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The onset of absolute instability of rotating Hagen–Poiseuille flow:
A spatial stability analysis

R. Fernandez-Feria and C. del Pino
Universidad de Malaga, E.T.S. Ingenieros Industriales, 29013 Malaga, Spain

~Received 8 October 2001; accepted 10 June 2002; published 2 August 2002!

A spatial, viscous stability analysis of Poiseuille pipe flow with superimposed solid body rotation is
considered. For each value of the swirl parameter~inverse Rossby number! L.0, there exists a
critical Reynolds number Rec(L) above which the flow first becomes convectively unstable to
nonaxisymmetric disturbances with azimuthal wave numbern521. This neutral stability curve
confirms previous temporal stability analyses. From this spatial stability analysis, we propose here
a relatively simple procedure to look for the onset of absolute instability that satisfies the so-called
Briggs–Bers criterion. We find that, for perturbations withn521, the flow first becomes absolutely
unstable above another critical Reynolds number Ret(L).Rec(L), provided thatL.0.38, with Ret
→Rec as L→`. Other values of the azimuthal wave numbern are also considered. For Re
.Ret(L), the disturbances grow both upstream and downstream of the source, and the spatial
stability analysis becomes inappropriate. However, for Re,Ret , the spatial analysis provides a
useful description on how convectively unstable perturbations become absolutely unstable in this
kind of flow. © 2002 American Institute of Physics.@DOI: 10.1063/1.1497374#
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I. INTRODUCTION

It was first shown by Pedley1,2 that Poiseuille flow, when
subjected to rapid rotation about the axis of the pipe,
comes unstable to nonaxisymmetric disturbances. Thetem-
poral stability analysis, both inviscid1 and viscous,2 was later
extended to cover all values of the parameters: Reyn
number Re, swirl parameterL ~inverse Rossby number!, azi-
muthal wave numbern, and axial wave numbera.3–6 In the
present paper, the problem ofspatialstability where a distur-
bance, imposed at a specific location in the fluid, grows
decay with axial distance, is investigated for axisymme
and nonaxisymmetric disturbances. As in the temporal sta
ity analysis, it is shown that the flow is stable to axisymm
ric disturbances, and unstable to nonaxisymmetric pertu
tions in a wide region of the Re,L plane,n521 being the
azimuthal wave number that first becomes unstable as R
L, is increased. In fact, as pointed out by Cotton a
Salwen,5 the envelope of the neutral stability curves coinci
for the spatial and for the temporal problems. But the spa
analysis is physically more relevant from an experimen
point of view, providing the forcing frequencies at which th
flow is most unstable~or least stable! for eachn, Re andL. In
particular, for each value ofL.0 @as it is widely known, the
nonrotating Poiseuille flow (L50) is stable for any infini-
tesimal disturbance#,7,8 the analysis provides the frequenc
vc at which the flow first becomes unstable as the Reyno
number increases above a critical value Rec(L). It is shown
that for increasing Re.Rec(L), the instability is first convec-
tive, i.e., wave packets corresponding to an unstable
quency with positive spatial growth rate travel with positi
real group velocity~although the real phase velocity could b
positive or negative, depending onv, Re andL!, thus mov-
ing away from the source. As the Reynolds number is furt
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increased, the real part of the group velocity correspond
to the most unstable frequency decreases until it vanishe
a second critical Reynolds number Ret(L).Rec(L). This situ-
ation, which for n521 occurs only for L.L* .0.38,
marks, as we shall show, the onset of the absolute instab
of the flow according to the Briggs–Bers criterion.9,10 For
Re.Ret , unstable modes with both positive and negat
group velocities coexist, and the spatial stability analysis
the present work becomes meaningless. It is concluded
the spatial stability analysis provides a very simple and u
ful tool to describe, in this kind of swirling flow, the trans
tion process from convective to absolute instability as
governing parameters are varied.

