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The onset of absolute instability of rotating Hagen—Poiseuille flow:
A spatial stability analysis
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A spatial, viscous stability analysis of Poiseuille pipe flow with superimposed solid body rotation is
considered. For each value of the swirl paraméteverse Rossby numbek >0, there exists a
critical Reynolds number R@) above which the flow first becomes convectively unstable to
nonaxisymmetric disturbances with azimuthal wave number—1. This neutral stability curve
confirms previous temporal stability analyses. From this spatial stability analysis, we propose here
a relatively simple procedure to look for the onset of absolute instability that satisfies the so-called
Briggs—Bers criterion. We find that, for perturbations with — 1, the flow first becomes absolutely
unstable above another critical Reynolds numbe(LiRe Re(L), provided that>0.38, with Re

—Re, as L—«. Other values of the azimuthal wave numberare also considered. For Re
>Re(L), the disturbances grow both upstream and downstream of the source, and the spatial
stability analysis becomes inappropriate. However, foxRe, the spatial analysis provides a
useful description on how convectively unstable perturbations become absolutely unstable in this
kind of flow. © 2002 American Institute of Physic§DOI: 10.1063/1.1497374

I. INTRODUCTION increased, the real part of the group velocity corresponding
to the most unstable frequency decreases until it vanishes at
It was first shown by Pedléy that Poiseuille flow, when a second critical Reynolds number,@&>Re,(L). This situ-
subjected to rapid rotation about the axis of the pipe, beation, which for n=—1 occurs only forL>L*=0.38,
comes unstable to nonaxisymmetric disturbances. t€he  marks, as we shall show, the onset of the absolute instability
poral stability analysis, both invisctdand viscoug,was later  of the flow according to the Briggs—Bers criteridH For
extended to cover all values of the parameters: ReynoldRe>Rg, unstable modes with both positive and negative
number Re, swirl parametér(inverse Rossby numbgrazi-  group velocities coexist, and the spatial stability analysis of
muthal wave numben, and axial wave number.®°In the  the present work becomes meaningless. It is concluded that
present paper, the problem gifatial stability where a distur-  the spatial stability analysis provides a very simple and use-
bance, imposed at a specific location in the fluid, grows offul tool to describe, in this kind of swirling flow, the transi-
decay with axial distance, is investigated for axisymmetriction process from convective to absolute instability as the
and nonaxisymmetric disturbances. As in the temporal stabilgoverning parameters are varied.
ity analysis, it is shown that the flow is stable to axisymmet-  There are several recent works on the convective—
ric disturbances, and unstable to nonaxisymmetric perturbabsolute transition in swirling jets and waké., Batchelor
tions in a wide region of the Ré, plane,n=—1 being the  and related vortex model$'~*®These flows are quite differ-
azimuthal wave number that first becomes unstable as Re, eht to(more complex thanthe one considered in this paper.
L, is increased. In fact, as pointed out by Cotton andThey have in common that absolute instability is usually
Salwen? the envelope of the neutral stability curves coincideassociated with wake-like axial velocity profiles. In the
for the spatial and for the temporal problems. But the spatiapresent work we find the transition to absolute instability in a
analysis is physically more relevant from an experimentaPoiseuille axial velocity profile for relatively low values of
point of view, providing the forcing frequencies at which the the swirl parameter that characterizes the superimposed solid
flow is most unstabléor least stablefor eachn, Re and. In  body rotation. Unfortunately, no experimental data are avail-
particular, for each value df>0 [as it is widely known, the able (to our knowledgg to compare with. Pedléyalready
nonrotating Poiseuille flowl(=0) is stable for any infini- pointed out the difficulties in obtaining a Hagen—Poiseuille
tesimal disturbandg® the analysis provides the frequency flow plus solid body rotation experimentally. Mackrbade-
w. at which the flow first becomes unstable as the Reynoldported some(rather qualitative experimental results that
number increases above a critical value(Rg It is shown  agreed well with the theoretical convective instability results.
that for increasing ReRe,(L), the instability is first convec- But these experiments have not been pursued further to find
tive, i.e., wave packets corresponding to an unstable fresut the convective—absolute transition in a fully developed
guency with positive spatial growth rate travel with positive rotating Hagen—Poiseuille flow. The comparison with experi-
real group velocityalthough the real phase velocity could be mental results from other types of swirling flows in pipes is
positive or negative, depending @) Re andL), thus mov- not appropriate due to the strong qualitative differences be-
ing away from the source. As the Reynolds number is furthetween the flows.
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Il. VISCOUS STABILITY FORMULATION AND Since the basic flow is parallel along the axis, the dimension-
NUMERICAL METHOD less perturbations
The basic flow considered in this work is the rotating o=y, w,p]" )

