=-1, and their propertiegaxial = decreases. But these nonlinear waves still correspond to con-
wavelength, frequency, and group velogitpincide with the  vective instabilities, so that the mean flow rate oscillates in
values given by the linear stability analysis. Thus we showtiime as a consequence of the passing of the successive
that the numerical technique correctly simulates the onset afravetrains through the pipe.

convective instabilities.

These traveling waves solutions also coincide with the
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FIG. 18. Contour lines of the radial velocityat #=0 on therx-plane(a), and forr=1/2 on the#x plane(b), for different times(as indicateylin the case

Rey=200 and Rg=300. Continuougdashedllines correspond to positiu@egative values ofu. Nine positive and nine negative equidistant contour lines of

u are plotted in the following intervalga) [-2x 1076, 2x 107%] for t=250,[-0.03,0.03 for t=400, and—-0.07,0.063 for t=600; (b) [-1.12x 107%,1.15
X 10°%] for t=250,[~-0.017,0.017 for t=400, and[-0.051,0.04% for t=600.
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FIG. 19. As in Fig. 18, but for different timegas indicateyl The range of values ofi plotted are the following:(a) [-0.066,0.06% for t=800,
[-0.061,0.05% for t=1000, and—0.045,0.05] for t=1400;(b) [-0.054,0.054 for t=800,[~-0.047,0.048for t=1000, and-0.047,0.05] for t=1400.

ones found by Toplosky and Akylas for an infinite p%e. The next numerical experiments are intended to investi-
These authors looked for 2D, periodic spiral wave solutiongyate the nature of the flow when the linear stability analysis
of the governing equations for the pressure driven flow in arpredicts an absolute instability. Thus, for a fixed pressure
infinite rotating plpe and found that these solutions bifurcatjSfference7 which Corresponds to a nominal axial Reyn0|ds
supercritically from RHPF at Mackrodt's linear-neutral- hnumber Rg=200, we increase the rotation rate of the pipe.

stability curve for convective instabilitigsee Fig. 1, so that  jst above the neutral curve for the onset of absolute insta-

they are equivalent to the traveling waves found here in ility (Re,=300, we observe a complicate temporal evolu-

long rotating pipe. According to Barnes and Kersv@dﬂl,ese tion of the flow. After the nominal axial flow rate is reached,

2D helical waves may become 3D helical waves by a sec-, . . . L

. . . . different spiraltraveling waves arise from convective insta-
ondary instability. The neutral curve for this secondary msta-biIities thus propagating downstream. Eventually. some of
bility lies on the Re-Re, plane between Mackrodt's neutral ' bropagating ' Y:

curve for convective instabilities and the neutral curve for"€S€ Wave packets begin to travel upstream also, until a final
the onset of absolute instabilitigsee Fig. 2 in Ref. 6 and Steady state which consists ors@ndingspiral wave super-
compare it with Fig. 1 aboyeActually, the case considered imposed to the RHPF is set throughout the pipe. For a higher
in Sec. 1lIB is within this secondary instability region, rotation rate(Re,=400), the transition from a traveling wave
though the case considered in Sec. Il C is not. Howeverto @ standing wave is more straightforward, and the final
since these 3D helical traveling waves are characterized by $fanding spiral wave corresponds to an azimuthal wave num-
slow variation of the axial wavelength along the axis of thebern=-2. In both cases, the mean flow defect is quite sig-
pipe, they are very difficult to detect numerically in a finite nificant(close to 20% in the last casend remains constant
pipe. in time once the standing wave is developed. The transition
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FIG. 20. As in Fig. 18, but for different timegas indicategl The range of values ofi plotted are the followingi(a) [-0.044,0.04] for t=1600,
[-0.058,0.052 for t=1800, and—0.063,0.057 for t=4800;(b) [-0.044,0.042 for t=1600,[~0.046,0.04% for t=1800, and -0.048,0.042 for t=4800.
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FIG. 23. 3D view of the isosurfaca=0.02 fort=4800 in the case Re
=200 and Rg=400.

accuracy of the numerical method for the present problem
has also been checked in Ref. 9. For instance, Fig. 9 of that
reference compares the temporal evolution of the azimuthal
velocity component obtained numerically for 2e100 and
Re,=30 (a stable cagewith an analytical solution.

1
1

FIG. 21. Contour lines of the radial velocityon the 6r-plane at the pipe

exit (x=200 andt=4800 for Rg=200 and Rg=300. Continuougdashegl To solve Egs(1) and (2) we use a projection method
lines correspond to positiv@egative values ofu (15 positive and 15 nega-  (see, e.g., Ref. 11, for a recent accquiat each time step
tive equidistant values af are plotted in the intervd-0.047,0.044). t"=t""1+ At. an intermediate velocity fiels* that does not

satisfy the divergence constraid) is first obtained fron(2)
nwith vanishing pressure gradient; then, the pressure is ob-
tained from a Poisson equation that comes from the incom-
pressibility constraint,

1
2n —
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from a traveling spiral wave to a standing spiral wave whe
RHPF goes from convectively unstable to absolutely un
stable is the main finding of this work.
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cal computations have been made in the computer facilitief,,ngary conditions for the pressure on part of the inlet and
at the SAIT(U.P. Cartagena outlet sections of the pipe, which warrants the incompress-

APPENDIX: NUMERICAL METHOD

In this appendix we summarize the numerical technique
used in this work, including the improvements incorporated |
here, and give some numerical details of the simulations. The
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@ 1.275. Then, the solution at the inlet=0) is fixed by ad-
x justing p=1 atr=0 and the solution at the outl€x=I) by
adjustingp=0 atr=0.

In order to simplify the treatment of the singularity of
the (cylindrical) equations at the axis, we actually solve nu-
merically Egs.(1) and (2) with the dependent variables
instead ofv. We use a nonuniform spatial grid ¢fi,=39)

X (n,=10) X (n,=431) nodes and\t=2x 1073. Some details

of the nonuniform grid are plotted in Fig. 25. Second order
accuracy in time is reached by using a predictor-corrector
scheme at each time step. Second order accuracy is also used
for the derivatives in the radidk) and axial(x) directions,
while for the angular coordinaté we use an eighth order
accuracy scheme. To circumvent the memory limitations of
our computer facilities, a second order ADI technique is used
to solve the discretized Poisson equation for the pressure
(A1) at each time step. This requires an initial guess for the
pressure distribution @t&=0, which for an initial fluid at rest

is simply a linear function ok between 1 and 0. A typical
simulation occupies 140 Mbytes of random access memory,
and takes about 180 h of CPU in a Compaq HPC160 proces-
sor.
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