There are several recent works on the convectiv
absolute transition in swirling jets and wakes~i.e., Batchelor
and related vortex models!.11–16These flows are quite differ
ent to~more complex than! the one considered in this pape
They have in common that absolute instability is usua
associated with wake-like axial velocity profiles. In th
present work we find the transition to absolute instability in
Poiseuille axial velocity profile for relatively low values o
the swirl parameter that characterizes the superimposed
body rotation. Unfortunately, no experimental data are av
able ~to our knowledge! to compare with. Pedley2 already
pointed out the difficulties in obtaining a Hagen–Poiseu
flow plus solid body rotation experimentally. Mackrodt4 re-
ported some~rather qualitative! experimental results tha
agreed well with the theoretical convective instability resu
But these experiments have not been pursued further to
out the convective–absolute transition in a fully develop
rotating Hagen–Poiseuille flow. The comparison with expe
mental results from other types of swirling flows in pipes
not appropriate due to the strong qualitative differences
tween the flows.
7 © 2002 American Institute of Physics
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II. VISCOUS STABILITY FORMULATION AND
NUMERICAL METHOD

The basic flow considered in this work is the rotati
Hagen–Poiseuille flow in a pipe of radiusR, which in cylin-
drical polar coordinates (r ,u,z) has a velocity field given by

@U,V,W#5@0,LW0y,W0~12y2!#, ~1!

where

y[
r

R
, ~2!

is the nondimensional radial distance,W0 is the maximum
axial velocity at the axis andL is the swirl parameter,

L[
VR

W0
, ~3!

with V the angular velocity of the rigid-body rotation~note
that L is the inverse of the Rossby number used in so
previous works on the temporal stability of this flow!. The
other dimensionless parameter governing the flow is
Reynolds number

Re[
W0R

n
, ~4!

wheren is the kinematic viscosity. As in previous works o
the temporal stability of this flow, sometimes it will be co
venient to use a Reynolds number for the azimuthal flo
Reu[VR2/n5ReL, instead ofL.

To analyze the linear stability of the above base flow,
flow variables (u,v,w) andp are decomposed, as usual, in
the mean part, (U,V,W) andP, and small perturbations:

u5U1W0ū, ~5!

v5V1W0v̄, ~6!

w5W1W0w̄, ~7!

p

r
5

1

2
r 2V21W0

2p̄. ~8!
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Since the basic flow is parallel along the axis, the dimensi
less perturbations

s[@ ū,v̄,w̄,p̄#T ~9!

are decomposed in the form

s5S~y!exp@az1 inu2 iÃt#. ~10!

In this expression,

z[
z

R
and t[

W0t

R
~11!

are the dimensionless axial coordinate and time, respectiv
n is the azimuthal wave number,

Ã[
v̂R

W0
~12!

is the ~in general complex! dimensionless frequency of th
perturbations, anda/ i[k, with

a[ i k̂R[g1 ia, ~13!

is the complex nondimensional axial wave number.g
5R(a) is the spatial growth rate, and its imaginary parta is
the nondimensional axial wave number~v̂ and k̂ are the
dimensional frequency and axial wave number, respective!.
Finally, the complex amplitudeS is written as

S~y![S F~y!

G~y!

H~y!

P~y!

D . ~14!

Substituting~10!–~14! into the incompressible Navier–
Stokes equations, and neglecting second-order terms in
small perturbations, one obtains the following linear stabil
equation forS:

L•S50, ~15!

where the matrix operatorL is defined as
L[L11aL21
1

Re
L31a2

1

Re
L4, ~16!

L15S 11y
d

dy
in 0 0

i ~nL2Ã!y 22Ly 0 y
d

dy

2Ly i~nL2Ã!y 0 in

22y2 0 i ~nL2Ã!y 0

D , ~17!

L25S 0 0 y 0

y~12y2! 0 0 0

0 y~12y2! 0 0

0 0 y~12y2! y

D , L45S 0 0 0 0

2y 0 0 0

0 2y 0 0

0 0 2y 0

D , ~18!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L35S 0 0 0 0

2Dy1
n211

y

2in

y
0 0

2
2in

y
2Dy1

n211

y
0 0

0 0 2Dy1
n2

y
0

D , ~19!
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Dy[
d2

dy2 1
d

dy
. ~20!

This equation has to be solved with the following bounda
conditions at the axisy50,17 and the pipe wally51:

y50

F5G50, dH/dy50 ~n50!, ~21!

F6 iG50, dF/dy50, H50 ~n561!, ~22!

F5G5H50 ~ unu.1!; ~23!

F~1!5G~1!5H~1!50. ~24!