Hagen—Poiseuille flow in a pipe of radigs which in cylin- _
drical polar coordinatesr(6,z) has a velocity field given by are decomposed in the form

[U,V,W]=[0LWoy,W(1-Yy?)], 1) s=S(y)exgal+ino—iwr]. (10
where In this expression,
r z Wt
=5 (2) = — = ity
Y=R = and7=— (12)

is the nondimensional radial distand# is the maximum  pe the dimensionless axial coordinate and time, respectively,
axial velocity at the axis ant is the swirl parameter, n is the azimuthal wave number,

L= 3 oR
W, o=
0 WO

with ) the angular velocity of the rigid-body rotatignote . . . .
that L is the inverse of the Rossby number used in somé> the (in general complexdimensionless frequency of the

previous works on the temporal stability of this flpwrhe perturbations, and/i =k, with

(12

other dimensionless parameter governing the flow is the ,_ijkRr= y+ia, (13)
Reynolds number
W.R is the complex nondimensional axial wave number.
Re= —> (4) =MN(a) is the spatial growth rate, and its imaginary pait
14

the nondimensional axial wave numb@b and k are the
where v is the kinematic viscosity. As in previous works on dimensional frequency and axial wave number, respectively
the temporal stability of this flow, sometimes it will be con- Finally, the complex amplitud& is written as

venient to use a Reynolds number for the azimuthal flow, F(y)

Re,=OR%v=RelL, instead ofL.

To analyze the linear stability of the above base flow, the  g(y)= ﬁ(y) (14)
flow variables (1,v,w) andp are decomposed, as usual, into (y)
the mean part,§,V,W) andP, and small perturbations: 11 (y)
u=U-+W,u, (5) Substituting(10)—(14) into the incompressible Navier—
_ Stokes equations, and neglecting second-order terms in the
v=V+Wopp, (6)  small perturbations, one obtains the following linear stability
wW=W-+Wow, @ equation forS:
p 1 L-S=0, (15
Y _ 202 22—
p 2r Q7+ Wop. ® where the matrix operatdr is defined as
1 , 1
LEL1+aL2+ R_el_3+a R_el_4, (16)
1 d in 0 0
+y®
. d
L,=| i(nL—=)y —2Ly 0 yd— , (17
y
2Ly i(nL—w)y 0 in
—2y? 0 i(nL—w)y 0
0 0 y 0 0 0 O
. y(1-y?) 0 0 0 LY 0 0 O s
2 0 y(1—y?) 0 o’ “ 1o -y o of (18)
0 0 y(1-y?) y 0 0 -y o
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0 0 0 0
n?+1 2in
-Dy — 0 0
y
Ly= 2in n?+1 1
3 _4in D+ 0 ol (19
y y
n2
0 0 -Dy+— 0
|
with vector spectrum. Spurious eigenvalues were discarded by
2 d comparing the computed spectra for increasing nurhbef
= 4+ collocation points.
D=4yt ay (20) p
Th'sd.e.q”at'on :as to b_eoslc;"’e?j "‘;}'th the fo"?""l”f, boundary,, " spaTiAL STABILITY RESULTS AND COMPARISON
conditions at the axig=0,"" and the pipe wally=1: WITH PREVIOUS WORKS
=0
y For real values ofw=w, the governing stability equa-
F=G=0, dH/dy=0 (n=0), (21)  tions have the symmetry propers(w;n;Rel)—a*(—w;
e _ _ 4 —n;Rel), where the asterisk indicates the complex conju-
F=iG=0, dF/dy=0, H=0 (n==1), 22 gate. Thus, if one allows for both positive and negative val-
F=G=H=0 (|n|>1); (23 ues of the forcing frequency, only the cases with nonposi-
tive (or non-negativeazimuthal wave number have to be
F(1)=G(1)=H(1)=0. (24 considered. In this work, it will be assumed tha&0. A

In the spatial stability analysis that will be carried out spatial mode withw<0, n<0, and the eigenvalua=y
here, for a giveneal frequencyw=w, and given the param- +ia (for given values of Re antl) physically corresponds
eters Rel, andn, the system(15)—(24) constitutes a non- to @ spatial mode with the positive frequeneyn, the posi-
linear eigenvalue problem for the complex eigenvalu&he  tive azimuthal wave number-n, the axial wave number
flow is considered unstable when the disturbance grows with- @, and the same spatial growth rage
z i.e., when the real part of the eigenvalue,is positive. To check the accuracy of the numerical results, a com-

To solve(15)—(24) numerically,S is discretized using a parison is first made with the spatial stability results of Garg
staggered Chebyshev spectral collocation technique deveand Rouleali for a nonrotating pipe Poiseuille flowL(
oped by Khorrami{® where the three velocity components =0), which were obtained by these authors using a quite
and the three momentum equations are discretized at the gn:ﬂfferent numerical method. We have corroborated that the
collocation points whereas the pressure and the continuitponrotating flow is linearly stable for all values of n, and
equation are enforced at the middle grid points. This methodRe. UsingN=40, the computed eigenvalues coincide with
has the advantage of eliminating the need for two artificiathe corrected values reported by Garg and Rodlétheir
pressure boundary conditions @0 andy=1, which are Tables 1 and 2 with the smallest step size all the 11
not included in(21)—(24). To implement the spectral numeri- Significant figures given by these authors for0, and in
cal method, Eq(15) is discretized by expanding in terms  hine significant figures fon=1. The same excellent agree-
of a truncated Chebyshev series. To map the intereayy0 ment is found with the numerical results reported by Khor-
<1 into the Chebyshev polynomials domainl<s<1, the ramiet al*® for the same problem with =0.
transformationy= (s+ 1)/2 is used. This simple transforma- For L>0 and given values of the parameters we have
tion concentrates the Chebyshev collocation points at botlpoked for the least stable, or the most unstable, spatial
the axis and the pipe wall. The domain is thus discretized irmodes propagating towards increasingThat is, for each
N points,N being the number of Chebyshev polynomials inL>0, Re>0, n<0, and a given positive, negative or zero
which S has been expanded. For most of the computationgalue ofw, we have searched for the largest valueyafor-
reported below, values & between 40 and 50 were enough responding to a mode with a positive real part of the group
to obtain the eigenvalues with at least 12 significant digits, ayelocity, which in its dimensionless form is given by
it was checked for every result given below by using larger o
values ofN. With this discretization, Eq$15)—(23) becomes Cg= S
an algebraic nonlinear eigenvalue problem which is solved «
using the linear companion matrix method described bylf y<0 (y>0), the amplitude of the wave packet correspond-
Bridges and Morrig? The resulting(compley linear eigen-  ing to the selected forcing frequenay which moves down-
value problem is solved with double precision using anstream at the real group velocity>0, will decrease(in-
eigenvalue solver from the IMSL library(subroutine creas¢ with z, and the flow will be spatially stable
DGVCCG), which provides the entire eigenvalue and eigen-(unstable. Thus, a spatial growth ratg>0 with ¢,>0 cor-