In the spatial stability analysis that will be carried o
here, for a givenreal frequencyÃ5v, and given the param
eters Re,L, andn, the system~15!–~24! constitutes a non-
linear eigenvalue problem for the complex eigenvaluea. The
flow is considered unstable when the disturbance grows w
z; i.e., when the real part of the eigenvalue,g, is positive.

To solve~15!–~24! numerically,S is discretized using a
staggered Chebyshev spectral collocation technique de
oped by Khorrami,18 where the three velocity componen
and the three momentum equations are discretized at the
collocation points whereas the pressure and the contin
equation are enforced at the middle grid points. This met
has the advantage of eliminating the need for two artific
pressure boundary conditions aty50 andy51, which are
not included in~21!–~24!. To implement the spectral numer
cal method, Eq.~15! is discretized by expandingS in terms
of a truncated Chebyshev series. To map the interval 0<y
<1 into the Chebyshev polynomials domain21<s<1, the
transformationy5(s11)/2 is used. This simple transforma
tion concentrates the Chebyshev collocation points at b
the axis and the pipe wall. The domain is thus discretized
N points,N being the number of Chebyshev polynomials
which S has been expanded. For most of the computati
reported below, values ofN between 40 and 50 were enoug
to obtain the eigenvalues with at least 12 significant digits
it was checked for every result given below by using larg
values ofN. With this discretization, Eqs.~15!–~23! becomes
an algebraic nonlinear eigenvalue problem which is sol
using the linear companion matrix method described
Bridges and Morris.19 The resulting~complex! linear eigen-
value problem is solved with double precision using
eigenvalue solver from the IMSL library~subroutine
DGVCCG!, which provides the entire eigenvalue and eige
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vector spectrum. Spurious eigenvalues were discarded
comparing the computed spectra for increasing numberN of
collocation points.

III. SPATIAL STABILITY RESULTS AND COMPARISON
WITH PREVIOUS WORKS

For real values ofÃ5v, the governing stability equa
tions have the symmetry propertya(v;n;Re,L)°a* (2v;
2n;Re,L), where the asterisk indicates the complex con
gate. Thus, if one allows for both positive and negative v
ues of the forcing frequencyv, only the cases with nonposi
tive ~or non-negative! azimuthal wave numbern have to be
considered. In this work, it will be assumed thatn<0. A
spatial mode withv,0, n,0, and the eigenvaluea5g
1 ia ~for given values of Re andL! physically corresponds
to a spatial mode with the positive frequency2v, the posi-
tive azimuthal wave number2n, the axial wave number
2a, and the same spatial growth rateg.

To check the accuracy of the numerical results, a co
parison is first made with the spatial stability results of Ga
and Rouleau8 for a nonrotating pipe Poiseuille flow (L
50), which were obtained by these authors using a qu
different numerical method. We have corroborated that
nonrotating flow is linearly stable for all values ofv, n, and
Re. UsingN540, the computed eigenvalues coincide w
the corrected values reported by Garg and Rouleau8 ~their
Tables 1 and 2 with the smallest step size! in all the 11
significant figures given by these authors forn50, and in
nine significant figures forn51. The same excellent agree
ment is found with the numerical results reported by Kh
rami et al.20 for the same problem withL50.

For L.0 and given values of the parameters we ha
looked for the least stable, or the most unstable, spa
modes propagating towards increasingz. That is, for each
L.0, Re.0, n<0, and a given positive, negative or ze
value ofv, we have searched for the largest value ofg cor-
responding to a mode with a positive real part of the gro
velocity, which in its dimensionless form is given by

cg[
]v

]a
. ~25!