(25
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FIG. 1. Contours of constant axial wave numifar and constant growth rat@) of the least stable axisymmetric modas=(0) in the (L,)-plane for
Re=10° (dashed lines correspond to negative values

responds to @onvectivelyunstable flow, since the growing Re=1000 andw=0.01, the flow tends to be neutrally stable
perturbation is advected downstream of the source with theo axisymmetric perturbations as the swirl parameter of the
forcing freque_ncyu, leaving the flow in its undisturbed state flow is increased indefinitelywhich is a known result for
when the forcing ce_as@s. _ _ inertial perturbations in a purely solid body rotatiGh

~For axisymmetric perturbations1=0), the flow is spa- For nonaxisymmetric perturbations#0), the first azi-
tially stable for every value OT thg parametersand Re for muthal wave number that becomes spatially unstable as Re,
any real frequencw, thus confirming previous temporal sta- . o . . :

. . or L, increases im=—1, in agreement with previous tem-
bility results. Figure 1 shows the contours of the growth rate | stabilit Its. Fi 3 sh th i and
and the axial wave number in thé ()-plane of the least por? hsat ity rest;JI S |dgu; S O\_NS h € con ouIrSy ?
stable modes fon=0 and Re=1000(only positive frequen- & ©F the least stable mo émrgesty) in the (L, »)-plane for

n=—1, and two values of the Reynolds number=@ and

cies, >0, have to be considered far=0 owing to the

symmetry property mentioned abov&he growth rateyis ~ R€=100. For Re=90 [Figs. 3a) and 3b)], the flow is un-
always negative, with the least stable perturbations beingtable (y>0) in a narrow strip around the lineL
those with w—0, which are associated with—0 (large  ~0.41-0.8%, for w<—0.39, approximately. The unstable

wavelength limi}, asL increases. As shown in Fig. 2 for region in Fig. 3a) lies entirely within the region withe>0

n=0, Re=1000, w=0.01
N=50
0.015 T T T T T T T

[0 0 ] 2 e I T T =

FIG. 2. Spatial growth rater and axial wave humbet
of the least stable mode as functions loffor n=0,

-0.005
Re=10°, andw=0.01.

-0.01
~0.015

-0.02

-0.025 L
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FIG. 3. Contours of constant growth rafted) and (c)] and constant axial wave numbgb) and (d)] of the least stable nonaxisymmetric modes with
n=—1 in the (,w)-plane for Re=90 [(a) and(b)] and Re=100[(c) and(d)]. Dashed lines correspond to negative values.

of Fig. 3(b), so that these unstable perturbations for=-R6  ready reached the half-plare>0 [see Fig. &)], implying

have negative phase velocities, that now there exist unstable modes with phase speed and
® group velocity both positivgsee Fig. 4b) for L=0.5]. This
=—<0. (26) situation first occurs at Re97.35 forL=0.535.
a Figure %a) shows the neutral curvggurves on which

However, their real group velocities are positive, as shown iny=0) in the (L,Re)-plane fom=—1 and several values of
Fig. 4@ for L=1. Thus, although the crests of the unstablethe real frequencyw. As mentioned above, the minimum
waves travel towards decreasinghe wave packets with the Reynolds number for instability, ReRe,~82.9, corresponds
selected frequency grow towards increasing The results  to the limit w—— andL—o=. It is observed that the insta-
of negative phase speed for these unstable modes with relbiity region for a negative frequenay becomes narrower as
tively large swirl numbers and low Reynolds numbers are ino| increases. The neutral curves for these negative values of
agreement with the temporal results. o have the asymptotds— — w for Re—o, with the insta-
As the Reynolds number decreases below 90, the urbility region located to the right ol =—w (L=—w). In
stable region in th&é,  plane becomes narrower, and movesgeneral, for Re»« (inviscid limit), the stability equations
towards increasing values &f (decreasingw), until it van-  have solutions withy=0 only if nL— =0.
ishes at Re-Rg,=82.9, withL—% (w— —). This is the The stability boundary for small is better appreciated
lowest Reynolds number for instability found in previousin Fig. 5b), where the neutral curves are plotted on the
works on the temporal stability of this flow, first given by (Re,=ReL,Re)-plane. The flow is unstable for perturbations
Pedley’ On the other hand, as the Reynolds number inwith n=—1 if Re,>26.96 (i.e., Re>26.96L). This mini-
creases, the instability region in thew plane widens. For mum value of the swirl Reynolds number for instability co-
Re=100 [Figs. 3c) and 3d)], the region withy>0 has al- incides with that obtained by Mackrddusing a temporal
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Re=90, L=1, n=—1 Re=100, L=0.5, n=~1
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FIG. 4. Spatial growth rate, axial wave numbew, phase speed and real group velocitg, of the least stable mode as functions of the frequendgr
n=-1, Re=90,L=1 (a), andn=—1, Re=100,L=0.5 (b).