If g,0 ~g.0!, the amplitude of the wave packet correspon
ing to the selected forcing frequencyv, which moves down-
stream at the real group velocitycg.0, will decrease~in-
crease! with z, and the flow will be spatially stable
~unstable!. Thus, a spatial growth rateg.0 with cg.0 cor-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. Contours of constant axial wave number~a! and constant growth rate~b! of the least stable axisymmetric modes (n50) in the (L,v)-plane for
Re5103 ~dashed lines correspond to negative values!.
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responds to aconvectivelyunstable flow, since the growin
perturbation is advected downstream of the source with
forcing frequencyv, leaving the flow in its undisturbed stat
when the forcing ceases.9

For axisymmetric perturbations (n50), the flow is spa-
tially stable for every value of the parametersL and Re for
any real frequencyv, thus confirming previous temporal sta
bility results. Figure 1 shows the contours of the growth r
and the axial wave number in the (L,v)-plane of the least
stable modes forn50 and Re51000~only positive frequen-
cies, v.0, have to be considered forn50 owing to the
symmetry property mentioned above!. The growth rateg is
always negative, with the least stable perturbations be
those with v→0, which are associated witha→0 ~large
wavelength limit!, as L increases. As shown in Fig. 2 fo
Downloaded 10 Sep 2002 to 150.214.43.19. Redistribution subject to A
e

e

g

Re51000 andv50.01, the flow tends to be neutrally stab
to axisymmetric perturbations as the swirl parameter of
flow is increased indefinitely~which is a known result for
inertial perturbations in a purely solid body rotation!.21

For nonaxisymmetric perturbations (nÞ0), the first azi-
muthal wave number that becomes spatially unstable as
or L, increases isn521, in agreement with previous tem
poral stability results. Figure 3 shows the contours ofg and
a of the least stable modes~largestg! in the (L,v)-plane for
n521, and two values of the Reynolds number, Re590 and
Re5100. For Re590 @Figs. 3~a! and 3~b!#, the flow is un-
stable ~g.0! in a narrow strip around the lineL
'0.41– 0.88v, for v,20.39, approximately. The unstabl
region in Fig. 3~a! lies entirely within the region witha.0
FIG. 2. Spatial growth rateg and axial wave numbera
of the least stable mode as functions ofL for n50,
Re5103, andv50.01.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Contours of constant growth rate@~a! and ~c!# and constant axial wave number@~b! and ~d!# of the least stable nonaxisymmetric modes wi
n521 in the (L,v)-plane for Re590 @~a! and ~b!# and Re5100 @~c! and ~d!#. Dashed lines correspond to negative values.
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of Fig. 3~b!, so that these unstable perturbations for Re590
have negative phase velocities,

c[
v

a
,0. ~26!

However, their real group velocities are positive, as shown
Fig. 4~a! for L51. Thus, although the crests of the unsta
waves travel towards decreasingz, the wave packets with the
selected frequencyv grow towards increasingz. The results
of negative phase speed for these unstable modes with
tively large swirl numbers and low Reynolds numbers are
agreement with the temporal results.2,5

As the Reynolds number decreases below 90, the
stable region in theL, v plane becomes narrower, and mov
towards increasing values ofL ~decreasingv!, until it van-
ishes at Re5Rep.82.9, with L→` (v→2`). This is the
lowest Reynolds number for instability found in previo
works on the temporal stability of this flow, first given b
Pedley.2 On the other hand, as the Reynolds number
creases, the instability region in theL,v plane widens. For
Re5100 @Figs. 3~c! and 3~d!#, the region withg.0 has al-
Downloaded 10 Sep 2002 to 150.214.43.19. Redistribution subject to A
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ready reached the half-planev.0 @see Fig. 3~c!#, implying
that now there exist unstable modes with phase speed
group velocity both positive@see Fig. 4~b! for L50.5#. This
situation first occurs at Re.97.35 forL.0.535.

Figure 5~a! shows the neutral curves~curves on which
g50! in the (L,Re)-plane forn521 and several values o
the real frequencyv. As mentioned above, the minimum
Reynolds number for instability, Re5Rep.82.9, corresponds
to the limit v→2` andL→`. It is observed that the insta
bility region for a negative frequencyv becomes narrower a
uvu increases. The neutral curves for these negative value
v have the asymptotesL→2v for Re→`, with the insta-
bility region located to the right ofL52v (L>2v). In
general, for Re→` ~inviscid limit!, the stability equations
have solutions withg>0 only if nL2v>0.