stability analysis. In fact, the envelope of all the neutralnumber Rg(L)>Re(L) above which some mode with
curves, which represents the overall stability boundary=—2 and a particular frequency becomes more unstable
Re(L) (see the next section for more detgilsbviously co-  than any mode withn=—1. In the same way, for Re
incides with the boundary obtained from the temporal stabil->Re4(L)>Re,(L), modes withn=—3 become the most
ity analysis?® unstable for a given value df, and so on. In fact, as it was
As [n| increases, the instability region in the first shown by Pedleythe most unstable modes in thwis-
(ReL,Re)-plane becomes smaller, with the stability bound-id limit Re— correspond tgn|—= (see also Refs. 3 and
ary located at higher values of both Re andThis can be  6). In addition, as in the temporal stability analysis discussed
appreciated in Fig. 6, where the envelopes of the neutrgh detail by Cotton and Salwehwe also find in the present
curves for the different frequencies are plotted fior —1,  spatial analysis several mode switching in the neutral curves
—2 and—3in both the (,Re) and the (RE,Re) planes. The for the different frequencies whem=—2,—3,.... However,
asymptotic values of the neutral curves for IRec and  all these details are not reported here because our main con-
Re—c shown in this figure are in agreement with thosecern is to characterize the neutral curves for the different

found by Cotton and Salweénin their temporal stability values ofn, and their corresponding real frequencies.
analysis.

Althoughn= —1 is the azimuthal wave number that first V- THE ONSET OF ABSOLUTE INSTABILITY
becomes unstable as Re increases for any given vallle of  The neutral curves given in Figs. 5 and 6 mark the onset
[say at RgL)=Rey4(L)], there exists a second Reynolds of convective instability: For a given value bf when Re is

n=1 n=—1

FIG. 5. Neutral curves fon=—1 and several frequencies on theRe planga and on the Rg, Re planegb). Dashed curves correspond to negative values
of w. The dashed and dotted lines represent the envelopes for both small and large values of the swirl parameter.
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FIG. 6. Envelopes of the neutral curves for convective instabilitynfer— 1, n=—2, andn=—3 on theL,Re plane(@ and on the Rg, Re plane(b).

slightly larger than RgL), where RgL) is given by the and the corresponding minimum of decreases until it van-
envelope of the neutral curves in Fig. 5 far=—1, the ishes in a cusp point when R&eg(L)>Re, at a frequency
growth ratery becomes positive for at least some frequencyw,(L) [see Figs. 7 and 8 for two different values lofand

o. The unstable wave packet with that frequency travels at a=—1; in these figures, like in Fig. 4, [Eq. (29] is nu-
positive real group velocitg, (see Fig. 4, so that it corre-  merically computed using second-order centered differences
sponds to a convective instability. The same can be said fqg¢ a(w), taking Aw as small as 10% in the vicinity of the

the perturbations with=—2 andn=—3 when Re becomes .o, nsint For these values of the frequency and Reynolds

Iarger_than the corr_esppndmg neutral curves plotted In Fig. 6rlumber, the growth rate presents also a cusp [jea# Figs.
It is observed in Fig. 4 thaty has its minimum value,

for ai . 7(a) and 8a)], so that the flow is markedly more unstable at
or given Re and., at the same frequency, approximately, at ) ) .
which vy is maximum. That is to say, wave packets corre-that frequency. Bl_Jt’ what IS more Important, two_ spatial
sponding to the most unstabfer least stablemodes are the branches of the dispersion relation coalesce at the real fre-
slowest traveling along the pipe. As the Reynolds number i§luéncyo=w(L) when Re=Rg(L), indicating that the flow
increased, the maximum growth rate for a gileimcreases, Mmay become absolutely unstable according to the Briggs—

1=0.5,n=-1,N=50 L=0.5,n=-1,N=50
0.6 T T T T

FIG. 7. Spatial growth rates (a) and
real group velocitycy (b) vs frequency
for n=—1, L=0.5 and several Rey-
nolds numbers between Re.5)
=97.5 and Rg0.5)=16 434.
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L=2.5,n=-1,N=50 L=2.5,n=—1,N=50
0.15 T T T T 3 T T T T

0.1

0.05
- FIG. 8. As in Fig. 7, but folL=2.5.
Re(2.5)=83.6, Rg2.5)=108.23.
4]
-0.05

Bers criterion. Actually, if one defines the complex grouphalf of the complex(«a,y)-plane asw; increasegsee Fig. 9

velocity (see, e.g., Refs. 10 and)11 for the same values af andL considered in Figs. 7 and.8
do  do Jdo Jdo Jo These two conditions characterizes the transition to absolute
= —|—=—+4j—=C.+i — instability according to the Briggs-Bers criterigsee, for
Y=gk~ da " 9a P Cyti 7y (27 y g ag a

instance, Ref. 10 For Re>Rg(L), both spatial branches be-
where w=w+iw; is the complex frequency ank=al/i comemixed and the present spatial stability analysis is no
=a—ivy is the complex axial wave numbgsee Eqs(13) longer appropriate. However, Figs. 7, 8, and 9 show that the
and (25)], vq vanishes at RfL) when w=w(L) because present spatial analysis is an efficient tool to search for the
cg=0 anddy/dw—->. In addition, the cusp points in Figs. 7 onset of absolute instability in this kind of flow: one only has
and 8 arepinchingpoints for two spatial branchés andk ™ to look for conditions at whicteg=0 in a cusp point. Then,

in the complex(«,y)-plane, thepositivebranch retreating to if they exist, check whether they correspond to a pinching
the lower half(y<0) of the complex plane a&;=J(w) point of two spatial branchegositive and negatiyein the
increases, while theegativebranch lies entirely in the upper complex wave number plane.

L=0.5,n=-1,N=50,Re=16434 L=2.5,n=-1,N=50,Re=108.23

FIG. 9. Spatial branchds" (solid lines andk~ (dashed linesin the complex(a,y)-plane for different values ab; at the conditions corresponding to the
cusp points of Fig. [{a)], and Fig. §(b)]. Note that the complex axial wave number is, in the present notdtie/i=a—ivy.
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i n=—1 26.96 n=—1
T T T T
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~

Stable

Stable

i 251
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Re L

FIG. 10. Regions of stability, convective instabilit¢1), and absolute instabilityAl) for n=—1 in the (L,Re)-plane(a), and in the (Ré,Re)-plane(b).
These regions are separated by the curveglLiRésolid) and RglL) (dashegl The dotted lines mark the minimum swirl for absolute instability.

At the conditions of the cusp points of Figs. 7 an.8.,  approximately, Rg(L)~Re,(L), and the flow becomes abso-

at Re=Re(L)] perturbations witm=—1 and the real fre- |utely unstable just after becoming convectively unstable, as
quencyw=w(L) are unstabley is very large indeedand  Re js increased for a given

have zero complex group velocity, so that they griovsitu. Similar computations have been carried out fier — 2,