The stability boundary for smallL is better appreciated
in Fig. 5~b!, where the neutral curves are plotted on t
(Reu5ReL,Re)-plane. The flow is unstable for perturbatio
with n521 if Reu.26.96 ~i.e., Re.26.96/L!. This mini-
mum value of the swirl Reynolds number for instability c
incides with that obtained by Mackrodt4 using a temporal
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Spatial growth rateg, axial wave numbera, phase speedc, and real group velocitycg of the least stable mode as functions of the frequencyv for
n521, Re590, L51 ~a!, andn521, Re5100,L50.5 ~b!.
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stability analysis. In fact, the envelope of all the neut
curves, which represents the overall stability bound
Rec(L) ~see the next section for more details!, obviously co-
incides with the boundary obtained from the temporal sta
ity analysis.4,5

As unu increases, the instability region in th
(ReL,Re)-plane becomes smaller, with the stability boun
ary located at higher values of both Re andL. This can be
appreciated in Fig. 6, where the envelopes of the neu
curves for the different frequencies are plotted forn521,
22 and23 in both the (L,Re) and the (ReL,Re) planes. The
asymptotic values of the neutral curves for ReL→` and
Re→` shown in this figure are in agreement with tho
found by Cotton and Salwen5 in their temporal stability
analysis.

Althoughn521 is the azimuthal wave number that fir
becomes unstable as Re increases for any given valueL
@say at Rec(L)[Rec1(L)#, there exists a second Reynold
Downloaded 10 Sep 2002 to 150.214.43.19. Redistribution subject to A
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number Rec2(L).Rec(L) above which some mode withn
522 and a particular frequency becomes more unsta
than any mode withn521. In the same way, for Re
.Rec3(L).Rec2(L), modes withn523 become the mos
unstable for a given value ofL, and so on. In fact, as it wa
first shown by Pedley,1 the most unstable modes in theinvis-
cid limit Re→` correspond tounu→` ~see also Refs. 3 and
6!. In addition, as in the temporal stability analysis discuss
in detail by Cotton and Salwen,5 we also find in the presen
spatial analysis several mode switching in the neutral cur
for the different frequencies whenn522,23,... . However,
all these details are not reported here because our main
cern is to characterize the neutral curves for the differ
values ofn, and their corresponding real frequencies.

IV. THE ONSET OF ABSOLUTE INSTABILITY

The neutral curves given in Figs. 5 and 6 mark the on
of convective instability: For a given value ofL, when Re is
es
FIG. 5. Neutral curves forn521 and several frequencies on theL,Re plane~a! and on the Reu , Re plane~b!. Dashed curves correspond to negative valu
of v. The dashed and dotted lines represent the envelopes for both small and large values of the swirl parameter.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Envelopes of the neutral curves for convective instability forn521, n522, andn523 on theL,Re plane~a! and on the Reu , Re plane~b!.
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slightly larger than Rec(L), where Rec(L) is given by the
envelope of the neutral curves in Fig. 5 forn521, the
growth rateg becomes positive for at least some frequen
v. The unstable wave packet with that frequency travels
positive real group velocitycg ~see Fig. 4!, so that it corre-
sponds to a convective instability. The same can be said
the perturbations withn522 andn523 when Re become
larger than the corresponding neutral curves plotted in Fig

It is observed in Fig. 4 thatcg has its minimum value,
for given Re andL, at the same frequency, approximately,
which g is maximum. That is to say, wave packets cor
sponding to the most unstable~or least stable! modes are the
slowest traveling along the pipe. As the Reynolds numbe
increased, the maximum growth rate for a givenL increases,
Downloaded 10 Sep 2002 to 150.214.43.19. Redistribution subject to A
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and the corresponding minimum ofcg decreases until it van
ishes in a cusp point when Re5Ret(L).Rec at a frequency
v t(L) @see Figs. 7 and 8 for two different values ofL and
n521; in these figures, like in Fig. 4,cg @Eq. ~25!# is nu-
merically computed using second-order centered differen
of a~v!, taking Dv as small as 1024 in the vicinity of the
cusp points#. For these values of the frequency and Reyno
number, the growth rate presents also a cusp point@see Figs.
7~a! and 8~a!#, so that the flow is markedly more unstable
that frequency. But, what is more important, two spat
branches of the dispersion relation coalesce at the real
quencyv5v t(L) when Re5Ret(L), indicating that the flow
may become absolutely unstable according to the Brigg
FIG. 7. Spatial growth rateg ~a! and
real group velocitycg ~b! vs frequency
for n521, L50.5 and several Rey-
nolds numbers between Rec(0.5)
.97.5 and Ret(0.5).16 434.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. As in Fig. 7, but forL52.5.
Rec(2.5).83.6, Ret(2.5).108.23.
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Bers criterion. Actually, if one defines the complex gro
velocity ~see, e.g., Refs. 10 and 11!