For Re>Rg(L), there exist unstable perturbations that propa-_3  Figure 11 compares the boundaries of absolute insta-
gate upstregm, buF.they are no longer described by tr;Ei”ty for n=—1, —2, and—3, showing than=—1 is the
g:;sggt(f)p?g;}ts;:?l\;\t)i{[r?nsgf)lsf.;I?]ure 110 SVCE:’(\:IE tiz_etﬁgun azimuthal wave number that first becomes absolutely un-
azimuthal wave number that first becomes unstable, botl%table for eacfL as Re is increased. I—!lgher values|qf
convectively and absolutely, as the Reynolds number is in2r€ not shown becaqse they follow a similar trend. It is ob-
creased for each (see below An interesting feature is that served that perturbftlons with= __2 can be absqlutely ‘?”'

the flow can be absolutely unstable only if the swirl param-Stable only if L>L5=0.55, while for perturbations with
eterL is above a critical valug* =0.38 (see also Fig. 1 "= —3, L must be larger than 0.6@pproximately to be-
while the flow may be convectively unstable for any value of¢0me absolutely unstable as Re is increased. As in the case
L if the Reynolds number is high enough. In terms of then=—1, the boundaries for convective and absolute instabil-
swirl Reynolds numbefFig. 10b)], the flow can be convec- ity, R&™(L) and R¢(L), practically coincide for largé for

tively unstable for R&>26.96, whereas it can be absolutely all the values oh consideredcompare Fig. 11 with Fig.)6
unstable if R&.>251, approximately. For large (L>20, Figure 12 shows the frequencies™(L) and o{"(L)

FIG. 11. Boundaries of absolute instability fo=—1, —2, and—3.
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FIG. 12. (L) (@ and»{™(L) (b) for n=—1, —2, and—3.

for the onset of convective and absolute instabilities, respecy. CONCLUDING REMARKS
tively, for perturbations witm=—1, —2, and—3. For each
n, these are the frequencies that first become unstable as Re The main results of the spatial stability analysis of rotat-
is increased for a giveh. For largeL, these two frequencies ing Hagen—Poiseduille flow performed in this work are sum-
practically coincide as a consequence of the fact thamarized in Fig. 1dtogether with Figs. 6 and 11The analy-
ReP(L)~Re™(L) for large L. They can be approximated sis corroborates the stability boundarjor convective
by wﬁ”)~w£”)~nL, L>1. Note thatwgn)(L) only exists for  instabilitieg obtained previously from the temporal stability
L>L¥, whereL*=0.38, 055, and 0.64 far=—1, -2, and  of the flow*® The spatial analysis yields the neutral curves
—3, respectively. for each real frequency of the disturbandesg., Fig. 5,
Finally, Fig. 13 shows the amplitude of the eigenfunc-instead of their wave number, which is a more relevant in-
tions forn=—1 andL=0.5 corresponding to two modes, formation from an experimental point of view. In addition,
one on the neutral curve for convective instability, Rethe spatial analysis provides a relatively simple tool for find-
=Reg(0.5)=97.5 andw= w.(0.5)= —0.04, and the second ing out the absolute—convective transition as the Reynolds
one at the onset of absolute instability, -RRg(0.5) number is increased for a given swirl number. In particular, it
=16 434 andw = w;(0.5)=—0.39. For a relatively low Rey- is shown that wave packets corresponding to the most un-
nolds number such as R&7.5[Fig. 13a)], the disturbances stable frequency for each Re ahdre the slowest propagat-
arecentermodes, with the maxima of the disturbance veloci-ing downstream, i.e., they have the smallest real group ve-
ties at, or near, the pipe axis. However, for large Reynolddocity cy. As Re is increased, the complex group veloaiy
numbers[Fig. 13b)], the most unstable modes aveall eventually vanishes at REe), and the flow becomes abso-
modes. lutely unstable according to the Briggs—Bers zero-group-
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FIG. 13. Eigenfunctions amplitudéB| (solid lines, |G| (dashed lings |H| (dashed and dotted linesand|P| (dotted lineg for n=—1, L=0.5 with Re
=Re,(0.5)=97.5 andw = 0.(0.5)= —0.040(a), and Re=Rg(0.5)= 16 434 andv = w;(0.5)= — 0.3929(b). The maximum value diH| is normalized to unity.
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