vg[
dÃ

dk
5 i

dÃ

da
5

]v

]a
1 i

]v

]g
5cg1 i

]v

]g
, ~27!

where Ã[v1 iv i is the complex frequency andk[a/ i
5a2 ig is the complex axial wave number@see Eqs.~13!
and ~25!#, vg vanishes at Ret(L) when v5v t(L) because
cg50 and]g/]v→`. In addition, the cusp points in Figs.
and 8 arepinchingpoints for two spatial branchesk1 andk2

in the complex~a,g!-plane, thepositivebranch retreating to
the lower half ~g,0! of the complex plane asv i5J(Ã)
increases, while thenegativebranch lies entirely in the uppe
Downloaded 10 Sep 2002 to 150.214.43.19. Redistribution subject to A
half of the complex~a,g!-plane asv i increases~see Fig. 9
for the same values ofn andL considered in Figs. 7 and 8!.
These two conditions characterizes the transition to abso
instability according to the Briggs-Bers criterion~see, for
instance, Ref. 10!. For Re.Ret(L), both spatial branches be
comemixed, and the present spatial stability analysis is
longer appropriate. However, Figs. 7, 8, and 9 show that
present spatial analysis is an efficient tool to search for
onset of absolute instability in this kind of flow: one only h
to look for conditions at whichcg50 in a cusp point. Then
if they exist, check whether they correspond to a pinch
point of two spatial branches~positive and negative! in the
complex wave number plane.
e
FIG. 9. Spatial branchesk1 ~solid lines! andk2 ~dashed lines! in the complex~a,g!-plane for different values ofv i at the conditions corresponding to th
cusp points of Fig. 7@~a!#, and Fig. 8@~b!#. Note that the complex axial wave number is, in the present notation,k5a/ i 5a2 ig.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. Regions of stability, convective instability~CI!, and absolute instability~AI ! for n521 in the (L,Re)-plane~a!, and in the (ReL,Re)-plane~b!.
These regions are separated by the curves Rec(L) ~solid! and Ret(L) ~dashed!. The dotted lines mark the minimum swirl for absolute instability.
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At the conditions of the cusp points of Figs. 7 and 8@i.e.,
at Re5Ret(L)# perturbations withn521 and the real fre-
quencyv5v t(L) are unstable~g is very large indeed! and
have zero complex group velocity, so that they growin situ.
For Re.Ret(L), there exist unstable perturbations that prop
gate upstream, but they are no longer described by
present spatial stability analysis. Figure 10 shows the bou
ary Ret(L) together with Rec(L) for n521, which is the
azimuthal wave number that first becomes unstable, b
convectively and absolutely, as the Reynolds number is
creased for eachL ~see below!. An interesting feature is tha
the flow can be absolutely unstable only if the swirl para
eterL is above a critical valueL* .0.38 ~see also Fig. 11!,
while the flow may be convectively unstable for any value
L if the Reynolds number is high enough. In terms of t
swirl Reynolds number@Fig. 10~b!#, the flow can be convec
tively unstable for ReL.26.96, whereas it can be absolute
unstable if ReL.251, approximately. For largeL ~L.20,
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approximately!, Ret(L)'Rec(L), and the flow becomes abso
lutely unstable just after becoming convectively unstable
Re is increased for a givenL.

Similar computations have been carried out forn522,
23,... . Figure 11 compares the boundaries of absolute in
bility for n521, 22, and23, showing thatn521 is the
azimuthal wave number that first becomes absolutely
stable for eachL as Re is increased. Higher values ofunu
are not shown because they follow a similar trend. It is o
served that perturbations withn522 can be absolutely un
stable only if L.L2* .0.55, while for perturbations with
n523, L must be larger than 0.64~approximately! to be-
come absolutely unstable as Re is increased. As in the
n521, the boundaries for convective and absolute insta
ity, Rec

(n)(L) and Ret
(n)(L), practically coincide for largeL for

all the values ofn considered~compare Fig. 11 with Fig. 6!.
Figure 12 shows the frequenciesvc

(n)(L) and v t
(n)(L)
FIG. 11. Boundaries of absolute instability forn521, 22, and23.
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FIG. 12. vc
(n)(L) ~a! andv t

(n)(L) ~b! for n521, 22, and23.
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for the onset of convective and absolute instabilities, resp
tively, for perturbations withn521, 22, and23. For each
n, these are the frequencies that first become unstable a
is increased for a givenL. For largeL, these two frequencie
practically coincide as a consequence of the fact t
Rec

(n)(L)'Ret
(n)(L) for large L. They can be approximate

by v t
(n)'vc

(n)'nL, L@1. Note thatv t
(n)(L) only exists for

L.Ln* , whereLn* .0.38, 055, and 0.64 forn521, 22, and
23, respectively.

Finally, Fig. 13 shows the amplitude of the eigenfun
tions for n521 and L50.5 corresponding to two mode
one on the neutral curve for convective instability, R
5Rec(0.5)597.5 andv5vc(0.5)520.04, and the secon
one at the onset of absolute instability, Re5Ret(0.5)
516 434 andv5v t(0.5).20.39. For a relatively low Rey-
nolds number such as Re597.5@Fig. 13~a!#, the disturbances
arecentermodes, with the maxima of the disturbance velo
ties at, or near, the pipe axis. However, for large Reyno
numbers @Fig. 13~b!#, the most unstable modes arewall
modes.
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V. CONCLUDING REMARKS

The main results of the spatial stability analysis of rot
ing Hagen–Poiseuille flow performed in this work are su
marized in Fig. 10~together with Figs. 6 and 11!. The analy-
sis corroborates the stability boundary~for convective
instabilities! obtained previously from the temporal stabili
of the flow.4,5 The spatial analysis yields the neutral curv
for each real frequency of the disturbances~e.g., Fig. 5!,
instead of their wave number, which is a more relevant
formation from an experimental point of view. In additio
the spatial analysis provides a relatively simple tool for fin
ing out the absolute–convective transition as the Reyno
number is increased for a given swirl number. In particular
is shown that wave packets corresponding to the most
stable frequency for each Re andL are the slowest propaga
ing downstream, i.e., they have the smallest real group
locity cg . As Re is increased, the complex group velocityvg

eventually vanishes at Ret(L), and the flow becomes abso
lutely unstable according to the Briggs–Bers zero-gro
FIG. 13. Eigenfunctions amplitudesuFu ~solid lines!, uGu ~dashed lines!, uHu ~dashed and dotted lines!, and uPu ~dotted lines! for n521, L50.5 with Re
5Rec(0.5)597.5 andv5vc(0.5)520.040~a!, and Re5Ret(0.5)516 434 andv5v t(0.5)520.3929~b!. The maximum value ofuHu is normalized to unity.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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velocity criterion. It is remarkable that the flow can be abs
lutely unstable only forL.L* .0.38 @Ret(L* )→` for n
521#.

The present stability analysis is similar to that given
Olendraruet al.14 for the Batchelor vortex. However, the on
set of absolute instability is searched here in a more strai
forward way by first looking for the conditions at which th
real part of the complex group velocity vanishes. The m
qualitative difference between the present results and th
for the Batchelor and related vortices11–16 is that the rotating
Hagen–Poiseuille flow may be absolutely unstable for re
tively low values of the swirl parameter in spite of the a
sence of wake-like axial velocity profile. In addition, it
shown that perturbations with the azimuthal wave num
n521 are the first to become absolutely unstable as b
the Reynolds number is increased, for everyL.L* , and the
swirl number is increased for every Re.Rep.82.9. As a
final comment, in the references just cited, the onset of
solute instability in Batchelor, Rankine, and related vortic
is associated with the vortex breakdown phenomenon.
relation between stability and vortex breakdown is also
gued for an inviscid flow with solid body rotation in a pip
of finite length by Wang and Rusak,22,23 who analyzed the
inviscid stability for axisymmetric perturbations. Unfortu
nately, we cannot speculate here on the nature of the pre
rotating pipe flow after becoming absolutely unstable
cause no experimental data are available.
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